
 Hierarchical Structural Approach to
Improving the Browsability of Web Search Engine Results

Hang Cui and Osmar R. Zaïane

University of Alberta
Edmonton, AB, T6H 2E1 CANADA

{cui,zaiane}@cs.ualberta.ca

Abstract

 Web users have been mainly relying on Web search
engines to find information of interest on the Web.
However, two key issues remain with traditional Web
search engines: the browsability of searching results and
the capacity of Web coverage. The long ranked list
presentation of search results, which is widely adopted by
the industry adds a layer of confusion to users, especially
when the number of matches returned from search engines
can easily exceed ten thousand level. In this research, we
designed an agent system based on hierarchically
structural approach for organizing Web search results
coupled with a metasearch approach for Web searching.
The metasearch approach would help us extract the best of
the Web from a larger Web coverage; and our ontological
approach is aimed at providing a mechanism to categorize
search results in a semantic hierarchical organization, and
allow users to find target information in a progressive and
interactive manner.

Introduction

 With the wide use of the Internet, and the exponential
growth of the size of World Wide Web, information
retrieval and resource discovery from the Web is becoming
more challenging. The revolution that the Web has brought
to information access is not so much due to the availability
of information, but rather the increased efficiency of
accessing information. The emergency of Web search
engines has been helping Web users for information
discovery from the Web. It is estimated that eighty five
percent of Web users rely on search services to locate Web
pages and sixty percent of Web users use Web directories.
However, the current crawling - indexing - ranking –
querying By Keywords model that most of today's search
engines adopt does not guarantee a perfect answer to the
user's query. This is mainly due to the huge size of the Web,
which is still growing exponentially. First, there is not a
single Web search engine that is able to index the whole
Web. It is estimated that the largest capacity for a single
search engine today covers about thirty percent of the Web
[LAW98]. Therefore, if a single Web search engine is used
for Web searching, a large chunk of information resource is
never explored. Secondly, the long ranked list presentation

of search results has become the de facto standard way of
organizing and displaying the search results to the user.
The intention of this approach is to return the full ranked
list of matches to the user, and leave the task of navigating
and further searching to the user. However, the ranked list
of the document set returned by search engine could easily
exceed the thousands. The user would have to sift through
this large document collection to find information relevant
to his/her query. The assumption made by search engines is
that the ranking strategy suits the user needs. However,
chances are that some relevant information is buried in the
long ranked list of the document set, and never reaches to
the user. Therefore, the browsability of search engine
results has to be improved in order to meet the increasing
quality demand of Web users, and the rapid growth of the
Web itself. This is also true for existing metasearch
engines that compile results for different search engines.

 Since the size of the Web is beyond the coverage of a
single Web search engine, Metasearch engines such as
MetaCrawler [SEL96], Mamma, etc. have been designed to
alleviate this issue. Metasearch engines significantly
increase the coverage of the Web without indexing any
Web page [LAW99]. In this project, we also adopt the
same concept for larger Web coverage. Whether it is a
single or metasearch engine, the volume of matches that a
search engine is capable of answering to a query is
overwhelming to the user. Obviously, the browsability of
ranked list is much reduced for large datasets, and it relies
heavily on the ranking algorithm to highlight the most
relevant Web pages. However, ranking algorithms would
fail to satisfy users with the same searching query but
different intentions. One way to approach this issue is by
grouping search engine results into different categories.
Each category can be considered as a sub-topic under the
query term. It is up to the user which category he/she wants
to browse.

Related Work

 The necessity of improving the browsability of search
engine results has increasingly drawn attention of
researchers. Some promising and interesting approaches
are presented in the following:

 2

Web Document Clustering: Zamir et al. proposed to group
Web search engine results into clusters [ZAR97]. In this
approach, a suffix tree structure is used to identify shared
phrases among snippets of text associated with search
engine results. It provides a mechanism to take advantage
of the sequential relationship of words in documents to
create meaningful clusters to assist online browsing. The
documents with the shared phrase are grouped into one
cluster, and the shared phrase is used as the topic of the
cluster. Clusters containing similar sets of documents are
merged to reduce small clusters. However this grouping
does not present a hierarchical classification. Another
application worth mentioning is the Scatter/Gather system,
which introduced clustering as a document browsing
method before even the inception of the Web [CUT93]. It
used a linear time clustering algorithm (Buckshot) to cluster
a corpus of documents and presented these clusters to the
user. The user selected one or more clusters for further
investigation, and the documents in this sub-collection were
then clustered again in an iterative and hierarchical
manner. However, the relationship in the hierarchy layers
did not follow any semantic logic and is thus difficult to
browse. Principal Direction Divisive partitioning algorithm
[BOL98] was proposed to automatically generate
hierarchical topical taxonomy of a document set. The
algorithm constructs a binary tree hierarchy of clusters
starting with a single cluster encompassing the entire
document collection, and recursively splits clusters based
on a linear discriminant function derived from the principal
direction until a desired number of clusters is reached. The
resulting tree is not only binary, but like [CUT93] it doesn’t
hold a semantic meaning in the parent-child relationship.

Web Document Classification: Another type of approach
for improving browsability of web documents retrieved by
search engine is classifying web documents into pre-
defined categories. However, classifiers need to be trained
beforehand in order to use them for categorizing web
documents. Our document classification approach, as we
shall see later, does not require training. Recently, a
machine-learning algorithm has been investigated to
generate a hierarchy of classes for web document
classification. Naïve Bayesian classifiers were trained to
map Web documents into categories of Yahoo's hierarchy
[DAP97] [DUN98]. The final result of learning is a set of
specialized classifiers. This research showed very
promising scheme to map Web documents into categories
of a hierarchical organization. However, the classification
accuracy of this approach still needs significant
improvements.

Issues and Approach Concept

One of the major issues that today's Web search engines are
facing lies in the organization and presentation style of their

returning search result. Almost all major Web search
engines adopt the ranked list of matching document format.
Clearly, as the Web grows larger, the dominating ranked
list scheme is creating a bottleneck for Web search engines
to help users locate target information. Users are tied to the
specific ranking algorithm of the search engine used. This is
especially problematic to the users due to the following
facts. First, in many cases, there is a certain degree of gap
between the user's query term(s) and the true intention
behind the query term used for searching. This does not
just apply to naïve search engine users. Secondly, Web
search engines satisfy user's query by returning a ranked list
of all matches from their indexing database. Even though
the recall could be very high, the precision against user's
querying intention is very low. In many situations
unfortunately, search engine's ranking algorithm cannot
reflect user's querying intention. Therefore, the target pages
are scattered and mingled in the pile of results. Thirdly,
according to a survey of user's browsing behaviour, more
than eighty-five percent of search engine users only sift
through the top 30 results returned by the search engine. A
large portion of the targeted information never finds a way
to the users. As the Web grows larger, we believe it will
increasingly compromise the role that Web search engines
play in the Internet. Therefore, changing the way Web
search engines present their search results to improve
browsability is becoming necessary.

 Instead of the flat arrangement of a ranked list of search
results, we believe that the most desired paradigm for
organizing Web search engine results, making it
comprehensive to users, is by categorizing different
documents according to their topics, where topics are
organized in a hierarchy of increasing specificity. Such an
approach not only applies the concept of abstraction to
manage a large amount of information, but also builds the
foundation for the mechanism of interactive user browsing.

 System Model

 We propose an independent software agent, which takes
the user query term(s) from Web browser, and sends it to
the server to trigger a server side script; the server side
script will distribute user's query to multiple Web search
engines for a metasearch. The search results are collected
and pre-processed to create index files. The index files are
used to construct a hierarchical organization of search
results based on an ontological approach. The final results
are posted back to user's Web browser. The user can
interact with the tree-like organization of search results
through on-line analytical processing-like (OLAP)
operations, which support progressive navigation.

 Ideally, such an agent should possess the following
functionalities:

 3

1. A metasearch engine on top of multiple Web
search engines;

2. an independent entity operating separately from
the Web search engine;

3. a hierarchical organization of search results based
on ontological approach;

4. a navigating scheme allowing user interaction in a
progressive manner; and

5. a friendly user interface.

 There are two major functional components of the
proposed software agent as shown in Figure 1. The first
component takes user's query and performs Web searching.
The second component is responsible for reorganizing
search results, and providing a mechanism for browsing
through interactive user navigation.

 Figure 1: System Component Modeling

Independent, metasearch approach:

 In this research, we create a metasearch engine on top of
multiple Web search engines. It sends the user's query to
several user-specified Web search engines, such as
AltaVista, Google, Yahoo, etc., and takes the combined
search results as input for further processing. Since we
mainly focus on the reorganization and browsability of Web
search results, metasearch seems a natural fit for the
project.

Ontological approach for search result organization

 How to create a hierarchical organization of search result
is an interesting issue for this research. As mentioned in the
last section, Web document clustering and classification
have been investigated to achieve this goal. An ontological
approach is proposed in our research for this purpose.

 Ontology is a set of semantic information represented in
a form that can be manipulated by software components
[MEE00]. It is an agreement about shared
conceptualization. A good ontology is hard to build
through automatic machine learning process since the
linguistic issues that involve themselves are conceptual and
abstract, and therefore hard to capture and model. Here, we

propose an ontological approach that uses WordNet - an
online lexical database, to help us construct such a
hierarchical organization of Web search results. More
specifically, we are taking advantage of the ontology of
nouns provided by WordNet to categorize Web documents.

 WordNet is an online lexical reference system built by
linguists from Princeton University [BEC90]. In WordNet,
lexicons are divided into five categories: nouns, verbs,
adjectives, adverbs and function words. Presently, it
contains approximately 96,000 different words organized
into about 70,000 word meanings. WordNet organizes
lexical information in terms of word meanings, rather than
word forms. The smallest unit is the word/sense pair.
Word/sense pairs are linked through WordNet's lexical
relation, synonymy, which is expressed by grouping
word/sense pairs into synonym sets or synsets. Each synset
represents a concept. Concepts are linked through
conceptual - semantic relations. Under this designing
philosophy, nouns are organized as topical hierarchies with
25 top-level categories, and twelve levels in depth. There is
a very strong semantic relationship (synonymy/hyponymy)
between a parent and a child in the topical hierarchy of
nouns in WordNet. For a given noun, WordNet provides an
API (application programming interface) to find its
semantically related concepts [BEC90]. Thus, we can
utilize such a mechanism to build a specific ontology, and
map search engine results into the created-on-the-fly
hierarchy.

User’s Navigation Scheme

 The hierarchical organization of search results is a tree-
like structure with Web documents categorized in the leaf
nodes. Each internal node of the tree represents a higher-
level concept that semantically includes all of its child
concepts. Thus, by following a path from the root to a leaf
in this hierarchy, users can start with a generalized concept,
and gradually get to more specialized information. The
philosophy behind the hierarchical organization of search
results is information abstraction [HAN92], which assumes
that most of the users prefer to browse general description
of information instead of the overwhelming details of
information in the first glance when searching for target
information. Therefore, the most generalized concepts
located in the very top level of the hierarchy will always be
presented to the user first, and the system provides an
mechanism to allow user to set his/her own path towards
the target information for details in a progressive manner by
either drilling-down or rolling-up along the concept
hierarchy, or drilling-through from the tree node to the
documents subsumed by the concept in the node. Such a
navigating scheme involves user's interaction, and thus
gives the flexibility to the user to make his/her decisions
along the way of navigation.

Web Browser
Web Search
Component

Main Processing
ComponentWeb Browser

User’s Query

Navigable Results

Raw Search
Results

Client side Server side

 4

System Architecture Design and Implementation

 We adopted the client–server architectural style for
system design. The major functionality of the system is
operated on the server. The user can access the system
through a thin client – Web browser, which allows to
sending a query and navigating the search result.

Figure 2: System Modularity

On the server side, the system is partitioned into four
functional modules as shown in Figure 2: MetaSearch
Module, Preprocessing Module, Engine Module, and User
Interface Module.

 The MetaSearch Module is responsible for taking the
user’s query from a Web browser, distributing user’s query
term(s) to multiple pre-selected Web search engines, and
collecting search results from different search engines. For
each match returned by Web search engines, its URL, Title,
and snippet are retrieved, and routed to the Preprocessing
Module for further processing.

 The major functionality of Preprocessing Module is to
prepare the items retrieved, and create indices for use by the
Engine Module. During preprocessing, the retrieved
information of each query goes through the following
processing:

1. Eliminate all the duplicates of matches retrieved
by more than one Web search engines.

2. Remove all the punctuation marks, numbers and
HTML tags.

3. Remove all the stop-words from each Title and
Snippet.

4. Stem the stop-word removed text.
5. Create an index file. Each retrieved URL is

indexed using a vector of keywords.
6. Create an inverted index file. Given an extracted

keyword, the inverted index file stores the

frequency of its appearance, and all pointers as
references of the location(s) that it appears among
the whole retrieved items.

 Figure 3: System Architecture Design

 The Engine Module is the core of the system. The main
functionality of the Engine Module is constructing the
hierarchical organization of search results, and optimizing
the tree-like structure. Once the indices are generated, the
Engine Module is triggered. All records go through the
Filter. Only those records with nouns as keywords, and
with frequencies of appearance above the threshold of 3%
are sent to the Mapping Manager for hierarchy
construction. For each of the qualified record, the Mapping
Manager takes the keyword (noun), refers to the ontological
organization of nouns in WordNet, finds its precedents
(hypernyms) at different levels of the ontology, then, the
keyword itself and its hypernyms are used to construct a
unique path of the hierarchy with the most generalized
hypernym mapped directly under the root (which contains
the query term), and the keyword as the leaf of the path.
After the completion of hierarchy construction, all
keywords from the inverted file are mapped into leaves of
the hierarchy with corresponding retrieved Web pages
attached. The Optimizer prunes the tree to eliminate all the
internal tree nodes with only one single child. This will
reduce the depth of the tree, and more efficient for
navigating.

 The User Interface Module is responsible for describing
the tree structure according to its hierarchical organization,
and translating it into HTML as a visual folder tree. Each

 5

internal node is a folder of higher-level topical concept,
which contains all the sub-topical concepts. Retrieved
information is stored in the leaf nodes. Another function of
User Interface Module is allowing interactive drilling-down
and rolling-up operations to navigate the folder tree.

Figure 4: The result page in response to query: “Edmonton Oilers”

Case Study

 Querying examples were given to illustrate the system
behaviour and some characters of our system design
concept [CUI01]. Here, we chose “Edmonton Oilers” as
the query term for Web search, and the result page is shown
in Figure 4. The bottom-right frame gives a full list of
retrieved Web pages. The bottom-left frame shows the
hierarchical folder tree that displays the top-level categories
directly under the root – “Edmonton Oilers”. The
hierarchical folder tree sorts all the retrieved Web pages
into 41 different topics. Each topic is a cluster, which is
located at the bottom of the folder tree, and has a unique
path in the folder tree. The navigation of the folder tree
requires user’s interaction. If the user is interested in
hockey activities related to Oilers for example, path
navigation should be followed along Edmonton Oilers Î
human activities Î activity Î diversion, recreation Î
sport, athletics Î hockey as shown in Figure 4 to reach the
particular cluster. If the user is interested in a specific Web
page in the cluster, clicking on its title with hyperlink can
access the Web page. Following paths in the presented
ontology can lead to the discovery of interesting
information. For instance, the Oilers’ historical game
statistics can be found in path Edmonton Oilers Î
knowledge Î information Î statistics.

Conclusions and Future Work

We have designed an implemented a system to categorize
web documents from a search engine result list. The system
classifies the documents based by mapping them on an
existing concept hierarchy. The resulting tree is later
trimmed to keep the essential paths and presented to the
user to navigate through the large result list and easily find
the relevant documents. We have shown a proof of concept
using WordNet as an initial semantic network. Because of
the nature of WordNet, rich with linguistic terms, the
resulting tree is often full with elaborate terminology at the
different nodes. The system however, can be done with any
given concept hierarchy. We are currently investigating the
use of association rule mining to discover frequent terms
and phrases in the document collection but not present in
the given concept hierarchy of thesaurus. The combination
of both approaches would give even better results.

References

[BEC90] R. Beckwith, C. Fellbaum, D. Gross, K. Miller, G.A.
Miller, R. Tengi, Five Papers on WordNet, Special Issue of the
International Journal of Lexicography 3(4), 1990, pp. 235-312.
[CUI01] H. Cui. The architecture design and implementation of J-
Walker, a metasearch engine based on ontological approach. M.S.
Thesis, Dept. of Computing Science, Univ. of Alberta, May 2001.
[CUT92] D. Cutting, D.R. Karger, J. Redersen and J. Turey.
Scatter/Gather: A cluster based approach to browsing large
document collections. In Proceedings of the 15th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 318-329, 1992.
[CUT93] D. Cutting, D.R. Karger, J. Redersen and J. Tukey.
Constant interaction time Scatter/Gather browsing of large
document collections. In Proceedings of the 16th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 126-135, 1993.
[DAP97] D. Koller, M. Sahami. Hierarchically classifying
documents using very few words. In proc. of the 14th Intl. Conf.
on Machine Learning, pp 170-178, Nashville, TN, July 1997.
[DUN98] Dunja Mladenic. Turning Yahoo into an automatic
Web-page classifier. In Proceedings of the 13th European
Conference on Artificial Intelligence ECAI’98, pp. 473-474.
[HAN92] J. Han, Y Cai and N. Cercone. Knowledge Discovery in
Databases: An Attribute-oriented Approach. In Proceedings of the
18th VLDB Conference, Vancouver, BC, Canada, 1992.
[LAW98] S. Lawrence and C. Giles. Searching the World Wide
Web. Science, Volume 280, No.5360, pp. 98-100, 1998.
[LAW99] S. Lawrence and C. Giles. Search the Web: General
and Scientific Information Access. In IEEE Communications,
37(1), pp. 116-122, 1999.
[MEE00] R. Meersman. Can Ontology learn from database
semantics. http://www.starlab/vub.ac.be/staff/robert
[SEL96] E. Selberg and O. Etzioni, The MetaCrawler architecture
for resource aggregation on the Web. IEEE Expert, 12(1), 1997.
[ZAM97] O. Zamir, O. Etzioni, O. Madani, and R. Karp. Fast and
intuitive clustering of Web documents. In Proc. of the 3rd Intl.
Conf. on Knowledge Discovery and Data Mining, 1997.

