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Abstract— Finding patterns of interaction and predicting
the future structure of networks has many important applica-
tions, such as recommendation systems and customer targeting.
Community structure of social networks may undergo different
temporal events and transitions. In this paper, we propose a
framework to predict the occurrence of different events and
transition for communities in dynamic social networks. Our
framework incorporates key features related to a community –
its structure, history, and influential members, and automatically
detects the most predictive features for each event and transition.
Our experiments on real world datasets confirms that the evolu-
tion of communities can be predicted with a very high accuracy,
while we further observe that the most significant features vary
for the predictability of each event and transition.

I. INTRODUCTION AND BACKGROUND

A social network shows the structure of relationships be-
tween individuals, where the relationships are usually defined
based on some type of interaction, hence are intrinsically
temporal and changing over time; examples are friendships
between people, co-authorships between scholars, email in-
teractions between employees within an organization, etc.
Modeling a dynamic network enables the study of its structure
over time, the detection of how the network evolves, and
ultimately the prediction of the future structure of the network.

Finding patterns of interaction and predicting the future
structure of networks has many applications, such as in viral
marketing [1], revenue maximization [2], and social influence
[3]. It can help decision makers setup profitable marketing
strategies in advance. However, very little work has been
done on why dynamic networks experience specific evolution
transitions. Most of the previous research in this area focus
on either predicting the macroscopic graph structure, or the
microscopic properties from the point of view of a single node
or edge. In this paper, we consider predicting the trend of one
mesoscopic structure, called community. The community con-
sists of a group of nodes that are relatively densely connected
to each other but sparsely connected to other dense groups
in the network. Analysis of the evolution of communities is
related to important social phenomena such as homophily [4]
and influence [5].

In social networks, communities can be either explicit or
implicit. Explicit communities are built independently from
their members and are based on a set of rules. In this case,
people mostly join communities after the formation of the
communities. Employees of a company or students participat-
ing in a course are examples of two explicit communities.
On the other hand, the formation of implicit communities

heavily depends on their members and connections. In this
paper, we mainly focus on implicit communities and the setting
where at any given time, an individual can belong to only one
community. In this setting, which is called non-overlapping
communities or hard-partitioning, a community serves as the
main engagement platform for the individual. An individual
can move from one community and join another one, while the
amount of interactions between members of a community also
changes over time. Thus, a community experiences different
events and transitions during its life.

In this paper, we propose a machine learning model to
accurately predict the next event and transition of a community,
based on the relevant structural and temporal properties. The
first contribution of our model is leveraging the relation
between the behavior of individuals and the future of their
communities. Members of a community play an important role
in attracting new members and generally shaping the future
of their community. This fact is however overlooked by all
previous works. Our models further assume that individuals
who are more likely to undertake actions in their communities,
are more influential in the future trend of their community,
and therefore are principal factors in the predictive process.
For instance, in marketing strategy, considering the impact of
individuals on their communities is necessary for targeting the
right consumers to direct advertisement, and to maximize the
expectation of the total profit [6]. Moreover, unlike previous
works that only consider one aspect of the communities (i.e.
size, age, or event), our models provide a complete predictive
process for any transition and event that a community may
undergo, and at the same time, identify the most prominent
features for each community transition and event. The last
important distinction of our model is that our events and
transitions do not have to taken place in consecutive snapshots.
A community may not necessarily be observed at consecutive
snapshots, while it may be missing from one or more inter-
mediate steps. Hence, our model predicts the next stage of
a community either in the exact next snapshot or any later
snapshot.

Before describing our method, we need to first review few
notations from [7]. A dynamic social network is modelled as
a sequence of graphs {G1, G2, ..., Gn}, where Gi = (Vi, Ei)
denotes the graph at snapshot i, which contains Vi individuals
and Ei interactions. The set Ci = {C1

i , C
2
i , ..., C

ni
i } represents

ni communities detected at snapshot i, where each community
Cp

i ∈ Ci is also represented by a graph (V p
i , E

p
i ). We consider

two communities from different snapshots similar if the ratio
of their mutual members exceeds a threshold, more formally:
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Based on this notion of similarity, changes that occur for a
community are defined as: form, dissolve, split, merge, or
survive. Note that, the events and transitions formulation pro-
posed in [7], track the changes of communities over the entire
observation time, rather than only between two consecutive
snapshots. Moreover, the instances of the same community at
different time-frames are considered as one meta community,
formally defined as:

Meta Community: Given a set of snapshots 1, 2 . . . n, a
meta community is a sequence of communities M =
{Cp1

t1 , C
p2

t2 , ..., C
pm

tm } such that

(a) 1 ≤ t1 < t2 < ... < tm ≤ n,
(b) ∀ ti, t1 < ti ≤ tm ∃ tj < ti : sim(C

pj

tj , C
pi

ti ) > 0

II. PROBLEM FORMULATION

In predicting the trend of a community using predictive
models, a response variable is a property related to community
which can quantify a particular change in a community over
time. A feature is any property that can influence one of the
response variables. Thus, the first step is to select appropriate
features from the properties related to entities and communi-
ties, as well as deciding on the response variables. Then, we
can model the relationship between each response variable and
one or more features, which can be used later to predict the
most probable changes that may occur for a community.

A. Community Transitions and Events as Response Variables

In the case of implicit communities, where the formation
of communities heavily depends on their members and con-
nections, an entity may leave its current community and join
another community, due to the shifts of their interests or due to
certain external events. Thus, when a community survives into
next snapshot, it may also experience different transitions. It
may expand if the number of its members increases, or shrinks
if the number of its members decreases. Moreover, members
of a survived community may change their engagement level,
making the community more cohesive, or loose.

Based on these transitions and the events [7], we quantify
the changes that may occur for a community as follows:
survive{true, false}, merge{true, false}, split{true, false},
size{expand, shrink}, and cohesion{cohesive, loose}. All
these events and transitions are binary which constitute the
response variables in our predictive model. Since size and
cohesion transitions only defined for a survival community, we
propose a multistage cascading technique to detect these two
transitions. First, we predict the survival, then the detection of
these transitions is followed. These response variables are not
mutually exclusive and may occur together at the same time,
where different features may trigger them. Hence, we learn
separate models to predict each of them.

Here, we consider the cohesion of a community as how
closely its members interact with each other relative to outside
of the community. More formally:

Cohesion: Cohesion of a community Cp
i at snapshot i is:
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where |OEp
i | is the set of outer edges of community Cp

i .

B. Properties of Community as Features

To predict the next stage of a community, we consider three
main classes of features: properties of its influential members,
properties of the community itself, and temporal changes of
these properties. These features are summarized in Table I, and
are explained in detail in the following.

1) Properties of its influential members: The evolution of
network is usually analyzed by considering all members and
their properties. However, communities are often led by a
smaller set of individuals, who have considerable influence
over other members, and shape the fate of their community.
To identify the influential nodes in a community we use the
role leader defined in the role mining framework proposed
by Abnar [8]. The leaders of a community are defined as the
outstanding individuals in terms of centrality or importance
in that community. To detect the leaders of a community, the
probability distribution function (pdf) of closeness centrality
scores for all the nodes in each community is computed. As
Abnar [8] found out, this pdf is close to a normal distribution,
and therefore, the upper threshold of µ+ 2σ 1 can be used to
distinguish the leaders. For these detected leaders, we consider
two structural features, i.e. their degree and closeness centrality
scores. Since a community may have more than one leader, we
take the average degree and closeness centrality scores of the
detected leaders. We also consider the ratio of the leaders to
the community size as a separate feature for the community.
Similarly, we consider the ratio of outermosts in a community
as another feature. Where Outermosts are defined as the small
set of least significant individuals in the community [8] 2.

2) Structural properties of the community itself: To quan-
tify the structural properties of a community we consider its
size (number of nodes), cohesion (Equation 2), density, and
clustering coefficient. The density, and clustering coefficient
of a community Cp

i are defined as:

Density: The ratio of edges to the maximum possible edges:

density(Cp
i ) =

2|Ep
i |

|V p
i |(|V

p
i | − 1)

(3)

Clustering coefficient: The ratio of edges between neigh-
bours of a nodes to the maximum possible edges between

1according to the properties of a normal distribution, almost 95% of the
population lies in the interval [µ− 2σ, µ+2σ], where µ and σ are mean and
standard deviation of this distribution.

2Similar to leaders, from the pdf of the closeness centrality scores, we use
µ− 2σ as the lower threshold to identify outermosts



them. More formally, clustering coefficient of node v is:

clustering-coeff(v) =
|{(u,w)|(v, u), (v, w), (u,w) ∈ E}|
|{(u,w)|(v, u), (v, w) ∈ E}|

The clustering coefficient of a community is then defined as
the mean of clustering coefficient of all its members:

clustering-coeff(Cp
i ) =

∑
v∈Cp

i
clustering-coeff(v)

|Cp
i |

(4)

Similar to the clustering coefficient, we also consider the
average and variance of the centrality scores of all members
as separate features.

3) Temporal changes of features: We consider the current
rate of change in each property of a community as an additional
feature. More specifically, the difference between properties of
community Cp

i and properties of its previous instance, i.e. Cq
j ,

are considered as features. We also consider the events and
transitions that occurred for community Cq

j , since there could
be an auto-correlation.

4) Contextual attributes as features: For the datasets con-
taining text, we consider two more features: stable topics,
and stable topics of leaders. Here, we represent topics with
the most frequent keywords3. We expect that the changes in
the topics discussed within a community or by its influential
members affect its future.

III. COMMUNITY EVOLUTION PREDICTION

Based on our problem formulation, the prediction of our
events and transitions becomes a typical machine learning task,
for which we use logistic regression and different classification
methods. The only exception is that the size and cohesion tran-
sitions only occur for a community that survives. Thus, in order
to predict these two response variables (size{expand, shrink},
and cohesion{cohesive, loose}), we propose a two-stage cas-
cade predictive model, where the information collected from
the output of a first stage is used as additional information for
the second stage in the cascade. The first stage predicts the
survive response variable (survive{true, false}), then only in
a case of true predicted value, the size and cohesion transitions
should be predicted. The procedure to predict the cohesion, and
size transition can be summed up as follows:

Two-stage cascade predictive model:

1: Predict the survival of a community using the survive
predictive model. If the predicted value for survive is
true, go to Stage 2, otherwise, community does not
have any transitions.

2: Predict the size and cohesion transitions using their
respective predictive models.

Each of the five different response variables is defined as
a binary categorical variable. Thus, we adopt a logistic regres-
sion for each response variable using the features in Table I

3KEA [9] is applied to produce a list of the keywords discussed by each
entity. Then, the topics for each node is defined as its 10 most frequent
keywords extracted by KEA. The topics of a community is then 10 most
frequent keywords discussed by its members.

as the predictors. Then, in order to select the most significant
feature set, we apply forward stepwise additive regression [10],
where LogitBoost with simple regression functions is used for
fitting the logistic models, and attribute selection.

Beside the logistic regression, we also adopt the most
well-known binary classifier methods to predict each response
variable: Naı̈ve Bayes classifier, Bagging classifier, Decision
Table classifier, Decision Stump classifier, J48 Decision tree,
Bayesian Networks classifier, Simple CART classifier, Support
Vector Machine (SVM) classifier, and Neural network classi-
fier4. Using all the features provided in Table I may not lead
to the highest accuracy due to over-fitting, and redundant or
irrelevant features. Therefore, we apply a wrapper method to
select the appropriate feature sets for each binary classifier.
The wrapper method uses a classifier to estimate the score
of different features based on the error rate of that classifier.
The wrapper method is computationally intensive and has to
be applied for each binary classifier separately, however we
decided to use it since it provides the best performing feature
set for the chosen classifier.

IV. CASE STUDIES

In this section, we present the performance analysis of our
predictive models on two real world dynamic social networks:
the Enron email dataset and the DBLP dataset. The Enron
email dataset contains emails exchanged between employees
of the Enron Corporation. We study the year 2001, the year
the company declared bankruptcy, and consider a total of
210 nodes, with each month being one snapshot. For the
DBLP dataset, the co-authorship network related to the field of
database and data mining from year 2001 to 2010 is extracted.
This dataset contains a total of 19461 authors, where the
snapshot is defined to be one year.

In these experiments, we apply the computationally effec-
tive local community mining algorithm [12] to produce sets
of disjoint communities for each snapshot. Furthermore, we
incorporate the extraction of the topics for the entities and
the discovered communities. KEA [9] is applied to produce
a list of the keywords discussed in the email messages or
used in the paper titles. Then, the topic for each entity and
community is defined as its 10 most frequent keywords. To
detect events and transitions, our previously proposed MODEC
framework [7] is applied on the set of communities mined
during the observation time. Note that, MODEC not only
detect events and transitions between consecutive snapshots,
but also between any arbitrary snapshots.

Given the feature set, and the response variables of Table
I, we develop a 10-fold cross-validation framework in which
the communities with their response variables and features
are randomly partitioned into 10 equal size subsamples. Then,
9 subsamples are used as training data, while the remaining
subsample is retained as the validation data for testing the
predictive model. We repeat the cross-validation process 10
times and average the 10 results from the folds to produce a
single estimation.

In most of the experiments presented in the following,
the two labels of the underlying response variable are not

4The WEKA Data Mining implementation of the classifiers is used [11].



TABLE I. PROBLEM FORMULATION: FEATURES AND RESPONSE VARIABLES RELATED TO A COMMUNITY

Category Feature Description Domain

Influential Member ClosenessLeaders average of closeness centrality of leaders (0, 1]
DegreeLeaders average of degree centrality of leaders (0, 1]
LeadersRatio ratio of leaders (0, 1]
OutermostsRatio ratio of outermosts [0, 1]

Community

Density ratio of edges to maximum possible edges (Equation3) (0, 1]
ClusteringCoefficient ratio of edges between neighbours of a nodes to maximum possible edges (Equation4) (0, 1]
NodesNumber number of nodes [2,∞)
Cohesion ratio of members interact with each other to outside of the community (Equation 2) (0,∞)
AverageCloseness average of closeness centrality scores (0, 1]
VarianceCloseness variance of closeness centrality scores [0, 1]
AverageDegree average of degree centrality scores (0, 1]
VarianceDegree variance of degree centrality scores [0, 1]

Temporal

∆ClosenessLeaders difference between average of closeness centrality of leaders (0, 1]
∆DegreeLeaders difference between average of degree centrality of leaders (0, 1]
∆LeadersRatio difference between ratio of leaders [0, 1]
∆OutermostsRatio difference between ratio of outermosts [0, 1]
∆Density difference between density [0, 1]
∆ClusteringCoefficient difference between clustering coefficient [0, 1]
∆AverageCloseness difference between average of closeness centrality scores [0, 1]
∆VarianceCloseness difference between variance of closeness centrality scores [0, 1]
∆AverageDegree difference between average of degree centrality scores [0, 1]
∆VarianceDegree difference between variance of degree centrality scores [0, 1]
JoinNodesRatio percentage of nodes joining to this community [0, 1]
LeftNodesRatio percentage of nodes leaving this community [0, 1]
Similarity similarity between community and its previous instance (Equation 1) [k, 1]
LifeSpan number of snapshots between this community and the first instance of the same community [1, n]
PreviousSurvive survive event occurred for previous instance of the community {true, false}
PreviousMerge merge event occurred for previous instance of the community {true, false}
PreviousSplit split event occurred for previous instance of the community {true, false}
PreviousSizeTransition size transition occurred for previous instance of the community {expand, shrink}
PreviousCohesionTransition cohesion transition occurred for previous instance of the community {cohesive, loose}
StableTopics stable topics between community and its previous instance {true, false}
StableLeaderTopics stable topics between leaders of community and leaders of its previous instance {true, false}

Response variable

survive survive event occurred for the community {true, false}
merge merge event occurred for the community {true, false}
split split event occurred for the community {true, false}
size size transition occurred for the community {expand, shrink}
cohesion cohesion transition occurred for the community {cohesive, loose}

balanced. Thus, to prevent over fitting and balance the two
class labels, we use SMOTE (synthetic minority oversam-
pling technique) [13] when the number of instances are low.
Whereas, in the case of having high number of instances
or having a huge difference between the number of the two
labels, the undersampling technique5, is applied to prevent the
overfitting.

A. Results on Enron Email Dataset

To predict any of the three events, all the communities de-
tected at the twelve snapshots with their features and response
variables are used to build predictive models for each event.
In total we have 113 community instances, where | survive =
true | = 61, | split = true | = 27, and |merge = true | = 55.
We first select the influential features for each binary classifier
using the wrapper method. Then, each binary classifier is
trained with its selected features. Table II shows the top five
accurate predictive models for the survive event. As shown in
Table II, the accuracy of all models is about 70%. However,
a closer look at the falsely classified instances reveals that
they are mostly communities of very small size, i.e. less than
3 members, while their meta community has the length of
only one snapshot i.e. the community forms at a snapshot and
dissolves immediately. Therefore, we remove these community
instances (of a size less than three, and a meta community of

5The spreadsubsample undersampling technique available in WEKA is used.
6RSurvive represents survive prediction on the reduced community in-

stances (communities with more than 3 members, where their meta community
last more than one snapshot).

TABLE II. ENRON: SURVIVE EVENT PREDICTION

Event Predictive Model Accuracy Precision Recall F-measure

Survive

SVM 70 0.7 0.7 0.7
Bagging 70 0.7 0.7 0.7
Decision Stump 68.333 0.686 0.683 0.683
Naı̈ve Bayes 67.5 0.675 0.675 0.675
Neural Network 66.666 0.667 0.667 0.667

RSurvive6

Decision Table 90.566 0.911 0.90 0.905
Neural Network 89 0.841 0.84 0.839
SVM 87.735 0.879 0.877 0.877
BayesNet 85.849 0.862 0.858 0.858
Logistic Regression 83.962 0.84 0.84 0.84

length one), and retrain the model. This reduction is intuitive,
since a community that consists of only two members does
not really represent a group of nodes, and hence is not a real
community. The reduction procedure results in 75 community
instances with | survive = true | = 52, where we see at least
20% increase in the accuracy of models, with accuracy as high
as 91%. Our results indicate that the survival of a community
can be accurately predicted based on the features we defined
and extracted, while using a typical general purpose classifier.

We observe similar performance in predicting the other two
events. The top five predicted models for split, and merge
are shown in Table III. We can see that our models predict
the split of a community (into other communities in a next
snapshot) with about 86% accuracy, regardless of the classifier
used. Where, the merge event (of a community with another
communities in a next snapshot) can be predicted with an
accuracy as high as 77%.

The size, and cohesion transitions are preceded by the



TABLE III. ENRON: MERGE AND SPLIT EVENTS PREDICTION

Event Predictive Model Accuracy Precision Recall F-measure

Split

SVM 85.965 0.86 0.86 0.86
BayesNet 85.965 0.861 0.86 0.859
Neural Network 84.21 0.843 0.842 0.842
SimpleCART 83.626 0.837 0.836 0.836
Decision Table 83.041 0.831 0.83 0.83

Merge

Naı̈ve Bayes 77.333 0.779 0.773 0.773
Neural Network 74.667 0.747 0.747 0.747
Logistic Regression 72 0.72 0.72 0.72
SVM 70.667 0.713 0.707 0.705
BayesNet 68 0.736 0.68 0.662

prediction of a survive event. Based on our results in Table II,
we choose the Decision Table classifier to detect the survive
events. Then, communities with predicted survive = true us-
ing this classifier are used to build the models for the size, and
cohesion transitions. The Decision Table classifier predicts 46
community instances with survive = true, for which we have
| size = expand | = 29, and | cohesion = cohesive | = 20. The
top five predictive models for the size, and cohesion transitions
are shown in Table IV. We can see that these size and cohesion
transitions of a community7, can be predicted with a high
accuracy of 74%, and 78% respectively.

TABLE IV. ENRON: COMMUNITY TRANSITIONS PREDICTION

Transition Predictive Model Accuracy Precision Recall F-measure

Size

J48 Decision tree 73.684 0.745 0.737 0.735
Neural Network 70.175 0.716 0.702 0.698
SVM 68.421 0.689 0.684 0.683
Decision Stump 68.421 0.686 0.684 0.684
Decision Table 68.421 0.686 0.684 0.684

Cohesion

Decision Table 78.431 0.796 0.784 0.783
BayesNet 78.431 0.796 0.784 0.783
Decision Stump 78.431 0.796 0.784 0.783
J48 Decision tree 74.509 0.749 0.745 0.745
Bagging 70.588 0.706 0.706 0.706

B. Results on DBLP Database

We perform similar analysis on the ten snapshots of the
DBLP dataset. In total, there are 7675 community instances,
where | survive = true | = 1813, | split = true | = 166,
and |merge = true | = 306. As shown in Table V, the best
accuracy for the survive predictive models is 62%. Similar to
Enorn, the false predicted instances are all small size commu-
nities with less than 3 members, where their meta community
also has a length one. With the same reasoning as before, we
remove these instances. Here, the reduction procedure results
in 1949 community instances with | survive = true | = 1122.
The accuracy of the top five predictive models on these reduced
instances is reported in Table V. Our results confirm the trend
we have observed on the Enron dataset, i.e. the survival of a
community can be accurately predicted based on our set of
features (with a 84% accuracy).

The results for split, and merge are shown in Table
VI. Our results indicate that, with 81% accuracy, we can
predict the split of a community into other communities in
a next snapshot. However, the best prediction accuracy for
merge of a community with another community is 63%. The
false predicted instances on merge do not have any clear
characteristics to explain how we can get better accuracy. Thus,
on DBLP, unlike survival and split, merging of communities

7with at least three members and its meta community lasts more than one
snapshot

TABLE V. DBLP: SURVIVE EVENT PREDICTION

Event Predictive Model Accuracy Precision Recall F-measure

Survive

BayesNet 61.969 0.62 0.62 0.62
Naı̈ve Bayes 61.583 0.618 0.616 0.614
Logistic Regression 61.555 0.618 0.616 0.614
Decision Table 60.921 0.609 0.609 0.609
Bagging 60.811 0.609 0.608 0.607

RSurvive

Decision Table 83.857 0.878 0.839 0.834
Decision Stump 83.857 0.878 0.839 0.834
Neural Network 83.434 0.869 0.834 0.83
BayesNet 82.164 0.845 0.822 0.819
SimpleCART 81.257 0.855 0.813 0.807

TABLE VI. DBLP: MERGE AND SPLIT EVENTS PREDICTION

Event Predictive Model Accuracy Precision Recall F-measure

Split

Naı̈ve Bayes 80.723 0.808 0.807 0.807
SVM 80.723 0.807 0.807 0.807
BayesNet 79.819 0.798 0.798 0.798
Decision Stump 79.217 0.792 0.792 0.792
Bagging 78.916 0.789 0.789 0.789

Merge

Naı̈ve Bayes 62.582 0.626 0.626 0.625
SimpleCART 61.928 0.62 0.619 0.619
Decision Table 60.621 0.607 0.606 0.605
Logistic Regression 59.967 0.602 0.6 0.597
Bagging 59.967 0.6 0.6 0.6

with each other can not be accurately predicted based on the
present set of features, where the best prediction accuracy
is only 63%. This could be partly explained by a variety of
external factors that can affect such event, for example meeting
at a conference, moving between institutions, etc.

As shown in Table V, applying the Decision Table classifier
produces the highest accuracy for the survive event on reduced
community instances. Thus, only the communities with pre-
dicted survive = true using the Decision Table classifier are
used to build the predictive models for the size, and cohesion.
In this case, we have 560 community instances, where | size =
expand | = 379, and | cohesion = cohesive | = 440. The top
five predictive models on the size, and cohesion transitions
are shown in Table VII respectively. We see that the size and
cohesion transitions of a community can be predicted with a
80%, and 92% accuracy respectively.

TABLE VII. DBLP: COMMUNITY TRANSITIONS PREDICTION

Transition Predictive Model Accuracy Precision Recall F-measure

Size

BayesNet 79.622 0.797 0.796 0.796
Naı̈ve Bayes 79.217 0.792 0.792 0.792
Decision Table 78.812 0.789 0.788 0.788
Bagging 78.543 0.785 0.785 0.785
Neural Network 78.003 0.786 0.78 0.778

Cohesion

Naı̈ve Bayes 92.089 0.921 0.921 0.921
Neural Network 91.499 0.918 0.915 0.915
Bagging 91.499 0.916 0.915 0.915
Decision Stump 91.145 0.925 0.911 0.911
SVM 91.145 0.915 0.911 0.911

C. Correlation between Features

Figure 1 shows the correlation between different features
of Table I. The correlation is measured as the absolute value
of Spearman’s rank correlation coefficient between different
features. In order to better visualize the correlations, the rows
and coloumns of the heat-map are clustered to create blocks
of highly correlated features. For instance, Density, Clustering-
Coefficient, AverageDegree, and AverageCloseness features are
correlated as expected. Note that, their corresponding temporal
features are also correlated with each other. However, as we
can see in these heat-maps, most of the defined features are not



Fig. 1. Absolute value of Spearman’s rank correlation coefficient between
different features. Top: Enron, Bottom: DBLP. These correlation matrices
depict that the overlap between features used in our predictive models is low.

highly correlated in neither Enron nor DBLP. This behaviour
is desirable, since we define features to capture different
properties of a community and its temporal changes. In other
words, the low correlation/ overlap between features confirms
that the features used in our predictive models are distinctive.

D. Ensemble Analysis

Any of the predictive models we introduced, selects a
different set of features. We consider a feature is more promi-
nent for a specific event or transition, if it is selected by the
majority of the models trained for predicting that event or
transition. Figure 2 shows the number of times that each feature
is selected by our 10 predictive models for predicting each
event. Here, to better visualize the selection of the features,
only the rows of the heat-map is clustered to create blocks
of similarly colored cells. The Pearson correlation between

Fig. 2. Enron: The number of times a feature is selected by the 10 predictive
models (left), and the correlation between each feature and response variable
(right).

different features and the response variables is also depicted
in Figure 2. Here, to calculate correlation between features
and cohesion, and size transitions, we consider their cohesive,
and expand values respectively. Furthermore, to simplify the
comparison between this heat-map and the one showing the
selection of the features, the rows are ordered correspondingly.
Similar to the number of times that a feature is selected, the
correlation between each feature and response variables differs
for different response variables. Moreover, the correlation of a
feature is positively correlated with the number of times it is
selected.

We can infer interesting patterns form this ensemble anal-
ysis. For example ClusteringCoefficient and Cohesion are
prominent positive factors on the survival of Enron com-
munities, while StableLeaderTopics and LeftNodesRatio are
important negative factors on survival. The importance of these
factors on survive is intuitive, for instance, a community with
high clustering coefficient has strong relationship between its
members and will not dissolve easily. On the other hand,
loosing members (i.e. high LeftNodesRatio) is a good sign
of an unstable community which is not going to survive. In
case of split, LeadersRatio and NodesNumber are positively
important, i.e. a community with more leaders or a bigger
size community is more probable to split. Whereas, the neg-
ative effect of VarianceCloseness and Cohesion shows that a
community with high variance of closeness scores and high
cohesion is immune to split. The merge of a community
is positively influenced by StableTopics, talking about the
same topics over the time leads the community to merge
with another communities. On the other hand, Similarity has
negative influence on merge, i.e. a community with almost
stable members is not probable to merge with others.

Similarly, the ensemble analysis for DBLP is depicted in
Figure 3. Again, interesting patterns can be inferred from these
two heat-maps. For instance, Density is a positive factor in
size transition, whereas, NodesNumber is negatively important,
i.e. a dense community attract new members and expands,
while a bigger size community has less chance to attract
new members. We also observe that Cohesion is a prominent
negative feature on the cohesion transition of a community in



Fig. 3. DBLP: The number of times a feature is selected by the 10 predictive
models (left), and the correlation between each feature and response variable
(right).

Fig. 4. Comparison of prominent features on the ENRON (left) and DBLP
(right) dataset. Only features that are selected more than five times by at least
one event or transition are included.

a later snapshot. This importance indicates that on DBLP, a
less cohesive community has a better potential to form new
connections and become more cohesive.

Comparing the features importance between these two
datasets, we see that these patterns although similar, depend on
the underlying dynamic social network. This finding demon-
strates the importance of the feature selection step for the
prediction task.

Figure 4 provides the comparison between prominent fea-
tures selected for the two dataset. Here, we only include the
features that are selected more than five times by at least
one (event or transition) predictive models. The diagrams
show that, for instance on DBLP, JoinNodesRatio is influential
for all the five events and transitions. On the other hand,
StableLeaderTopics is influential in only size, and cohesion
prediction.

V. RELATED WORK

The works on evolution of dynamic networks can be
classified into three categories: microscopic, macroscopic and
mesoscopic approaches. The microscopic approaches focus on
the evolution at the level of nodes and edges, such as the study

of preferential attachment phenomenon in [14], [15] or the
modelling of the node arrival and edge creations in [16]. On
the other end, the macroscopic perspectives study the evolution
of the high level properties of networks, for instance, the study
of the evolution of degree distribution, clustering coefficient,
and degree correlation of online social networks in [17], or the
study of shrinking diameter of social networks in [18].

Different models are proposed to predict microscopic or
macroscopic trends of dynamic networks. Notably, Yang et al.
[19] develop a prediction model to analyze the loss of a user in
an online social network, by extracting a set of attributes and
using a decision tree classifier. Huang and Lee [20], propose a
model to select the most influential activity features, and then
incorporate these features to predict the growth or shrinkage
of the network. Based on their findings, on the Facebook data,
the number of active members and the number of edges is
the most informative factors to predict the network evolution.
Whereas, on the Citeseer data, it is observed that the number
of collaborations between members is the main indicator to
explain the evolving patterns of this co-authorship network.

A less explored perspective is provided by the mesoscopic
approaches, which predict the trend of networks based on
an intermediate structure of the networks, i.e. community
structure. The evolution of communities from the standpoint
of growth is modeled in [21]–[23], where an individual in
a community never leaves the community, i.e. a community
in these studies always grows. For instance, Backstrom et al.
[21] apply a decision-tree approach by incorporating a wide
range of structural features to predict whether and entity will
join a community. Given a community, they also predict its
growth over a fixed time period. Patil et al. [24] build a
classifier to predict if a community is going to grow or is likely
to remain stable over a period of time. However, they only
consider explicit communities, for instance, conferences are
considered as communities for the DBLP dataset. Kairam et al.
[25] identify two types of growth for a community. Diffusion
growth is when a community attracts new members through
ties to existing members; whereas, in non-diffusion growth,
individuals with no prior ties become members themselves.
Their analysis is then focused on the differences in the
processes which govern diffusion and non-diffusion growth.
Their finding shows that if a community is highly clustered,
it is more likely to experience diffusion growth. However,
communities that grow more from diffusion tend to reach
smaller final sizes. They also generated a set of models
which use a community’s structural features and past growth
experience to predict its eventual size and lifespan.

The works mentioned above consider explicit communities,
and can only be applied in the settings where users join mul-
tiple communities and probably never quit these communities.
Thus, the size of a community will monotonically increase over
the time. However, in most networks, an individual may quit
his/her current community and join another one, in case he/she
is not satisfied with that community. Hence, the communities
in these dynamic networks usually have fluctuating members
and could grow and shrink over the time.

In the case of implicit communities, Goldberg et al. [26],
[27] develop a linear regression system to predict the lifespan
of a community based on structural features extracted from
the early stage of the community. They find that community’s



properties such as size, intensity and stability are the most
important features to predict its lifespan. The most relevant
work to ours is of Brodka et al. [28], [29], where they develop
different classifiers to predict the events that may occur for
a community (similarly defined as continue, merge, split, and
dissolve). Their model is trained mainly based on the history
of events happened to the community in preceding snapshots.
Therefore, events can only be predicted for communities that
their past three instances is available. While these instances
also have to be in consecutive snapshots. Another drawback
of their approach is that they consider events to be mutually
exclusive and only predict the dominating event. In our model,
however, the future of a community is predicted based on an
extensive set of features on its current members, their roles and
their relations, where we also leverage temporal information
(up to one time-frame backward), if the previous instances of
the community are available. Also using the notion of meta-
community, we are able to track multiple events and transitions
that a community undergoes in non-consecutive snapshots.

VI. CONCLUSION

We investigated the evolution of dynamic networks, at the
level of their community structure. We defined and extracted
an extensive set of relevant role-based, structural, contextual
and temporal features, to represent the the structural and non-
structural properties of communities and the behaviour of
their (influential) members. Our experimental results on real-
world datasets (Enron and DBLP) shows that the defined
features are mainly non-overlapping, and distinctive. Based
on which, the events and transitions of communities can be
accurately predicted. Our predictive process also identifies
the most prominent features for each community transition
and event. We confirm the relation between the behavior of
individuals, specially the influential members of a community,
and the future of the community they belong to, and also
observe many interesting, yet expected, evolution patterns, e.g.
recruiting new members by a community is a good indicator
of its survival.
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