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Abstract

A data mining system, DBMiner, has been de-
veloped for interactive mining of multiple-level
knowledge in large relational databases and data
warehouses. The system implements a wide
spectrum of data mining functions, including
characterization, comparison, association, clas-
si�cation, prediction, and clustering. By incor-
porating several interesting data mining tech-
niques, including OLAP and attribute-oriented
induction, statistical analysis, progressive deep-
ening for mining multiple-level knowledge, and
meta-rule guided mining, the system provides
a user-friendly, interactive data mining environ-
ment with good performance.

1 Introduction

With an enormous amount of data stored in
databases and data warehouses, it is increas-
ingly important to develop powerful data ware-
housing and data mining tools for analysis of
such data and mining interesting knowledge
from it [14, 4].

�Research was supported in part by a research

grant and a CRD grant from the Natural Sciences

and Engineering Research Council of Canada, a grant

NCE:IRIS/Precarn from the Networks of Centres of Ex-

cellence of Canada, and grants from B.C. Advanced Sys-

tems Institute, MPR Teltech Ltd., National Research

Council of Canada, and Hughes Research Laboratories.

With our years of research and development
on data mining and knowledge discovery in
databases, a data mining system, DBMiner,
has been developed by integration of database,
OLAP and data mining technologies [6, 8, 9, 10].
The system mines various kinds of knowledge
at multiple levels of abstraction from large rela-
tional databases and data warehouses e�ciently
and e�ectively, with the following distinct fea-
tures:

1. It incorporates several interesting data
mining techniques, including data cube and
OLAP technology [3], attribute-oriented in-
duction [6, 9], statistical analysis, progres-
sive deepening for mining multiple-level
rules [8, 9, 12], and meta-rule guided knowl-
edge mining [5, 11]. It also implements a
wide spectrum of data mining functions in-
cluding characterization, comparison, asso-
ciation, classi�cation, prediction, and clus-
tering.

2. It performs interactive data mining at mul-
tiple levels of abstraction on any user-
speci�ed set of data in a database or a data
warehouse using an SQL-like Data Mining
Query Language, DMQL, or a graphical user
interface. Users may interactively set and
adjust various thresholds, control a data
mining process, perform roll-up or drill-

down at multiple levels of abstraction, and
generate di�erent forms of outputs, includ-
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ing crosstabs, bar/pie charts, curves, classi-
�cation trees, multiple forms of generalized
rules, visual presentation of rules, etc.

3. E�cient implementation techniques have
been explored using di�erent data struc-
tures, including multiple-dimensional data
cubes and generalized relations. The imple-
mentations have been integrated smoothly
with relational database systems and data
warehouses.

4. The data mining process may utilize user-
or expert-de�ned set-grouping or schema-
level concept hierarchies which can be spec-
i�ed exibly, adjusted dynamically based
on data distribution, and generated auto-
matically for numerical attributes. Con-
cept hierarchies are being taken as an in-
tegrated component of the system and are
stored as a relation in the database.

5. The system adopts a client/server architec-
ture and is running on Windows/NT sys-
tem. It communicates with various com-
mercial database systems for data mining
using the ODBC technology.

The system has been tested on several
medium to large relational databases, includ-
ing NSERC (Natural Science and Engineering
Research Council of Canada) research grant in-
formation system, and U.S. City-County Data
Book, with satisfactory performance. Addi-
tional data mining modules are being designed
and will be added incrementally to the system
along with the progress of our research.

2 Architecture and Func-

tionalities

The general architecture of DBMiner, shown in
Figure 1, tightly integrates a relational database
system, such as a Microsoft SQL/Server, with a
concept hierarchy module, and a set of knowl-
edge discovery modules. The discovery modules
of DBMiner, shown in Figure 2, include charac-
terizer, comparator, classi�er, associator, meta-
pattern guided miner, predictor, cluster ana-
lyzer, time series analyzer, and some planned
future modules.

SQL Server

Data Concept Hierarchy

Graphical User Interface

Discovery Modules

Figure 1: General architecture of DBMiner

DBMiner:

Future
Modules

Guided Miner

Discovery Modules

Characterizer Classifier
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Time-Series
Analyzer

Comparator

Cluster

Meta-Pattern

Analyzer

Figure 2: Knowledge discovery modules of
DBMiner

The functionalities of the knowledge discovery
modules are briey described as follows:

� The characterizer generalizes a set of task-
relevant data into a generalized data cube

which can then be used for extraction of
di�erent kinds of rules or be viewed at mul-
tiple levels of abstraction from di�erent an-
gles. In particular, it derives a set of char-
acteristic rules which summarizes the gen-
eral characteristics of a set of user-speci�ed
data (called the target class). For example,
the symptoms of a speci�c disease can be
summarized by a characteristic rule.

� A comparator mines a set of discriminant

rules which summarize the features that
distinguish the class being examined (the
target class) from other classes (called con-

trasting classes). For example, to distin-
guish one disease from others, a discrimi-
nant rule summarizes the symptoms that
discriminate this disease from others.

� A classi�er analyzes a set of training data
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(i.e., a set of objects whose class label is
known) and constructs a model for each
class based on the features in the data. A
set of classi�cation rules is generated by
such a classi�cation process, which can be
used to classify future data and develop a
better understanding of each class in the
database. For example, one may classify
diseases and provide the symptoms which
describe each class or subclass.

� An associator discovers a set of associa-
tion rules (in the form of \A1 ^ � � � ^Ai !

B1^� � �^Bj") at multiple levels of abstrac-
tion from the relevant set(s) of data in a
database. For example, one may discover
a set of symptoms often occurring together
with certain kinds of diseases and further
study the reasons behind them.

� A meta-pattern guided miner is a data
mining mechanism which takes a user-
speci�ed meta-rule form, such as \P (x; y)^
Q(y; z) ! R(x; z)" as a pattern to con-
�ne the search for desired rules. For exam-
ple, one may specify the discovered rules
to be in the form of \major(s:student; x)^
P (s; y)! gpa(s; z)" in order to �nd the re-
lationships between a student's major and
his/her gpa in a university database.

� A predictor predicts the possible values of
some missing data or the value distribu-
tion of certain attributes in a set of ob-
jects. This involves �nding the set of at-
tributes relevant to the attribute of inter-
est (by some statistical analysis) and pre-
dicting the value distribution based on the
set of data similar to the selected object(s).
For example, an employee's potential salary
can be predicted based on the salary distri-
bution of similar employees in the company.

� A cluster analyzer groups a selected set of
data in the database or data warehouse into
a set of clusters to ensure the interclass
similarity is low and intraclass similarity
is high. For example, one may cluster the
houses in Vancouver area according to their
house type, value, and geographical loca-
tion.

� A time-series analyzer performs several

kinds of data analyses for time-related data
in the database or data warehouse, includ-
ing similarity analysis, periodicity analysis,
sequential pattern analysis, and trend and
deviation analysis. For example, one may
�nd the general characteristics of the com-
panies whose stock price has gone up over
20% last year or evaluate the trend or par-
ticular growth patterns of certain stocks.

Another important function module of
DBMiner is concept hierarchy which provides es-
sential background knowledge for data general-
ization and multiple-level data mining. Con-
cept hierarchies can be speci�ed based on the
relationships among database attributes (called
schema-level hierarchy) or by set groupings
(called set-grouping hierarchy) and be stored
in the form of relations in the same database.
Moreover, they can be adjusted dynamically
based on the distribution of the set of data rel-
evant to the data mining task. Also, hierarchies
for numerical attributes can be constructed au-
tomatically based on data distribution analysis
[7].

3 DMQL and Interactive

Data Mining

DBMiner o�ers both an SQL-like data mining
query language, DMQL, and a graphical user in-
terface for interactive mining of multiple-level
knowledge.

Example 1. To characterize CS grants in the
NSERC96 database related to discipline code
and amount category in terms of count% and
amount%, the query is expressed in DMQL as fol-
lows,

use NSERC96

mine characteristic rules as \CS Discipline Grants"
with respect to disc code, amount,

count%, sum(amount)%

from award A, grant type G
where A.grant code = G.grant code

and A.disc code = \Computer Science"

The query is processed as follows: The sys-
tem collects the relevant set of data by process-
ing a transformed relational query, constructs
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a multi-dimensional data cube, generalizes the
data, and then presents the outputs in di�erent
forms, including generalized crosstabs, multi-
ple (including visual) forms of generalized rules,
pie/bar charts, curves, etc.

A user may interactively set and adjust vari-
ous kinds of thresholds to control the data min-
ing process. For example, one may adjust the
generalization threshold for an attribute to al-
low more or less distinct values in this attribute.
A user may also roll-up or drill-down the gen-
eralized data at multiple levels of abstraction.

2

A data mining query language such as DMQL
facilitates the standardization of data mining
functions, systematic development of data min-
ing systems, and integration with commercial
relational database systems. Various kinds of
graphical user interfaces can be developed based
on such a data mining query language. A graph-
ical user interface facilitates interactive speci�-
cation and modi�cation of data mining queries,
concept hierarchies, and various kinds of thresh-
olds, selection and change of output forms, roll-
up or drill-down, and dynamic control of a data
mining process. Such interfaces have been im-
plemented in DBMiner.

4 Implementation of DB-

Miner

4.1 Data structures: Generalized

relation vs. multi-dimensional

data cube

Data generalization is a core function of
DBMiner. Two data structures, generalized rela-

tion, and multi-dimensional data cube, are con-
sidered in the implementation of data general-
ization.

A generalized relation is a relation which con-
sists of a set of (generalized) attributes (stor-
ing generalized values of the corresponding at-
tributes in the original relation) and a set of \ag-
gregate" (measure) attributes (storing the val-
ues resulted from executing aggregate functions,
such as count, sum, etc.), and in which each tu-
ple is the result of generalization of a set of tu-

Figure 3: A multi-dimensional data cube

ples in the original data relation. For example, a
generalized relation awardmay store a set of tu-
ples, such as \award(AI; 20 40k; 37; 835900)",
which represents the generalized data for dis-
cipline code is \AI", the amount category is
\20 40k", and such kind of data takes 37 in
count and $835,900 in (total) amount.

A data cube can be viewed as a multi-
dimensional array structure, as shown in Figure
3, in which each dimension represents a gener-
alized attribute and each cell stores the value of
some aggregate attribute, such as count, sum,
etc. For example, a cube award may have two
dimensions: \discipline code" and \amount cat-
egory". The value \AI" in the \discipline code"
dimension and \20-40k" in the \amount cate-
gory" dimension locate the corresponding val-
ues in the two aggregate attributes, count and
sum, in the cube. Then the values, count% and
sum(amount)%, can be derived easily.

In comparison with the generalized relation
structure, a multi-dimensional data cube struc-
ture has the following advantages: First, it may
often save storage space since only the mea-
surement attribute values need to be stored in
the cube and the generalized (dimensional) at-
tribute values will serve only as dimensional in-
dices to the cube; second, it leads to fast access
to particular cells (or slices) of the cube using
indexing structures; third, it usually costs less
to produce a cube than a generalized relation
in the process of generalization since the right
cell in the cube can be located easily. When a
cube structure is quite sparse, the sparse cube
technology [1, 18] should be applied to compute
and store sparse cube e�ciently.

Both data structures have been implemented
in the evolution of the DBMiner system: the
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Figure 4: A snapshot of the output of DBMiner
Characterizer

generalized relation structure is adopted in ver-
sion 1.0, and a multi-dimensional data cube
structure without using sparse cube technology
in version 2.0. The version 3.0 adopts sparse
cube technology in the cube construction and
switches between array-based cube and relation-
based cube according to its size to ensure good
performance in databases and data warehouses
with di�erent sizes.

Besides designing good data structures, e�-
cient implementation of each discovery module
has been explored, as discussed below.

4.2 Multiple-level

characterization

As shown in Figure 4, data characterization
summarizes and characterizes a set of task-
relevant data, usually based on generalization.
For mining multiple-level knowledge, progres-
sive deepening (drill-down) and progressive gen-
eralization (roll-up) techniques can be applied.

Progressive generalization starts with a con-
servative generalization process which �rst gen-
eralizes the data to slightly higher abstraction
levels than the primitive data in the relation or
data cube. Further generalizations can be per-
formed on it progressively by selecting appropri-
ate attributes for step-by-step generalization.

Progressive deepening starts with a relatively
high-level generalized cube/relation, selectively
and progressively specializes some of the gener-
alized tuples or attributes to lower abstraction
levels.

Conceptually, a top-down, progressive deep-
ening process is preferable since it is natural
to �rst �nd general data characteristics at a
high abstraction level and then follow certain
interesting paths to step down to specialized
cases. However, from the implementation point
of view, it is easier to perform generalization
than specialization because generalization re-
places low level tuples by high ones through as-
cension of a concept hierarchy. Since general-
ized tuples do not register the detailed original
information, it is di�cult to get such informa-
tion back when specialization is required later.

Our technique which facilitates specializa-
tions on generalized relations is to save a \min-

imally generalized relation/cube" in the early
stage of generalization. That is, each attribute
in the relevant set of data is generalized to min-
imally generalized concepts (which can be done
in one scan of the data relation) and then identi-
cal tuples in such a generalized relation/cube are
merged together, which derives the minimally
generalized relation. After that, both progres-

sive deepening and interactive up-and-down can
be performed with reasonable e�ciency: If the
data at the current abstraction level is to be
generalized further, generalization can be per-
formed on it directly; on the other hand, if it is
to be specialized, the desired result can be de-
rived by generalizing the minimally generalized
relation/cube to appropriate level(s).

4.3 Discovery of discriminant

rules

The comparator of DBMiner �nds a set of dis-
criminant rules which distinguishes the general
features of a target class from that of contrasting
class(es) speci�ed by a user. It is implemented
as follows.

First, the set of relevant data in the database
has been collected by query processing and is
partitioned respectively into a target class and
one or a set of contrasting class(es). Sec-
ond, attribute-oriented induction is performed
on the target class to extract a prime target re-

lation/cube, where a prime target relation is a
generalized relation in which each attribute con-
tains no more than but close to the threshold
value of the corresponding attribute. Then the
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Figure 5: Graphic output of the Associator of
DBMiner

concepts in the contrasting class(es) are general-
ized to the same level as those in the prime tar-
get relation/cube, forming the prime contrast-

ing relation/cube. Finally, the information in
these two classes is used to generate qualitative
or quantitative discriminant rules.

Moreover, interactive drill-down and roll-up
can be performed synchronously in both target
class and contrasting class(es) in a similar way
as in characterization. These functions have
been implemented in the discriminator.

4.4 Multiple-level association

Based on many studies on e�cient mining of
association rules [2, 17, 8], a multiple-level asso-
ciation rule miner (called \associator") has been
implemented in DBMiner. An output of the as-
sociator is shown in Figure 5.

Di�erent from mining association rules in
transaction databases, a relational associator
may �nd two kinds of associations: inter-

attribute association and intra-attribute associ-

ation. The former is an association among dif-
ferent attributes; whereas the latter is an asso-
ciation within one or a set of attributes formed
by grouping of another set of attributes. This is
illustrated in the following example.

Example 2. Suppose the \course taken" rela-
tion in a university database has the following

schema:

course taken = (student id; course; semester; grade):

Intra-attribute association is the association
among one or a set of attributes formed by
grouping another set of attributes in a rela-
tion. For example, the associations between
each student and his/her course performance
is an intra-attribute association because one or
a set of attributes, \course; semester; grade",
are grouped according to student id, for min-
ing associations among the courses taken by
each student. From a relational database
point of view, a relation so formed is a nested
relation obtained by nesting the attributes
\(course; semester; grade)" with the same stu-

dent id. Therefore, an intra-attribute associa-
tion is an association among the nested items in
a nested relation.

Inter-attribute association is the association
among a set of attributes in a at relation. For
example, the following is an inter-attribute as-
sociation: the association between course and
grade, such as \the courses in computing sci-

ence tend to have good grades", etc.

Two associations require di�erent data min-
ing techniques.

For mining intra-attribute associations, a
data relation can be transformed into a nested
relation in which the tuples which share the
same values in the nesting attributes are merged
into one. For example, the course taken rela-
tion can be folded into a nested relation with
the schema,

course taken = (student id; course history)

course history = (course; semester; grade).

With such transformation, it is easy to derive
association rules like \90% senior CS students

tend to take at least three CS courses at 300-

level or up in each semester". Since the nested
tuples (or values) can be viewed as data items
in the same transaction, the methods for mining
association rules in transaction databases, such
as [2, 8], can be applied to such transformed
relations in relational databases.

The multi-dimensional data cube structure
facilitates e�cient mining of multi-level, inter-
attribute association rules. A count cell of
a cube stores the number of occurrences of
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the corresponding multi-dimensional data val-
ues; whereas a dimension count cell stores the
sum of counts of the whole dimension. With this
structure, it is straightforward to calculate the
measurements such as support and con�dence

of association rules based on the values in these
summary cells. A set of such cubes, ranging
from the least generalized cube to rather high
level cubes, facilitate mining of association rules
at multiple levels of abstraction. 2

4.5 Meta-rule guided mining

Since there are many ways to derive associa-
tion rules in relational databases, it is prefer-
able to have users to specify some interest-
ing constraints to guide a data mining process.
Such constraints can be speci�ed in a meta-rule

(or meta-pattern) form [16], which con�nes the
search to speci�c forms of rules. For exam-
ple, a meta-rule \P (x; y) ! Q(x; y; z)", where
P and Q are predicate variables matching dif-
ferent properties in a database, can be used as
a rule-form constraint in the search.

In principle, a meta-rule can be used to guide
the mining of many kinds of rules. Since
the association rules are in the form similar
to logic rules, we have �rst studied meta-rule
guided mining of association rules in relational
databases [5]. Di�erent from the study by
[16] where a meta-predicate may match any
relation predicates, deductive predicates, at-
tributes, etc., we con�ne the match to only those
predicates corresponding to the attributes in a
relation. One such example is illustrated as fol-
lows.

Example 3. A meta-rule guided data mining
query can be speci�ed in DMQL as follows for
mining a speci�c form of rules related to a set
of attributes: \major, gpa, status, birth place,
address" in relation student for those born in
Canada in a university database.

mine associations

with respect to major, gpa, status, birth place, address
from student

where birth place = \Canada"

set rule template
major(s : student;x) ^Q(s; y) ! R(s; z)

Multi-level association rules can be discovered

Figure 6: Classi�er of DBMiner

in such a database, as illustrated below:

major(s; \Science") ^ gpa(s; \Excellent") !

status(s; \Graduate") (60%)

major(s; \Physics") ^ status(s; \M:Sc") !
gpa(s; \3:8 4:0") (76%)

The mining of such multi-level rules can
be implemented in a similar way as min-
ing multiple-level association rules in a multi-
dimensional data cube [11]. 2

4.6 Classi�cation

Data classi�cation is to develop a description or
model for each class in a database, based on the
features present in a set of class-labeled training
data.

There have been many data classi�cation
methods studied, including decision-tree meth-
ods, such as ID-3 and C4.5 [15], statistical meth-
ods, neural networks, rough sets, etc. Recently,
some database-oriented classi�cation methods
have also been investigated [13].

Our classi�cation method consists of four
steps: (1) collection of the relevant set of data
and partitioning of the data into training and
testing data, (2) analysis of the relevance of the
attributes, (3) construction of classi�cation (de-
cision) tree, and (4) test of the e�ectiveness of
the classi�cation using the test data set.

Attribute relevance analysis is performed
based on the analysis of an uncertainty mea-
surement, a measurement which determines how
much an attribute is in relevance to the class
attribute. Several top-most relevant attributes
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retain for classi�cation analysis whereas the
weakly or irrelevant attributes are not consid-
ered in the subsequent classi�cation process.

In the classi�cation process, our classi�er
adopts a generalization-based decision-tree in-
duction method which integrates attribute-
oriented induction and OLAP data cube tech-
nology with a decision-tree induction technique,
by �rst performing minimal generalization on
the set of training data to generalize attribute
values in the training set, and then performing
decision tree induction on the generalized data.

Since a generalized tuple comes from the
generalization of a number of original tuples,
the count information is associated with each
generalized tuple and plays an important role
in classi�cation. To handle noise and excep-
tional data and facilitate statistical analysis,
two thresholds, classi�cation threshold and ex-

ception threshold, are introduced. The former
helps justi�cation of the classi�cation at a node
when a signi�cant set of the examples belong
to the same class; whereas the latter helps ig-
nore a node in classi�cation if it contains only a
negligible number of examples.

There are several alternatives for doing gen-
eralization before classi�cation: A data set can
be generalized to either a minimally generalized
abstraction level, an intermediate abstraction
level, or a rather high abstraction level. Too
low an abstraction level may result in scattered
classes, bushy classi�cation trees, and di�culty
at concise semantic interpretation; whereas too
high a level may result in the loss of classi�ca-
tion accuracy.

Currently, we are testing several alternatives
at integration of generalization and classi�ca-
tion in databases, such as (1) generalize data
to some medium abstraction levels; (2) gener-
alize data to intermediate abstraction level(s),
and then perform node merge and split for bet-
ter class representation and classi�cation accu-
racy; and (3) perform multi-level classi�cation
and select a desired level by a comparison of the
classi�cation quality at di�erent levels. Since
all three classi�cation processes are performed
in relatively small, compressed, generalized re-
lations, it is expected to result in e�cient clas-
si�cation algorithms in large databases.

The generalization-based multi-level classi�-
cation process has been implemented in the DB-
Miner system. An output of the DBMiner clas-
si�er is shown in Figure 6.

4.7 Prediction

A predictor predicts data values or value distri-
butions on the attributes of interest based on
similar groups of data in the database. For ex-
ample, one may predict the amount of research
grants that an applicant may receive based on
the data about the similar groups of researchers.

The power of data prediction should be con-
�ned to the ranges of numerical data or the nom-
inal data generalizable to only a small number of
categories. It is unlikely to give reasonable pre-
diction on one's name or social insurance num-
ber based on other persons' data.

For successful prediction, the factors (or at-
tributes) which strongly inuence the values of
the attributes of interest should be identi�ed
�rst. This can be done by the analysis of data
relevance or correlations by statistical methods,
decision-tree classi�cation techniques, or simply
be based on expert judgement. To analyze at-
tribute relevance, the uncertainty measurement
similar to the method used in our classi�er is
applied. This process ranks the relevance of
all the attributes selected and only the highly
ranked attributes will be used in the prediction
process.

After the selection of highly relevant at-
tributes, a generalized linear model has been
constructed which can be used to predict the
value or value distribution of the predicted at-
tribute. If the predicting attribute is a numeri-
cal data, a set of curves are generated, each in-
dicating the trend of likely changes of the value
distribution of the predicted attribute. If the
predicting attribute is a categorical data, a set
of pie charts are generated, each indicating the
distributions of the value ranges of the predicted
attribute.

When a query probe is submitted, the corre-
sponding value distribution of the predicted at-
tribute can be plotted based on the curves or pie
charts generated above. Therefore, the values in
the set of highly relevant predicting attributes
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Figure 7: Prediction output when the predicting
attribute is a numeric one

Figure 8: Prediction output when the predicting
attribute is a categorical one

can be used for trustable prediction.

Figure 7 shows the prediction output when
the predicting attribute is a numeric one;
whereas Figure 8 shows the prediction output
when the predicting attribute is a categorical
one.

4.8 Clustering

Data clustering, also viewed as \unsupervised
learning", is a process of partitioning a set of
data into a set of classes, called clusters, with
the members of each cluster sharing some in-
teresting common properties. A good cluster-
ing method will produce high quality clusters,
in which the intra-class (i.e., intra-cluster) sim-
ilarity is high and inter-class similarity is low.

Clustering has many interesting applications.
For example, it can be used to help marketers

discover distinct groups in their customer bases
and develop targeted marketing programs.

Data clustering has been studied in statistics,
machine learning and data mining with di�erent
methods and emphases. Many clustering meth-
ods have been developed and applied to various
domains, such as data classi�cation and image
processing.

Data mining applications deal with large high
dimensional data, and frequently involve cate-
gorical domains with concept hierarchies. How-
ever, most of the existing data clustering meth-
ods can only handle numeric data, or can not
produce good quality results in the case where
categorical domains are present.

Our cluster analyzer is based on the well-
known k-means paradigm. Comparing to the
other clustering methods, the k-means based
methods are promising for their e�ciency in
processing large data sets. However, their use
is often limited to numeric data. To adequately
reect categorical domains, we have developed
a method of encoding concept hierarchies. This
enables us to de�ne a dissimilaritymeasure that
not only takes into account both numeric and
categorical attributes, but also at multiple lev-
els. Due to these modi�cations, our cluster an-
alyzer can cluster large data sets with mixed
numeric and categorical attributes in a way sim-
ilar to k-means. It can also perform multi-level
clustering and select a desired level by a com-
parison of the clustering quality at di�erent lev-
els. On the other hand, the user or the analyst
can direct the clustering process by either select-
ing a set of relevant attributes for the requested
clustering query, or assigning a weight factor to
each attribute, or both, so that increasing the
weight of an attribute increases the likelihood
that the algorithm will cluster according to that
attribute.

5 Further Development of

DBMiner

The DBMiner system is currently being extended
in several directions, as illustrated below.

� Further enhancement of the power and e�-
ciency of data mining in relational database
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systems and data warehouses, including the
improvement of system performance and
rule discovery quality for the existing func-
tional modules, and the development of
techniques for mining new kinds of rules,
especially on time-related data.

� Further enhancement of the performance of
data mining in large databases and data
warehouses by exploration of parallel pro-
cessing using NT clusters. Some algorithm
design and experimental work have been
performed in this direction.

� Integration, maintenance and application
of discovered knowledge, including incre-
mental update of discovered rules, removal
of redundant or less interesting rules, merg-
ing of discovered rules into a knowledge-
base, intelligent query answering using dis-
covered knowledge, and the construction of
multiple layered databases.

� Extension of data mining technique to-
wards advanced and/or special purpose
database systems, including extended-
relational, object-oriented, textual, spatial,
temporal, multi-media, and heterogeneous
databases and Internet information sys-
tems. Currently, three such data mining
systems, GeoMiner, LibMiner, and Web-

Miner, for mining knowledge in spatial
databases, library databases, and the Inter-
net information-base respectively, are being
under design and construction.
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