Sequence-based Approaches to Course
Recommender Systems

Ren Wang and Osmar R. Zaiane[0000—-0002—0060—5988]

University of Alberta, Canada {ren5,zaiane}@cs.ualberta.ca

Abstract. The scope and order of courses to take to graduate are typi-
cally defined, but liberal programs encourage flexibility and may generate
many possible paths to graduation. Students and course counselors strug-
gle with the question of choosing a suitable course at a proper time. Many
researchers have focused on making course recommendations with tradi-
tional data mining techniques, yet failed to take a student’s sequence of
past courses into consideration. In this paper, we study sequence-based
approaches for the course recommender system. First, we implement a
course recommender system based on three different sequence related
approaches: process mining, dependency graph and sequential pattern
mining. Then, we evaluate the impact of the recommender system. The
result shows that all can improve the performance of students while the
approach based on dependency graph contributes most.

Keywords: Recommender Systems, Dependency Graph, Process Mining

1 Introduction

After taking some courses, deciding which one to take next is not a trivial de-
cision. A recommendation of learning resources relies on a recommender system
(RS), a technique and software tool providing suggestions of items valuable for
users [14]. The typical approaches to recommend an item are based on rank-
ing some other items similar to another item a user or a customer has already
taken, purchased, or liked. These are called Content-based recommender systems
[3]. However, recommending a course simply based on similarity with previously
taken courses may not be the right thing to do. In practice, in addition to course
prerequisite constraints, when the curriculum is liberal, students typically chose
courses where their friends are, or based on their friends suggestions (i.e. ratings).
Collaborative filtering [16] is another approach for recommender systems that
could be used to recommend courses. It relies on the wisdom of the crowd, -i.e.
the learners that are similar to the current students in terms of courses taken or
”liked”. However, the exact sequence these courses are taken is not considered.
The order and succession of courses is indeed relevant in choosing the next course
to take. The questions students may ask include but are not restricted to: how
can I finish my study as soon as possible? Is it more advantageous to take course
A before B or B before A7 What is the best course for me to take this semester?

2 R. Wang and O. R. Zaiane

Will it improve my GPA if I take this course? Answering such questions to both
educators and students can greatly enhance the educational experience and pro-
cess. However, very few course RS (CRS) currently take advantage of this unique
sequence characteristic.

Recommender systems are widely used in commercial systems and while
rarely deployed in the learning environments, their use in the e-learning context
has already been advocated [24][9]. The overall goal of most RS in education
is to improve students’ performance. This goal can be achieved in diverse ways
by recommending various learning resources [18]. A common idea is to recom-
mend papers, books and hyperlinks [17] [6] [8]. Course enrollment can also be
recommended [10] [5]. However, most RS only apply content-based or collabora-
tive filtering approaches, and none have considered exploiting the order of how
students take courses. This missing link is what this paper tries to address.

The goal of our paper is to investigate a sequence-based CRS and show that
it is possible. We study three sequence-based approaches to build this RS using
process mining, dependency graphs, and sequential pattern mining.

2 CRS based on Process Mining

2.1 Review of Process Mining

Process mining (PM) is an emerging technique that can discover the real se-
quence of various activities from an event log, compare different processes and
ultimately find the bottlenecks of an existing process and hence improve it [20].
To be specific, PM consists of extracting knowledge from event logs recorded
by an information system and discovering business process from these event
logs (process discovery), comparing processes and finding discrepancies between
them (Process Conformance), and providing suggestions for improvements in
these processes (Process Enhancement).

Some attempts have already been made to exploit the power of PM in cur-
riculum data. For instance, authors of one section in [15] indicate that it can be
used in educational data. However, the description is too general and not enough
examples are given. The authors of [19] point out the significant benefit in com-
bining educational data with PM. The main idea is to model a curriculum as a
coloured Petri net using some standard patterns. However, most of the contri-
bution is plain theory and no real experiment is conducted. Targeted curriculum
data and thereby curriculum mining is explored in [11]. Similar with the three
components of PM, it clearly defines three main tasks of curriculum mining,
which are curriculum model discovery, curriculum model conformance checking
and curriculum model extensions. The authors explain vividly how curriculum
mining can answer some of the questions that teachers and administrators may
ask. However, no RS is built upon it.

2.2 Implementation of a CRS based on Process Mining

We recommend courses to a student that successful students who have a similar
course path have taken. Our course data are different from typical PM data

Sequence-based Course Recommender System 3

at least in the following three aspects: First, the order of the activities is not
rigidly determined. Students are quite free to take the courses they like and
they do not follow a specific order. Granted that there are restrictions such as
prerequisite courses or the courses we need to take in order to graduate, these
dependencies are relatively rare compared with the number of courses available.
Second, the dependency length is relatively short. In the course history data, we
do not have a long dependency. We may have a prerequisite requirement, e.g., we
must take CMPUT 174 and CMPUT 204 first in order to take CMPUT 304, but
such dependency is very short. Third, the type of activities in the sequence are
not singletons. Data from typical PM problems are sequence of single activities,
while in our case they are a sequence of sets. Students can take several courses
in the same term, which makes it more difficult to represent in a graph.

For these reasons, we do not attempt to build a dependency graph, and
proceed directly to conformance checking. The intuition behind our algorithm is
to recommend the path that successful students take, i.e., to recommend courses
taken by the students who are both successful and similar to our students who
need help. We achieve this by the steps in Algorithm 1.

Algorithm 1 Algorithm of CRS based on PM
Input :
Logs L of finished students course history
Student stu who needs course recommendations
Execute :
: Find all high GPA students from L as HS
: Set candidate courses CC = ()
: for all stuHGPA in HS do
Apply Algorithm 2 to compute the similarity sim between stu and stuHGPA
if sim is greater than a certain threshold then
Add courses that stuHGPA take next to CC
end if
end for
: Rank C'C based on selected metrics
: Recommend the top courses from CC' to stu

e I A Al > o

—_

In Algorithm 1 we first find the history of all past successful students. We
assume success is measured based on final GPA. Other means are of course
possible. From this list we only keep the successful students who are similar to
the current student based on some similarity metric, and retain the courses they
took as candidate courses to recommend. These are finally ranked and the top
are recommended. The ranking is explained later.

The method we use to compute the similarity between two students is high-
lighted in Algorithm 2. It is an improved version of the casual footprint approach
for conformance checking in PM. Instead of building a process model, we apply
or method directly on the sequence of sets of courses to build the footprint ta-

4 R. Wang and O. R. Zaiane

bles. In addition, we define some new relations among activities, courses in our
case, due to the special attributes of course history and the sequence of set.

Direct succession: x — y iff x is directly followed by y

— Indirect succession: x —— y iff z is indirectly followed by y
Reverse direct succession: x < y iff y is directly followed by x

— Reverse indirect succession: x <—<— y iff y is indirectly followed by =
Same term: z || y iff z and y are in the same term

— Other: z#y for Initialization or if and y have the same name

With the relation terms defined, we can proceed to our improved version
of the footprint algorithm which computes the similarity of two course history
sequences.

Algorithm 2 Algorithm of computing the similarity of two course history se-
quences
Input :
Course history sequence of the first student s;
Course history sequence of the first student so
Output :
: Truncate the longer sequence to the same length with the shorter sequence
Build two blank footprint tables that map between s; and s2
Fill out two footprint tables based on s1 and s2
Calculate the total elements and the number of elements that are different
Compute the similarity
Return the similarity of s; and s2

In most cases, finished students’ course histories are much longer than the
current students’. To eliminate this difference we truncate the longer sequence to
the same length of the shorter sequence. The next step is to build a one-to-one
mapping of all courses in both sequences. Our CRS computes the above defined
relations based on the two sequences and fills the relations in the footprint table
separately. Lastly, our CRS calculates di f ferenceCount which is the number of
elements in the footprint tables that s; differs from s, and totalCount which is
the total number of elements in one footprint table. similarity is then:

dif ferenceCount

stmilarity = 1 — Ot

3 CRS based on Dependency Graph

3.1 Review of Dependency Graph (DG)

A primitive method to discover DG from event data is stated in [1]. The de-
pendency relation is based on the intuition that for two activities A and B, if
B follows A but A does not follow B, then B is dependent on A. If they both

Sequence-based Course Recommender System 5

follow each other in the data, they are independent. In fact, this simple intuitive
idea lays the foundation for many process discovery algorithms in PM. These
are, however, more advanced, as they use Petri nets [13] to deal with concur-
rency and satisfy other criteria, such as the Alpha Algorithm [21], the heuristic
mining approach [23], and the fuzzy mining approach [7]. These approaches are,
however, not quite suitable for our task. Our method here is based on [4]. The
authors developed an approach of recommending of learning resources for users
based on users’ previous feedback. It learns a DG by users ratings. Learners are
required to give a rating or usefulness of the resources they used. The database
evolves by filtering learning objects with low ratings as time goes by. The de-
pendencies are discovered based on these ratings, positive or negative, using an
association rule mining approach.

3.2 Implementation of a CRS based on Dependency Graph

The method in [4] is to recommend resources to learners based on what learners
have seen and rated. It creates dependencies between items ¢ and items j only if
an item j is always positively rated immediately upon appearing after an always
positively rated ¢ when it is before j, and independent or ignored otherwise.
Resource j is dependent on 4 in the pair (¢, j) based on ratings.

Admittedly, the approach is simple but has drawbacks (i.e. linear, no context
used, and ignores noise), but we propose to adapt it to make it more suitable to
our case of courses, and improved it as follows. We cannot ask students to rate
all the courses they have taken, as these may not be very reliable for building
dependencies. The indicator we built our dependencies upon is the mark obtained
by students in courses. A good mark for course i before a good mark of course
j often implies course i is the prerequisite or positively influencer of course j.
Moreover, instead of using a universal notion of positive and negative as for the
ratings, A positive mark in a course or a negative mark is defined relative to
a student. A B+ may be a good mark in general, but for a successful student
whose mark is A on average, B+ is not that good. Moreover, we use association
rule mining parameters support (indicating frequency) and confidence (indicating
how often a rule has been found to be true) to threshold pairs of courses with
positive marks, and thus reduce potential noise.

Algorithm 3 outlines our approach with the above rationale. The CRS first
learns dependencies from the finished students’ course history. For a student
who needs recommendations, the CRS checks the previous course history of this
student and compares this history with the dependencies the CRS has learned.
A ranking of the candidate courses constitutes the final recommendation.

4 CRS based on Sequential Pattern Mining

4.1 Implementation of a CRS based on Sequential Pattern Mining

Sequential pattern mining (SPM) consists of discovering frequent subsequences
in a sequential database [2]. There are many algorithms for SPM but we adopt
the widely used PrefixSpan [12] because of its recognized efficiency.

6 R. Wang and O. R. Zaiane

Algorithm 3 Algorithm of CRS based on DG
Input :
Logs L of finished students course history
Student stu who needs course recommendations
Execute :
1: Convert all marks of courses from L to positive or negative signs. The standard
may differ based on GPA to make it relative to individual students
2: Build the projected dataset of positive courses P;4 and negative courses P;— with
the highlighted modification. Remove courses in P;_ from P;
Set candidate courses CC = ()
Add to CC courses in P, whose prerequisites are finished
Rank C'C based on selected metrics
Recommend the top courses from CC' to stu

SPM was introduced and is typically used in the context of market basket
analysis. The sequences in the database are the progression of items purchased
together each time a purchaser comes back to a store, and SPM consists of pre-
dicting the next items that are likely to be purchased at the next visit. Students
take few courses each term. There is no order of courses in a specific term, yet
the courses of different terms do follow a chronological order. The analogy with
market basket analysis is simple. A semester for a student is a store visit, and the
set of courses taken during a semester are the items purchased together during
one visit. Just like frequent sequence patterns of items bought by customers can
be found, so can frequent sequence patterns of courses taken by students.

Our CRS Algorithm 4 based on SPM works as follows. Since we only want to
find the sequential patterns of positive courses, i.e., sequences of courses taken
by students with good outcome, we first filter all the course records and only
keep a course record when the mark is A or A+. Here A+ and A are taken
as reference examples. Note that a course deleted in one sequence of a student
may be selected in another sequence for another student. For instance, a stu-
dent who took CMPUT 101 and received an A then this course is kept in this
student’s sequence. If another student who also took CMPUT 101 but received
a B this course is filtered from their sequence. After this step, the course records
left in students history are all either A or A+. The second step in the algo-
rithm is to treat these courses like the shopping items and process them with
PrefixSpan [12] to find all the sequential patterns of courses. Among the course
sequential patterns we find, some are long, while some are short. Ideally, we want
to recommend courses from the most significant patterns.

Suppose we have a student who needs course recommendations and has al-
ready taken courses 174, 175, and 204. We have discovered a short frequent
pattern s; = (174, 206) while another long frequent pattern s we discovered is
(174,175,204, 304). A more intuitive recommendation should be 304 because the
student has already finished three courses in ss.

Based on this intuition, the courses we recommend are the next unfinished
elements from the sequential patterns that have the longest common elements

Sequence-based Course Recommender System 7

Algorithm 4 Algorithm of CRS based on SPM
Input :
Logs L of finished students course history
Student stu who needs course recommendations
Execute :
1: Filter all the course records of L with a predefined course mark standard as F'L
2: Find all the course sequential patterns SP from F'L with PrefixSpan [12].
3: for all Sequential pattern p from SP do
4: Compute the number of elements num of this sequential pattern that is also
contained in stu’s course history
Add the next course of this p to the Hashtable HT where the key is num
end for
7: Rank courses from HT’s highest key as candidate courses C'C based on selected
metrics
8: Recommend the top courses from CC to stu

with our student’s current course history. By this algorithm, the course we rec-
ommend for our example student earlier will be course 304 since the length of
common elements of s, and this student is three, longer than one which is of s;.

o
od
2 B
o<>‘“/
.

otential courses by PM

e baeed Compute by DG é
equence-bas — ||
CRS — —
- Combine courses
o otential courses by DG Rank courses

%"w Course to take
% Combined potential courses
A
" é

Potential courses By SPM

Fig. 1. The overall workflow of our CRS that combines all 3 sequence-based algorithms

In addition to the three approaches for CRS, PM-based, DG-based, and
SPM-based, we combine all of our three sequence-based methods into one com-
prehensive one. We call it ”Comprehensive” in our experiments. Since each of
them produces a potential list of recommended courses, it is straight forward to
combine the result of potential courses of all three methods and rank the result.
The overall structure of this approach is shown in Figure 1.

5 Ranking Results

All methods previously mentioned focus more on student’s course performance,
which we approximate with the GPA. Of course, other learning effectiveness
measure alternatives exist. Since the quickness of a program before graduation is
also of concern to many learners who would like to graduate as soon as possible,
we also consider the length of sequences of courses before graduation in our

8 R. Wang and O. R. Zaiane

recommendation. To do this, we incorporate this notion in the ranking of the
candidate courses before taking the top to recommend.

The sequence of some courses and the number of courses and the compulsory
courses to graduate are dictated by the school or department program. These
requirements can be obtained from the school guidelines. Most of these programs,
however, are liberal not enforcing most constraints and contain many electives.
These optional courses can be further considered in two aspects: First, these
courses may be very important that many students decide to take them even
though they are not in the mandatory list. We can compute the percentage of
students who take a specific course and rank courses based on this percentage
from high to low. It could be a must for students who want to graduate as
soon as possible if the percentage of students who take this course is above a
certain threshold. The second aspect to distinguish courses that can speed up
graduation is their relationship with the average duration before graduation. For
one course, we can compute the average time needed to graduate by students who
take this specific course. We do this for all the courses and rank them based on
the average graduation time from low to high, the lower the number the faster a
student graduates, i.e. the likelier it contributes to the acceleration of graduation.
In short, there are three attributes we consider: First, the course is mandatory
from the department’s guideline; Second, is the percentage of students who take
this course; Third, is the average time before graduation by students who take
this course. The second category can actually be merged into the first category
since they both indicate how crucial a course is, either by the department or
the choice of students. We combine the courses that are chosen by more than
90% (this threshold can be changed) of students with the compulsory courses
specified by educators as one group we call key courses.

This “agility strategy” is used to rank the potential recommended courses
selected by our three sequence-based algorithms. This ranking process is always
the last step of these three sequential based algorithms. To be more exact, after
selecting a few courses in the potential course list by one of the three sequence-
based approaches, there are three methods to rank them with this “agility”
algorithm.

1. No “agility”: Rank courses merely on the GPA contribution of courses

2. Semi “agility”: Always rank key courses that are in the potential course list
first. The key course list and the non-key course list will be ranked based on
each course’s GPA contribution respectively.

3. Full “agility”: Always rank key courses that are in the potential course list
first. The key course list and the non-key course list will be ranked based on
each course’s average graduation time by students who take this course.

6 Experiments

6.1 Data Simulator

The Computing Science Department of the University of Alberta collects for
each semester and for each student the courses they register in and the final

Sequence-based Course Recommender System 9

mark they obtain. While there are prerequisites for courses and other strict
constraints, the rules are not enforced and are thus often violated, giving a
plethora of paths to graduation. This history for many years, constituting the
exact needed event log, is readily available. However, such data cannot be used
for research purposes or for publication even though anonymized due to lack
of ethical approval. Indeed, we would need inaccessible consent from alumni
learners. It is hopeless to gather the consent of all past students, and impractical
to start collecting written consent from new students as it would require years to
do so. We were left with alternative to simulate historic curriculum data for proof
of concept and publication, and use real data for local implementation. For this
paper we opted for the simulation of the event log. A simulator was developed
to mimic the behaviours of undergraduate students with different characters
in higher education. The simulator encompasses the dynamic course directory
and the rules of enrollment, as well as student behaviour such as performance
and diligence in following guideline rules. The detail of the simulator simulating
arriving and graduating students one semester at a time can be found in [22].

6.2 Result Analysis

In this section we compare the performance of our CRS based on different
sequence-based algorithms. We want to see which sequence-based algorithm
performs better, whether the “speedup” algorithm works, and what additional
insights our CRS can provide. Moreover, we add one more approach to all ex-
periments, which is called “comprehensive” that combines all results from the
three methods. If not otherwise specified, the parameters of each algorithm are
the ones that performed best. The numbers presented in each table and figure
for this section are the average scores of their corresponding experiment three
times since the simulation is stochastic.

The first experiment is to compare the performance of different sequence-
based approaches at different student stages. “Different stages” means when do
students use our CRS. For example, “Year 4” means students only begin to take
courses recommended by our CRS in the fourth year, while “Year 1” means
students start using our CRS from the first year. Table 1 with its corresponding
Figure 2 shows the result of this experiment: 200 students’ average GPAs varied
by the year of starting CRS in different approaches. The blue line in the middle
is our baseline 3.446 which is the average GPA if students do not take any
recommendations. From Table 1 and Figure 2 we can observe the following.
Firstly, we can see a substantial effect for students who use our CRS in the
first two years. This steady increase indicates students can benefit more if they
start using our CRS earlier in their study. Secondly, the performance of CRS
for all methods is about the same with the baseline if students only start to
use our CRS in the fourth year, which means it may be too late to improve
a student’s GPA even with the help of a CRS. Other than Year 4, our CRS
does have a positive impact. Thirdly, CRS based on DG outperforms all in
nearly all scenarios while other approaches are equally matched. Note that the
comprehensive approach does not outperform others. Our interpretation is that

10 R. Wang and O. R. Zaiane

by combining the candidate courses from all three methods, it obtains too many
candidates and cannot perform well if the candidates are not ranked properly. As
to why CRS based on DG performs best, it may be due to the intrinsic attribute
of our data simulator. The mark generation part of our simulator considers course
prerequisites, which may favour the DG algorithm. Thus, other approaches may
outweigh DG if we are dealing with real data.

Table 1. 200 students’ average GPAs varied by the year CRS is used by different
approaches

Approach |Year 4|Year 3|Year 2|Year 1

PM 3.453 | 3.516 | 3.569 | 3.588
DG 3.433 | 3.529 | 3.617 | 3.652
SPM 3.447 | 3.498 | 3.545 | 3.602

Comprehensive| 3.441 | 3.512 | 3.564 | 3.593

3.8

3.7

3.6

35

GPA

3.4

33

32

3.1

Year 4 Year 3 Year 2 Year 1

NN PV BN DG BN SPMV B Comprehensive === Baseline

Fig. 2. 200 students’ average GPAs varied by the year CRS is used by different ap-
proaches

The next experiment is to check whether increasing the training data in the
number of students would lead to a better performance of our CRS. Table 2
and Figure 3 demonstrate 200 students’ average GPAs varied by the number of
training students of CRS in different approaches. We can see that, as the training
data size increases from 500 to 1000, the performance of our CRS improves.
However, when this size further increases from 1000 to 1500, the performance of
our CRS does not improve significantly. We than fixed the training data size to
1500 in all our experiments. This can be explained by the fact that the number of
courses in a program is finite and small (even though dynamic) and all important
dependencies are already expressed in a relatively small training dataset.

Sequence-based Course Recommender System 11

Table 2. 200 students’ average GPAs varied by the number of training students of
CRS in different approaches

Approach 500 | 1000 | 1500
PM 3.513| 3.57 |3.586

DG 3.535|3.607|3.639

SPM 3.528|3.581|3.598
Comprehensive|3.522(3.582(3.597

=
| II
5

00 1000 1500

I PV . DG SPIV] IEEE Comprehensive == Baseline

Fig. 3. 200 students’ average GPAs varied by the number of training students of CRS
in different approaches

Besides improving students’ performance in grades, our CRS can also speed
up students’ graduation process by ranking the candidate courses selected by
sequence algorithms properly. Table 3 and Figure 4 show the effect of using the
full “agility” ranking setting to recommend courses based on DG to 200 students.
Same as the first experiment in this section, Year X means students start to use
our CRS from year X. We can see a remarkable decrease in the number of terms
needed to graduate if students start using our CRS from the third year. However,
after that, such change is not very notable. Since the pivotal fact to graduate
fast is to take all key courses as soon as possible, our explanation is that taking
key courses from the third year is timely. There is no particular need to focus
on key courses in the first two years. Note that although the graduation time
improvement of our CRS is only in a decimal level, it is already quite a boost
considering students only need to study 12 terms in normal scenarios.

Other than recommending courses, our CRS may provide some insights to
educators and course counselors. We previously mentioned computing courses’
GPA contribution and graduation time contribution. A course’s GPA contri-
bution is the average GPA of students who take this course, while a course’s
graduation time contribution is the average time before graduation of students
who take this course. These indicators are used to rank the candidate courses ob-
tained by sequence-based algorithms. Yet, these indicators themselves may have
values. Table 4 demonstrates the top 5 GPA contribution courses and graduation

12 R. Wang and O. R. Zaiane

Table 3. 200 students’ average graduation terms varied by the year of starting CRS
based on DG with the full “agility” setting

Starting Year|Average Graduation Terms
Year 4 11.917
Year 3 11.615
Year 2 11.567
Year 1 11.532
13
125
g 12 —
ki
é 115
3
11
a
10
Year 4 Year 3 Year 2 Year 1
. DG Baseline

Fig. 4. 200 students’ average graduation terms varied by the year of starting CRS
based on DG with the full “agility” setting

time contribution courses. One interesting finding is course CMPUT 201. This
course is not one of the preferred courses in our simulator but is a prerequisite
course for many courses. A preferred course is a course that will have a very
high probability to be taken in a particular term because it is the “right” course
for that term. Being a prerequisite course but not a preferred course means
that, CMPUT 201 has to be taken in order to perform well in other courses but
many students do not take it. Thus, finding this course actually means that our
CRS found an important course that is not in the curriculum but is necessary
for students to succeed. Sometimes it is risky to force to do so. For example,
CMPUT 275 is in the top position in the GPA contribution list, but we cannot
know whether this course causes students to succeed or successful students like
to take it. Nevertheless, this contribution list would still provide some insights
to educators and course counselors if it is trained on real students’ data and is
carefully interpreted.

Finally, our CRS can assist educators and administrators to gain deep insights
on course relations and thus improve the curriculum. Figure 5 (Left) shows the
DG of courses with edge colours representing discovery sources (green=imposed
and confirmed; blue=expected but not found; red=new discovered). It combines
the prerequisite relations used by our simulator and the dependencies discovered
by our DGA. On one hand, we can consider the prerequisite course relations used
by our simulator as the “current curriculum” or behaviours we expect to see from

Sequence-based Course Recommender System 13

Table 4. The top 5 GPA contribution courses and graduation time contribution courses

Ranking|Top GPA Courses|Top Time Courses
1 CMPUT 275 CMPUT 301
2 CMPUT 429 CMPUT 274
3 CMPUT 350 CMPUT 300
4 CMPUT 333 CMPUT 410
5 CMPUT 201 CMPUT 366

students. On the other hand, the courses’ prerequisite relations discovered by our
CRS based on the DG algorithm can be deemed as the prerequisite relations in
reality or the actual behaviours by students. Many dependencies used by our
simulator are found by our DG algorithm (green edges) like 204=-304, which
means that these rules are successfully carried out by students. Some dependen-
cies used by our simulator are not found in the data (blue edges) like 175=-229
because the students did not actually follow them, which indicates there are some
discrepancies between what we expect from students and what students really
do. Administrators may want to check why this happens. There are also some
dependencies found by our DG algorithm but are not in the rules for our simu-
lator (red edges), such as 304=-366 and 272=-415. These dependencies indicate
some relations among courses unknown and unexpected to administrators but
are performed by students. Educators and administrators may want to consider
to add these new found prerequisites to the curriculum in the future if these are
indicative of good overall performance in terms of learning objectives.

"~'& &, :AV ; /i'/ Vi)
SEEEAL SN Y
e NN LN

BT N
AT

Fig.5. Left: The DG of courses with edge colours representing discovery sources
(green=imposed and confirmed; blue=expected but not found; red=new discovered).
Right: The paths of successful students filtered from the 1500 training students with
the weight of edges representing the number of students.

14 R. Wang and O. R. Zaiane

Figure 5 (Right) shows the paths of successful students (GPA above 3.8)
filtered from the 1500 training students with the weight of edges representing
the number of students. The thick edges mean many successful students have
gone through these paths and they should be considered when trying to improve
the curriculum. All in all, the benefits of these findings can be considerable when
sequences of courses are taken into account.

7 Conclusions and Future Work

We built a course recommender system to assist students choose suitable courses
in order to improve their performance. This recommender is based on three dif-
ferent methods yet all three are related to the sequence of taken course. We
considered conformance checking of process mining as a first approach, rec-
ommending courses to a student that successful students, who have a similar
a course path, have taken. We have also suggested a new approach based on
dependency graphs modeling deep prerequisite relationships, by recommending
courses whose prerequisites are finished. We also advocated a third method based
on sequential pattern mining discovering frequent sequential course patterns of
successful students. Finally, we combined all the approaches in a comprehensive
method and proposed ranking methods to favour reducing the program length.

We conduct several experiments to evaluate our course recommender systems
and to find the best recommendation approach. All three approaches can improve
students performance in different scales. The best recommendation method is
based on the dependency graph, and the number of recommended courses ac-
cepted by students have a positive correlation with the performance. Moreover,
the course recommender system we build can speed up students’ graduation if set
properly, and provide some useful insights for educators and course counselors.

References

1. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. Springer, 1998.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 11th International
Conference on Data Engineering, pages 3—-14. IEEE, 1995.

3. R. Burke. Hybrid web recommender systems. In The adaptive web, pages 377—408.
Springer, 2007.

4. D. Cummins, K. Yacef, and I. Koprinska. A sequence based recommender system
for learning resources. Australian Journal of Intelligent Information Processing
Systems, 9(2):49-57, 2006.

5. E. Garcia, C. Romero, S. Ventura, and C. De Castro. An architecture for making
recommendations to courseware authors using association rule mining and col-
laborative filtering. User Modeling and User-Adapted Interaction, 19(1-2):99-132,
2009.

6. K. I. Ghauth and N. A. Abdullah. Learning materials recommendation using good
learners ratings and content-based filtering. Educational technology research and
development, 58(6):711-727, 2010.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Sequence-based Course Recommender System 15

C. W. Giinther and W. M. van der Aalst. Fuzzy mining-adaptive process sim-
plification based on multi-perspective metrics. In Business Process Management,
pages 328—-343. Springer, 2007.

J. Luo, F. Dong, J. Cao, and A. Song. A context-aware personalized resource
recommendation for pervasive learning. Cluster Computing, 13(2):213-239, 2010.
N. Manouselis, H. Drachsler, R. Vuorikari, H. Hummel, and R. Koper. Recom-
mender systems in technology enhanced learning. In Recommender systems hand-
book, pages 387-415. Springer, 2011.

M. P. O’Mahony and B. Smyth. A recommender system for on-line course enrol-
ment: an initial study. In Proceedings of the 2007 ACM conference on Recommender
systems, pages 133-136. ACM, 2007.

M. Pechenizkiy, N. Trcka, P. De Bra, and P. Toledo. Currim: Curriculum mining.
In International Conference on Educational data Mining, pages 216-217, 2012.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In Proc. 17th International Conference on Data Engineering. IEEE, 2001.

J. L. Peterson. Petri net theory and the modeling of systems, volume 132. Prentice-
hall Englewood Cliffs (NJ), 1981.

F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems hand-
book. Springer, 2011.

C. Romero, S. Ventura, M. Pechenizkiy, and R. S. Baker. Handbook of educational
data mining. CRC Press, 2010.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference
on World Wide Web, pages 285-295. ACM, 2001.

T. Y. Tang and G. McCalla. Smart recommendation for an evolving e-learning
system. In Workshop on Technologies for Electronic Documents for Supporting
Learning, AIED, 2003.

N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe, and L. Schmidt-Thieme. Rec-
ommender system for predicting student performance. Procedia Computer Science,
1(2):2811-2819, 2010.

N. Trcka and M. Pechenizkiy. From local patterns to global models: Towards
domain driven educational process mining. In 9th International Conference on
Intelligent Systems Design and Applications (ISDA), pages 1114-1119. IEEE, 2009.
W. M. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes, volume 136. Springer, 2011.

W. M. van der Aalst, A. Weijters, and L. Maruster. Workflow mining: Discover-
ing process models from event logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128-1142, 2004.

R. Wang. Sequence based approaches to course recommender systems. Master’s
thesis, University of Alberta, March 2017.

A. Weijters, W. M. van der Aalst, and A. A. De Medeiros. Process mining with
the heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep.
WP, 166:1-34, 2006.

O. R. Zaiane. Building a recommender agent for e-learning systems. In Proceedings
International Conference on Computers in Education, pages 55-59. IEEE, 2002.

