
Towards a Novel OLAP Interface for Distributed
Data Warehouses

Ayman Ammoura, Osmar Zäıane, and Randy Goebel

The University of Alberta, Department of Computing Science, Alberta Canada
{ayman, zaiane, goebel}@cs.ualberta.ca

Abstract. We present a framework for visualizing remote distributed
data sources using a multi-user immersive virtual reality environment.
DIVE-ON is a system prototype that consolidates distributed data sources
into a multidimensional data model, transports user-specified views to a
3D immersive display, and presents various data attributes and mining
results as virtual objects in true 3D interactive virtual reality. In this
environment, the user navigates through data by walking or flying, and
interacts with its objects simply by “reaching out” for them. To sup-
port large sets of data while maintaining an interactive frame rate we
propose the VOLAP-tree. This data structure is well suited for indexing
both levels of abstraction and decomposition of the virtual world. The
DIVE-ON architecture emphasizes the development of two main inde-
pendent units: the visualization application, and the centralized virtual
data warehouse. Unlike traditional desktop decision support systems,
virtual reality enables DIVE-ON to exploit natural human sensorimotor
and spatial pattern recognition skills to gain insight into the significance
of data.

1 Introduction

The recent rapid development of data mining is a response to the fact that tech-
nology enables data collection, classification and storage at a rate far exceeding
that with which we can analyze it [10]. To better support the operations usually
associated with data analysis and mining, researchers have developed the concept
of a data warehouse [11] to model voluminous data in a way that promotes the
transformation of information into knowledge. Since vision is by far the human’s
most predominant sense, many researchers have targeted visualization as the
means by which data is presented for analysis [3, 7, 15, 16]. Our proposed system
DIVE-ON (Datamining in an Immersed Virtual Environment Over a Network)
takes visualization a step further by leveraging the human natural skills within
an environment that simulates natural settings. Using the sensorimotor skills
gained at childhood, one maneuvers through the natural world and acquires
spatial knowledge almost unconsciously. To support such natural skills, we have
constructed an Immersed Virtual Environment (IVE) that uses motion-trackers
to acquire movement data, and then simulate the kinesthetic feedback through
image transformation. This provides the user with a correlation between orien-
tation and movement, to support a navigation interface that is transparent and

highly capable in examining spatial correlations [3, 15]. DIVE-ON combines ad-
vances in virtual reality (VR), computer graphics, data mining, and distributed
data warehousing into one flexible system that can be used effectively with little
or no training.

DIVE-ON constructs a virtual data warehouse from a set of distributed
DBMS systems. Information needed during a visualization session is communi-
cated between the visualization module and the virtual data warehouse as XML
documents using CORBA or SOAP technologies. The data warehouse uses a
global schema that describes the location of the information needed for building
an N-dimensional data cube or any of its subsequently derived subsets. Once the
immersed user specifies a particular view, the warehouse queries the individual
sources, assembles the resultant cuboid as an XML document, and forwards it
for visualization. Here we also present the VOLAP-tree (Visual OLAP tree), a
special data structure designed to address the demands for real-time rendering
and interactive OLAP operations through the recursive spatial decomposition
of the materialized “OLAP regions.”

Abstractly, DIVE-ON consists of three task-specific subsystems. Figure 1
shows the various layers comprising the complete system, from the data sources
to the visualization environment. The first subsystem is the Virtual Data Ware-
house (VDW) (see Figure 7), which is responsible for creating and managing
the data warehouse over the distributed data sources. The second subsystem is
the Visualization Control Unit (VCU), which is responsible for the creation and
the management of the immersed virtual environment (IVE) to insure that the
”reality” in virtual reality is not compromised (Figure 1 (3), details in Figure
5).

Distributed
databases

Federated
N-dimensional
data warehouses

Local 3-dimensional
data cube

CAVE Immersed
user

1 2 3 4InteractionVisualizationCommunicationConstruction

CORBA+XMLCORBA+XML

Virtual Warehouse VCU UIM

Distributed
databases

Federated
N-dimensional
data warehouses

Local 3-dimensional
data cube

CAVE Immersed
user

11 22 33 44InteractionVisualizationCommunicationConstruction

CORBA+XMLCORBA+XML

Virtual Warehouse VCU UIM

Fig. 1. The three components of the DIVE-ON system

The User Interface Manager (UIM) (Figure 1 (4), details in Figure 4) han-
dles the direct application-control interaction as well as the automatic interaction
that provides the kinesthetic feedback for navigation and aggregate manipula-
tion. Inter and intra subsystem data exchange is provided by a set of specialized
interfaces which implement specific protocols to guarantee extendibility and sub-
system independence. This communication takes the form of client and server ap-

plications, using both Common Object Request Broker Architecture (CORBA)
over TCP/IP and Simple Object Access Protocol (SOAP) over HTTP.

The rest of this paper is organized as follows. Our immersive display technol-
ogy is presented, loosely corresponding to a CAVE. We include our motivation
for using this environment, and virtual reality in general. We then present the
software architecture of the Virtual Data Warehouse(VDW), and explain how
the XML-based (XMDQL) queries are created and distributed amongst the var-
ious data sources.

2 Working In A CAVE

While information gathering and data warehouse management can be done from
any location, the actual visualization experience takes advantage of the state-
of-the-art virtual reality environment that is formally known as the CAVE c©
theater. CAVE is a recursive acronym (Cave Automatic Virtual Environment)
[5], and refers to a visualization environment that utilizes tracking devices along
with, up to six, large display screens. Our version places the user within three
(9.5 X 9.5) feet walls (Figure2). Each of these walls is back-projected with a high-
resolution projector that delivers the rendered graphics at 120 frames per second
(Figure3). To simulate the way we perceive depth, the frame rate is divided into
a left-eye channel and a right-eye channel (60 frames per second each). These
two channels are synchronized with light weight shutter glasses that the user
wears to create what is known as stereoscopic graphics.

T1

T2
Left

Front

Right

VCU

VCU VCU

Fig. 2. A CAVE user within the three back-projected walls. T1, T2: The head and
hand-held tracker data stream respectively (Real-time)

Using this type of environment for visualization over a desktop is justified
by two psychophysical experiences; immersion and presence [3]. Regardless
of how realistic the desktop graphics appear, the user is merely “looking at” a
computer-determined point of view [15]. But within the walls of the CAVE the
user is presented with an egocentric frame of reference which effectively immerses
the user into VR. Standing at the center of the CAVE, the available field of view

is a user-centric 270 degree angle. Users can span this view just as they would
in a natural setting, by simply turning their heads [5]. Presence is the sense
of “being there” and is enhanced by simulating the kinesthetic feedback gained
while walking through a scene [11]. The user’s head location and orientation
within the three walls are monitored via a light-weight head tracker. The tracking
information is used to update the views using the magnitude and direction of
the user’s most recent motion vector. Presence is also enhanced by the use of
a hand-held wand that is used to perform OLAP operations, probe the data
objects, control the environment, and navigate the IVE.

Immersion and presence, when enhanced by peripheral vision and depth per-
ception, are important factors that help improve situational awareness, context,
spatial judgment, and navigation and locomotion [15]. As argued by Pauline
Baker [3], these factors makes navigation within a 3D model world practically
natural, and dramatically easier than trying to maneuver around three dimen-
sions using 2D-based desktop controls. Since explorative visualization should be
thought of as a task driven and not a data driven process, the next section illus-
trates how our virtual objects are created in light of what we seek to accomplish.

3 Spatially Encoding Data as Visual Cues

DIVE-ON creates a visualization environment on a conceptual level and, un-
like most iconographic data visualization systems, DIVE-ON is not primarily
concerned with quantitative measures. For example, the Immersed Virtual En-
vironment (IVE) is not designed to tell the user that the total sale of a branch
was X dollars; rather it is designed to convey the significance of this amount
with respect to its context. Once an “interesting” locality has been identified,
the user is capable of extracting the original data lineage.

The primary abstraction of DIVE-ON is based on graphical rendering of data
cubes. Selected data are extracted from the VDW (Sec. 4.4) after which relevant
attributes are encoded in graphical objects and then rendered in the virtual
world. The VCU interprets the three-dimensional cube it receives from the VDW
as a three variable function (Sec. 4.2). Each of the three data dimensions is
associated with one of the three physical dimensions, namely X, Y, and Z. Since
each entry in the data cube is a structure containing two measures M1 and M2,
the VCU simply plots the two functions M1(x, y, z) and M2(x, y, z) in <3.

We recognize that there are may alternatives for encoding the data cube
measures as graphical objects. Our current prototype uses cube or sphere size and
colour to provide the user with visual cues on measure contrasts. For example, if
we are focused on the theme “dollars sold” (Figure 3), we assume the OLAP user
is not primarily interested in the details that in year t the total sale of product p
at store s was $100,000.00. Instead, the VCU provides a context by associating
these measures with visual cues that are bound to the virtual objects. In this
case, the first cue we use is size, which is associated with the measure M1 (dollars
sold). After normalization, M1(xt, yp, zs) is used to render a cube (or a sphere)
of appropriate size, centered at position (xt, yp, zs), for some t, p, and s within

the data range, as shown in Figure 3. A VR user “walking” among these virtual
objects becomes almost instantly aware of the relative significance of each value,
without the need for specific numeric data.

Our prototype uses an object’s colour as a second visual cue, by normalizing
a measure M2, and mapping to a discrete 8-colour palette. For example, we
can encode any abstract data mining ”interestingness” measure from “red” to
“blue.” For example, at the lowest level of aggregation (high granularity), colour
can represent the deviation from the mean along one of the dimensions. This
is particularly useful for market fluctuation analysis. Similarly, if the user is
viewing highly summarized data, colour can be a very effective way to locate
anomalies at a lower level. For example, the M2 value for a month object can
represent the maximum M2 of any of the days it aggregates. In Figure 3, each
virtual object represents the total revenue for a given year. The colour “red”
indicates that one particular month deviates significantly from the rest of the
year. We expect the OLAP analyst will reach in virtual reality and “select” that
object, in order to understand the deviation, and inquire about the exact figures
for that year. Similarly, the user may be interested in understanding the stability
which dominates a product category (a “blue” object).

(a) (b)

Fig. 3. A team of immersed users discussing the “dollars sold” data cube. (a) Using
cubic objects (b) A user pointing the direction of flight within 3D-lit spheres

Figure 3 presents the IVE created by rendering cubes that employ the vi-
sual cues described above. In this case, the X-axis (left to right) represents the
“product” dimension. The axis pointing in the direction perpendicular to the
picture is the “time” dimension Y, while Z represents “location.” (The floating
3D interaction menu is also visible.)

Our brief discussion presented cubes as the basic VR geometry, but DIVE-
ON can also use spheres in the same way. While spheres can encode the same
information as cubes with less occlusion [1], rendering spheres is computationally
much more expensive. To create a 3D sphere the system must compute light

sources, normal vector calculations, material specification, and shade rendering.
None of these calculations are required for cubes, since the polygon rendering is
typically done by hardware.

4 System Design and Architecture

To flexibly support various VR devices, tools, and environments it was necessary
to separate the creation from the application of the virtual world. Each of the
three main DIVE-ON components is designed within a wrapper that defines
the mean for information exchange. In this section the main components that
make up the system are presented along with the the task specific design and
implementation issues.

4.1 UIM: The User Interface Manager

The User Interface Manager (UIM) is the subsystem that is responsible for re-
ceiving, filtering, and channeling all available input streams. Input examples
include the location and orientation of the tracking devices, and the button-
status on the hand held tracker (Figure 4). This information must be updated
at a sufficient rate to provide a natural smooth interaction with the environment.
To provide the sense of immersion and presence, the VCU reads the head tracker
motion data collected by the UIM (T1 in Figure 2), then transforms the stereo
graphics to simulate that motion in a physical world. For example, if the user
walks forward, the appropriate image is shifted backwards to create the illusion
of “walking” through the data. The data stream emitted from the user’s hand
(T2 in Figure 2), is used to track the position of the 3D menu in the virtual
world. These so-called “floating menus” represent the user’s hand to six degrees
of freedom (6-DOF) [9].

Position CTRL

State CTRL

Interaction Parameter Formulation

Inpu
t

Navigation
CTRL

T I

VCU

Fig. 4. User Interface Manager. The Tracker Interface (TI) receives the real-time
tracker input stream and channels it according to type. The set of interaction pa-
rameters is then fed to the VCU

Using the floating menu system, the user is able to perform all application
control commands, including various OLAP operations, in a natural manner. For
instance, to perform a “roll-up” operation the user activated the menu system,
selects “roll-up” and then, using the hand held tracker, points to the dimension
to be rolled-up. The operations of “slice,” “dice,” and “drill-down” are imple-
mented similarly (Figure 3). In a typical session, a client (VCU) first establishes
connection to the VDW and, using warehouse queries, the user can then inquire
about the number, size and attributes of each data dimensions available.

Viewpoint manipulation is implemented by navigation control. In views that
involve dimensions with large domains, the user may request the activation of
flight mode. In this mode, the user travels through the data by simply pointing
in the appropriate direction. Flight speed is determined by how far the arm is
extended away from the body. Finally, DIVE-ON also provides the user with
the ability to inquire about the original data that is represented by a given
virtual object. The hand-held tracker default mode is 3D virtual pointer. If an
“interesting” data aggregate is encountered, the user can point and pop up an
object-fixed window containing the particular aggregate lineage.

4.2 VCU: The Visualization Control Unit

VR Synthesis

VR Partition

Scene Update Transform

OLAP

Render

L
F
R

SI

CI

UIM

UIM

Local Copy

Schema
Stereo
Out-

Signal

Fig. 5. The VCU Architecture. SI and CI are the SOAP and CORBA client Interfaces
respectively. Output is channeled to Left, Front, and Right projection stereo signals

The VCU is the module responsible for generating and managing the IVE.
This makes data visualization and exploration independent, so the specifics of
the VDW should be of no concern to the VCU developer and vice versa. To
implement this abstract view, the VCU and VDW are each constructed within
a wrapper that isolates the only method of relaying messages between the two
subsystems. The messages use a simple communication protocol which effec-
tively hides the implementation details and allows the VCU and the DCC to
be independent of one another. After the DCC completes the creation of the
N-dimensional data cube it signals the VCU (via the DCC-Shell). Since we are
generating a 3D virtual world, only three dimensions can be viewed at any given

time (four dimensions is possible by enabling animation using a function we
call“animating the data through time” [1]). The three dimensions and associ-
ated measures selected by the user are extracted from the N-dimensional data
cube, then a 3D cube is passed to the VCU for rendering. In light of the above
discussion, what level of abstraction does that the 3D cube represent? If the
cube received is already summarized, then for every “roll-up” that the user re-
quests a new 3D cube must be requested. This imposes unnecessary strain on
the network and degrades the system’s interactivity. For this reason, the VCU
builds a working 3D copy that materializes different levels of abstraction into
imbedded OLAP regions that are indexed by the VOLAP-tree (Section 4.3).

4.3 VOLAP-Tree: A Spatial Decomposition Structure

Data is obtained from the VDW along with the concept schema and the concept
hierarchy that describe the associated aggregation method. To accommodate
partial ordering, a concept hierarchy is presented by a simple tree structure with
the root being the attribute “ALL” at level 0. The information is then used by the
VCU to construct a working cube consisting of a set of OLAP regions that provide
all possible views (differing granularities) of the user specified dimensions. Each
region is a contiguous chunk that can be identified by two vectors. To illustrate
using a simplified example, consider Figure 6 which represents a 2D slice of the
working cube. The view corresponding to region B (Province/Item) is identifiable
by the vectors (X2, Y0) and (X3, Y1).

X<X2 X>X2

Y<Y2 Y>Y2

Y<Y1 Y>Y1

X<X3 X>X3

AB

… …

…

…
Quad/Octree

…

(All,All)∈ℜℜ

B

A

x1

y1

x2

y2

A
ll

C
ou

nt
ry

Pr
ov

.

CityStore
[0, x1[[x1, x2[

All
Type

Category

Brand

Item
[0, y1[

[y1, y2[

(a) (b)

Fig. 6. :(a) The VOLAP-Tree. (b) Materialized working cube within the VCU

The simplest mapping between the user’s location in virtual space and the
location in the data space is to correlate discretized points in VR with the index

values of the working cube. One can imagine that this slice as the “floor” of
the CAVE and when the user maneuvers through VR, the center of the rendered
scene is updated to reflect the cell that the user is closest to. This design is closely
related to the used metaphor of “walking through the data cube.” The efficiency
of this design stems from the fact that performing OLAP operation is simply
equivalent to “transporting” the user to a different region within the working
cube. As an example, consider the two associated concept hierarchies that are
shown next the axis that maps them in VR (Figure 6 b). Domain attributes of the
dimension “location” at the lowest level, “store,” are assigned the index values
between [0,X1[along the X axis. Similarly, the attributes defining “categories”
in the “product” dimension are assigned the range [Y2, Y3[. Assuming that the
current view is (Province/Item), region B, specifying a “roll-up” operation on
the dimension “product” is equivalent to transporting the user into region A.

The VOLAP-tree is a hybrid that includes a 3D-tree (KD-tree) and a set of
Octrees that is designed to quickly transport the user into different OLAP regions
while maintaining an acceptable frame rate regardless of data size. Figure 6 (a)
illustrates a 2D version of the tree. A 3D-Tree is implemented as an upper layer
to index the OLAP regions within the working cube . The root of the VOLAP-
tree is the root for the 3D-tree. At the leaf level, each 3D-tree leaf contains a
pointer to the second layer, which is an Octree that recursively partitions that
particular OLAP region into octants. Recursion continues until all octants at the
leaf level do not contain more than a given number of data points. Within the
VCU, the “VR Partition” module (Figure 5) uses the the user’s location (UIM
input) to determine the appropriate set of octree nodes to use for rendering.
As the user’s position changes through VR, so does the set of rendered octants.
When the user performs an OLAP operation the VOLAP-tree is traversed and
the new Octree root is located for rendering.

4.4 VDW: The Virtual Data Warehouse

The Virtual Data Warehouse (VDW) is abstract centralized data warehouse
comprised of a set of distributed data sources and a shell (DCC-Shell) which
is responsible for modeling and querying these sources (Figure 7). The DCC-
Shell is maintains a pool of meta-data (cube schema) that represents a global
multidimensional model of all dimensions and measures available from the dis-
tributed sources. When the VDW is initiated, the cube schema is constructed
and copied to all data sources. To insure query consistency, the DCC-shell up-
dates all copies when a data source has been updated. A resource allocation table
within the DCC-shell maintains the location, data organization, and preferred
communication method for each source. The cube schema and the resources data
are XML documents for easy maintenance, extendibility, and flexibility.

A client has three available query classes. First is the Warehouse query,
which provides the client with basic VDW structure including the dimensions of
a data cube, the measures available, and the main theme of a cube. The Cube
schema query provides the meta-data of one specific data cube in the VDW.
This meta-data includes a depiction of all available dimensions, measures, and

Interface (Java API)

DCC

Query Distributor

ORB Server SOAP Server

ORB Client SOAP Client

Query
Engine

Schema DBMS

SOAP Server

Query
Engine

Schema DBMS

ORB Server

Data Source 1 Data Source 2 DCC Shell

Schema

Fig. 7. The Virtual Data Warehouse (VDW) architecture

the concept hierarchy that further describes each dimension. Finally, the Cube
data query is used to obtain an entire N-dimensional cube or any subset of it.
This is particularly useful for applications such as the VCU, which handles only
one 3D cube per visualization session.

4.5 XML Multidimensional Query Language (XMDQL)

Our query language choice is an XML-based query language, XMDQL, which
we use to interact with the VDW in order to manage and access the available
data. XMDQL allows the user to express multidimensional queries on the VDW.
The concept of a special multidimensional query language was first proposed as
an industry standard by Pilot software [14]. Their language MDSQL, however,
does not take advantage of XML and its flexibility and interoperability in the
context of federated data warehouses. In OLAP terminology, this type of query
is equivalent to slicing and dicing the data cube. The result of an XMDQL query
is a cell, a two-dimensional slice, or a multidimensional sub-cube.

DIVE-ON defines XMDQL as a query language that is formatted in XML to
query the VDW; it also provides functionality similar to Microsoft’s MDX (Mul-
tidimensional Expressions). To specify a cube, an XMDQL query must contain
information about the four basic subjects: (1) The cube being queried, (2) di-
mensions projected in the result cube, (3) slices in each dimension and (4) some
selection and filtering constraints. The basic form of the XMDQL is as follows:

<XMDQL>
<SELECT>
Project dimensions and slices

</SELECT>
<FROM>

Which cube to query
</FROM>
<WHERE>

Filtering constrains
</WHERE>

</XMDQL>

4.6 Query Distribution and Execution

According to Figure 7, a VCU data query is first received by the DCC-Shell
interface (through ORB/SOAP Server) and forwarded to the Query Distrib-
utor after the DCC has formed the appropriate XMDQL query. The Query
Distributor analyzes the query, finds which data source contains the required
data, and then distributes the query accordingly. Each Data Source executes the
query separately, either by translating the XMDQL query into another OLAP
query language and getting the result, or by directly accessing the original data
source. Regardless of the execution method, each Data Source forms the results
as a data cube that is returned to the DCC, which forms an N-dimensional data
cube. For our visualization, the DCC then extracts the VCU-requested 3D data
cube and sends it to the CAVE for rendering. To illustrate, the distribution
information can be stored as following:

<Distribution dimension="Store">
<Component path="N_America.USA"

mart="DataSource1">USA sales data</Component>
<Component path="N_America.Canada

mart="DataSource1">Canada sales data</Component>
</Distribution>

5 Conclusion and Future Directions

We have presented a system prototype for visual data mining in an immersed
virtual environment. Since the very early days of computing science with ex-
tremely limited technologies, scientists have been fascinated with virtual reality
(VR). VR systems are capable of abstracting complex problems or scenarios by
exploiting the human’s natural skills including the visual system and spatial
knowledge acquisition. The CAVE theater is a new technology that enables al-
gorithms to interact with the human sensorimotor system. With DIVE-ON, we
have focused this technology into a new direction, namely remote visual data
mining.

So far we have exploited the human visual system to convey information
pertaining to data. In the near future we also plan to experiment with data
sonification techniques to add audible cues to the IVE. Since hearing is usually a
background process, DIVE-ON will use the audible cues mainly to steer the user’s
foreground process, vision, into a direction that may need in-depth examination.
Limiting the use of audible cues in this manner avoids the permeation of the IVE
with sensory input that could lead to some undesired perceptual complexities.
We also plan to investigate is the use of distortion views, also called fisheye
or detail-in-context, in 3D graphics. Creating distortions in the 3D data cube,
like creating a virtual magnetic field with a repelling force around interesting

data items, can solve some of the occlusion problems by emphasizing relevant
data and putting details in context. However, creating a fisheye effect on local
detail in a virtual reality environment without compressing the remainder of the
data is not trivial. In addition we plan to merge the interaction operations for
distorted views in 3D with OLAP operations, such as aggregating local details,
specializing and generalizing on a local detail, etc.

References

1. Ammoura, A., Zäıane, O. R., and Ji, Y., “Immersed Visual Data Mining: Walking
the Walk,” Proc. 18th British National Conference on Databases (BNCOD’01),
Oxford, July2001.

2. Agarwal S., Agrawal R., Deshpande P., Gupta A., Naughton J. F., Ramakrishnan
R. and Sarawagi S., “On the Computation of Multidimensional Aggregates,” Proc.
of VLDB Conference, 1996, pp 506-521.

3. Baker, M. P., “Human Factors in Virtual Environments for the Visual Analysis of
Scientific Data,” NCSA Publications: National Centre for Supercomputer Applica-
tions.

4. Chaudhuri, S., and Umeshwar, D., “An Overview of Data Warehousing and OLAP
Technology,” Proc. ACM SIGMOD Record, March, 1997.

5. DeFanti, T. A., Cruz-Neira, C., and Sandin, D. J., “Surround-Screen Projection-
Based Virtual Reality: The Design and Implementation of the CAVE,” Proceedings
of ACM SIGGRAPH, 1993, http://www.evl.uic.edu/EVL/VR/systems.shtml.

6. Extensible Markup Language (XML): http://www.w3.org/XML/
7. Foley J. and Ribarsky, B., “Next-Generation Data Visualization Tools.” In Sci-

entific Visualization Advances and Challenges, chapter 7, pp 103-127. Academic
Press/IEEE Computer Society Press, San Diego, CA, 1994.

8. Gary, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., and Venkatrao,
M., “Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-
Tab, and Sub-Totals,” Proc. of the Twelfth IEEE International Conference on Data
Engineering, February, 1996, pp 152-159.

9. Green, M. and Shaw, C. develop MR-Toolkit at the University of Alberta:
http://www.cs.ualberta.ca/~graphics/MRToolkit.html

10. Han J., and Kamber M., “Data Mining: Concepts and Techniques,” Morgan Kauf-
mann Publishers, 2001.

11. Hand, C., “A Survey of 3D Interaction Techniques,” Computer Graphics Forum,
December, 1997, 16(5), pp 269-281.

12. Jaswal, V., “CAVEvis: Distributed Real-Time Visualization of Time-Varying
Scalar and Vector Fields Using the CAVE Virtual Reality Theater,” IEEE Visu-
alization, 1997, pp 301-308.

13. Keim D. A., Kriegel H.-P.: VisDB: A System for Visualizing Large Databases ,
System Demonstration, Proc. ACM SIGMOD Int. Conf. on Management of Data,
San Jose, CA, 1995.

14. Pilot Software: http://www.pilotsw.com/news/olap white.htm
15. van Dam, A., Forsberg, A. S., Laidlaw, D. H., LaViola J. J., and Simpson, R. M.,

“Immersive VR for Scientific Visualization: A Progress Report,”Proc. IEEE Virtual
Reality, March, 2000 (VR2000).

16. Ward, M. O., Keim D. A.: Screen Layout Methods for Multidimensional Visual-
ization, Euro-American Workshop on Visualization of Information and Data, 1997.

