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Abstract

Despite the overwhelming amounts of multimedia data re-
cently generated and the significance of such data, very few
people have systematically investigated multimedia data
mining. With our previous studies on content-based re-
trieval of visual artifacts, we study in this paper the methods
for mining content-based associations with recurrent items
and with spatial relationships from large visual data reposi-
tories. A progressive resolution refinement approach is pro-
posed in which frequent item-sets at rough resolution levels
are mined, and progressively, finer resolutions are mined
only on the candidate frequent item-sets derived from min-
ing rough resolution levels. Such a multi-resolution mining
strategy substantially reduces the overall data mining cost
without loss of the quality and completeness of the results.

1. Introduction.

Mining knowledge from large databases has been the fo-
cus of many recent studies and applications, however, most
of these have emphasized corporate data typically in al-
phanumeric databases. Little research has been conducted
on mining multimedia data. Nevertheless, a few interest-
ing studies and successful applications involving multime-
dia data mining have been reported. For example, [12] de-
scribes the CONQUEST system that combines satellite data
with geophysical data to discover patterns in global climate
change. The SKICAT system [4] integrates techniques for
image processing and data classification in order to identify
“sky objects” captured in a very large satellite picture set.

Multimedia data has also been a focal point of our
research, and we have integrated image processing with
database mining techniques, and developed a multimedia
data mining system prototypeMultiMediaMiner [15, 14].
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The system uses a data cube structure for mining charac-
teristic, association, and classification rules. However, the
system does not use image content to the extent we wanted.
The presence of colours and textures in images was used,
but not localization of these visual features, their spatial re-
lationships, their motion in time (for video), etc.

In this paper we extend the concept of content-based
multimedia association rules using feature localization, and
introduce the concept of progressive refinement in the dis-
covery of patterns in images from coarse to fine resolution.
Two algorithms are developed for mining multimedia asso-
ciation rules with recurrent items and recurrent spatial rela-
tionships. Our major contribution in this paper is the devel-
opment of a progressive multi-resolution refinement method
for mining multimedia associations with recurrent objects
and for mining spatial relationships between visual descrip-
tors in large image collections.

The remainder of the paper is organized as follows. In
Section 2, we introduce the concept of multimedia associa-
tion rules. In sections 3 and 4, algorithms for mining multi-
media multiset associations and associations with spatial re-
lationships are presented. Also in Section 4, the progressive
multi-resolution refinement approach is proposed. Section
5 briefly reports our performance study. Finally, we conduct
a short discussion and conclude our study.

2. Multimedia association rules.

2.1. Feature localization in multimedia data.

Feature localization is a new concept of rough image
segmentation introduced in [7]. Image segmentation is a
process which segments an image into disjoint regions. A
region consists of a set of pixels that share certain prop-
erties, e.g., similar colour, similar texture, etc. The tra-
ditional segmentation algorithms assume (1) regions are
mostlyconnected; (2) regions aredisjoint (Ri \ Rj = ;,
for i 6= j); and (3) segmentation iscomplete in that any
pixel will be assigned to some region, and the union of all



Figure 1. Example of colour localization for a
multi-level resolution image.

regions is the entire image ([mk=1Rk = I). Segmentation
does not give a good representation of image content. A
more useful and attainable process is feature localization
that identifies features by their locality and proximity.

As defined in [7, 13], alocaleLx is a local enclosure (or
locality) of featurex. Lx has an envelopeLx which is a set
of tiles to represent the locality ofLx, and some geometric
parameters:massM(Lx) (i.e. the number of pixels inLx
that actually have featurex), centroidC(Lx) (i.e. the cen-
troid of the pixels inLx), variance�2(Lx) (i.e. the variance
of the Cartesian distance from pixels inLx to the centroid),
and shape parameters for the locale, etc. A tile is a square
area in an image. Its size is arbitrarily chosen as16 � 16,
but could be bigger or smaller. The tile is the building-unit
for envelopes. A tile is ‘red’ if a sufficient number of pixels
within the tile are red. It follows that a tile can be both ‘red’
and ‘blue’ if some of its pixels are red and some are blue.
While a pixel is the unit for image segmentation, a tile is the
unit for feature localization. Thus, feature localization is a
kind of rough segmentation where overlap is possible and
completeness is not necessary. The right columns of Figure
1 show an example of feature localization; each image illus-
trates a different locale for the same image. We also define
minimum bounding circles around locales for topological
relationship approximation.

In this study, we investigate efficient methods for mining
associations in image databases after image segmentation
by feature localization.

2.2. Multimedia associations with recurrent items.

Association rule mining has been studied extensively in
data mining research community recently [1, 6, 11, 8, 10].
Many algorithms and approaches have been proposed for
mining many types of association rules in large databases.
However, typically, the databases relied upon are alphanu-
merical and often transaction-based. While some of the al-

gorithms proposed can be applied to visual data, to a certain
extent, after transforming the data into a form that can be
processed, new algorithms should be better suited. Indeed,
visual data has some peculiarities proper to images. For
example, some visual features can occur multiple times in
an image, and the repetition of the feature may carry more
information than the existence of the feature itself.

Previous definitions and usage of association rules have
limitations vis-à-vis mining association rules from an image
and video collection. An image, for instance, can indeed be
modelled by a transaction with items being the visual fea-
tures in the image, and image ID being the transaction ID.
However, items in the antecedent of the rule repeating in
the consequent can be an interesting factor in image anal-
ysis applications. Moreover, recurrent objects in images
are very common, and important as argued above. In ad-
dition, one may be interested in finding associations with a
coarse-to-fine search strategy. In other words, association
rules can first be found at a low resolution, then progres-
sively confirmed at higher resolutions. Thus, we can rapidly
approximate multimedia association rules at a coarse level,
then eliminate false positives by verifying them at a higher
resolution. Moreover, the approximation of a locale by a
minimum bounding circle can speed up the discovery of as-
sociation rules at a high conceptual level for spatial topo-
logical concepts such as closeness, overlap or containment.
The precision of the rules discovered are improved by elim-
inating the minimum bounding circle and using the locale
envelope with higher image resolutions. The main advan-
tages of this approach is that: (1) the extraction of locale
features can be conducted at multiple (often reduced) reso-
lutions to save processing time; (2) locale intrinsic features
can be defined at appropriate resolutions to avoid too much
detail/noise or insufficient detail. Dominant colours are well
preserved at a low resolution, but some texture information
can be lost when the resolution is too low. The coarse-to-
fine search strategy is important for large image and video
databases even when the features are extracted and analyzed
at pre-processing time.

The previous studies of association mining assume that
the items are unique inI, hence the definition ofsup-
port. For example, with the well-knownApriori algorithm
[1], duplicates are never considered when thek-item can-
didate setsCk are formed. In multimedia mining, we
would like to mine rules such as “2 blue circles )
high texture density”. This means that the sole existence
of blue does not necessarily imply the consequent. That is,
two occurrences have to co-exist in the image for the rule
to be valid. In addition, the definition ofstrong rulesbased
on large supportis quite inadequate in some imaging ap-
plications. Features appearing very frequently (i.e., having
a large support) in some medical images, for example, can
be normal phenomenon, and uninteresting to users. A low



support, on the other hand, could generate item-sets with
extremely rare items. While these rare items could either be
just meaningless noise or sought for rare phenomenon (in
medicine applications for example), they fall in the realm
of outlier analysis and are out of the scope of this study. We
believe that a range for an acceptable support should be in-
troduced for such applications. Hence the definition of the
sufficiently strong association rule(Def. 2.3).

The above discussion leads to the introduction of two no-
tions ofsupport. Traditionally, the support is the percentage
of transactions that contain an item or verify a condition.
It measures how interesting and frequent an item or predi-
cate is in a data set. In our model, images are represented
by transactions, but identical objects can repeat in an im-
age, therefore, the second notion ofsupportreflects a count
of objects rather than a count of transactions (or images).
It is the user’s choice to select an appropriate definition of
support, depending upon the application. This new notion
of support is calledobject-based support, which is distin-
guished from the “traditional”transaction-based support.
Also, an association rule that allows items to repeat in the
rule is calledassociation rule with recurrent items.

Definition 2.1 A multimedia association rule with recur-
rent items is a rule that associates visual object features in
images and video frames, and is of the form:
�P1 ^�P2 ^ : : :^ Pn ! ÆQ1 ^�Q2 ^ : : :^�Qm (c%)
wherec% is the confidence of the rule, one or more predi-
catesPi; i 2 [1::n] and Qj ; j 2 [1::m] are predicates in-
stantiated to topological, visual, kinematics, or other de-
scriptors of images, and�; �; ; Æ; � and � are integers
quantifying the occurrence of the object feature or item.�P
is true if and only ifP has� occurrences. 2

The predicatesPi andQj in the rules are not just topo-
logical, visual or kinematics descriptors, but can also be
other descriptors such as picture size, video duration, or just
related keywords. In a medical imaging system, for exam-
ple, the physician’s diagnosis attached to the image can be
extremely beneficial in an association rule.

Definition 2.2 Thesupport of a predicateP in a set of im-
agesD denoted by�(P=D) is the percentage of objects in
all images inD that verifyP at a given conceptual level.
Theconfidenceof a multimedia association ruleP ! Q
is the ratio �(P ^ Q=D) versus�(P=D), which is the
probability thatQ is verified by objects in images inD
that verifyP at the same conceptual level. Such support
is calledobject-based supportin contrast totransaction-
based support. 2

Definition 2.3 A patternp is sufficiently frequent in a set
D at a level` if the support ofp is no less than its corre-
sponding minimum support threshold�0, and no more than
its corresponding maximum support threshold�0. 2

Definition 2.4 A multimedia association ruleP ! Q in
a set of imagesD is sufficiently strong in D if P andQ
are sufficiently frequent (P andQ 2 [�0::�0]) and the con-
fidence ofP ! Q is greater than'0. 2

Note that thestrengthof a rule and the values of�0 and
�0 depend upon the concept level in which the predicates
are applied. All attributes such as colour, texture, motion di-
rection, etc., are defined on concept hierarchies. Depending
on the concept level selected by the user, and the resolution
level of the images,�0 and�0 can be higher or lower.

Given an imageI as a transaction and localesLi (or ob-
jects) as the items in the imageI , we envision two types of
multimedia association rules: association rules based only
on atomic visual features that we callcontent-based mul-
timedia association rules with recurrent visual descrip-
tors, and association rules with spatial relationships that we
call multimedia association rules with recurrent spatial
relationships. What we call atomic features are descriptors
such as colour, texture, etc. They are attributes of an object
defined along concept hierarchies. Association rules based
on atomic visual features are similar to multi-dimensional,
multi-level association rules, emphasizing the presence of
values of some attributes at given concept levels.

The second type of multimedia association rules uses the
topological relationships between locales (v-next-tofor ver-
tical closeness,h-next-tofor horizontal closeness, overlap,
and include). Each predicateP describes the relationship
between two objectsOa andOb, such asOverlap(Oa; Ob),
each object being multi-dimensional. Binary predicates in-
volve a join of more than one relation. Moreover, spatial
predicates on the same object values can be recurrent.

3. Frequent item-sets with recurrent items.

Mining a large collection of multimedia artifacts can be
very costly. The idea of progressive resolution refinement,
presented in Section 4.1, is to mine the artifacts at different
resolution levels and reduce the search space at each level.
The knowledge extraction at each resolution level is similar
but the result at each resolution level is used to filter out un-
necessary features and images to reduce the data collection
for the next levels.

We will discuss in the following subsection the algorithm
for enumerating sufficiently frequent item-sets with recur-
rent items at a given resolution level.

3.1. A näıve approach.

To illustrate our algorithms and test their performance,
we have generated synthetic images with random locales
and random features. Tables 1 and 2 are filled with the vi-
sual feature descriptors of the images, and with the spatial
relationships between objects in the images.



Image ID Object ID Colour Texture Mass Shape Motion ...

I1 O(1;1) Colour1 Texture1 Size1 Shape1 Direction1 ...

I1 O(1;2) ... ... ... ... ... ...

...
I2 O(2;1) ... ... ... ... ... ...

...
In O(n;�) ...

Table 1. Relation with Visual Atomic Features.

Image ID Object ID V-Next-to H-Next-to Overlap Include

I1 O(1;1) fO(1;3); O(1;5)g fO(1;2)gg fO(1;7)g fg

I1 O(1;2) f...g f...g f...g f...g

In O(n;�) ...

Table 2. Relation with Spatial Relationships.

If the Apriori algorithm [1] is to be used to discover fre-
quent item-sets in such data sets as the image collections, it
would miss all item-sets with recurrent items. A na¨ıve way
to find all frequent item-sets with recurrent items would be
to first find all frequent 1-item-sets, check how often they
might re-occur in an image (maximum occurrence), and
then, for each k-item-set, combine these frequent 1-item-
sets in sets ofk elements where elements can be repeated up
to their respective maximum occurrence possible. The cal-
culation of the support would filter out the infrequent ones.

This na¨ıve algorithm, which guarantees to find all fre-
quent item-sets with recurrent items, could be improved by
replacingF1 as the starting set for enumerating candidates
of all k-item-sets by a set composed ofF1 and all item-sets
with single items twinned to their maximum capacity, such
asfx�g; fx�; x�g; fx�; x�; x�g, etc., where the number of
x� is smaller or equal toM [x�].

In the next sub-section we present our algorithmMax-
Occur, a more efficient algorithm for discovering multime-
dia association rules with recurrent items.

3.2. MaxOccur algorithm.

A method for enumerating sufficiently strong multime-
dia association rules that are based on recurrent atomic vi-
sual features is presented in this section. We will give an
abstract example and then present the algorithm. To sim-
plify our discussion, we will use a one-dimension, one-
level problem where images are transactions of objects and
the same objects can repeat. While objects are multi-
dimensional, in this discussion we will treat them as items
with only one dimension and no concept hierarchy. The al-
gorithm can be extrapolated to the multi-level association
rules discovery algorithm and the multi-dimensional issue
can also be solved by using a data cube.

Example 3.1 Let us consider the images represented in Ta-
ble 3(top) by a set of transactionsD1. Each image is a set of

objects that can repeat. At this point, we ignore the descrip-
tors of the objects for simplicity. To determine the support
of each object, a first scan of the database is done and each
time a distinct object appears, its counter is incremented.
At the same time, a second counter keeps track of the max-
imum appearances of the same object in an image. Table
3(bottom) shows the result of the counting.C1 contains all
unique objects with their support andM contains the max-
imum number of times a given object occurs in an image.
For simplicity, the support is expressed in an absolute value.
Let the minimum support�0 be 2 and the maximum support
�0 be 5. Frequent k item-sets can be found using�0 by filter-
ing the non-frequent k-1 item-sets. However, pruning with
�0 to find sufficiently frequent iten-sets should be left to the
end of the process since too frequent k-1 item-sets may end-
up frequent enough at k level. Table 4(top) showsF1, the
list of frequent 1 item-sets. Notice thatO2 andO4 were
not eliminated even if they appear too often in the data set
(�(O2=D1) > �0 and�(O4=D1) > �0). GivenF1, we can
filter out fromD1 all irrelevant objects, and all transactions
that do not contain frequent objects present inF1. Table
4(bottom) showsD2, the image transactions with only the
interesting objects. The generation of the candidate 2 item-
sets is done by joiningF1 with itself to create all possible
pairs with frequent objects. It is similar to theapriori-genin
[1] except that the information stored inM , regarding repli-
cation of objects in images, is used to generate new pairs of
the same objects that occur in a transaction more than once.
The 2 item-setsfO2; O2g andfO4; O4g in Table 5(left) are
produced that way. The candidate 3 item-set listC3 is pro-
duced by joiningF2 elements and eliminating 3 item-sets
that contain 2 item-sets not recognized as frequent (i.e. not
in F2). The counters inM are also used to generate item-
sets such asfO2; O2; O2g in Table 6(left). After filtering
the infrequent 3 item-sets,F3 is produced. The candidate
4 item-sets is produced the same way by joining the fre-
quent 3-item sets and pruning the unnecessary ones. For
instancefO2; O2; O3; O4g andfO2; O3; O4; O4g are elim-
inated since, respectively,fO2; O2; O3g andfO3; O4; O4g
are not inF3. Finally, since no 5 item-set can be induced,
the result is allFi without their item-sets that have a sup-
port higher than the maximum support�0. Given the suf-
ficiently frequent item-sets, sufficiently strong association
rules could be found by generating all rules from a k-item-
set of the form “(k-p) item-set! p item-set” with 0< k <
p and such that the confidence of the rule is higher than a
given confidence threshold. With a confidence threshold set
to 100%, only these rules are induced:
(1) fO4; O4g ! fO2; O2g[100%]; (2) fO2; O4; O4g !
fO2g[100%]; (3) fO3; O4g ! fO2g[100%]; (4) fO3g !
fO2; O4g[100%]; (5) fO2; O2g ! fO4g[100%]; (6)
fO4; O4g ! fO2g[100%]; (7) fO3g ! fO2g[100%]; (8)
fO3g ! fO4g[100%].



A simple scan of these rules can count replicated objects
and produce the following rules:

2 O4 ! 2 O2 [100%]; O2^ 2 O4 ! O2 [100%]; O3 ^
O4 ! O2 [100%]; O3 ! O2 ^ O4 [100%]; 2 O2 !
O4 [100%]; 2 O4 ! O2 [100%]; O3 ! O2 [100%]; and
O3 ! O4 [100%]. Notice that the rule “O4 ! O2” is not
confident enough, while “2O4 ! 2 O2” or “2 O4 ! O2”
are 100% reliable. This would not have been true had the
support been based on the number of images rather than on
the number of objects.

Image ID Objects

I1 fO2; O2; O2; O4; O5g
I2 fO2; O2; O4; O4g
I3 fO2; O3; O4g
I4 fO6; O7g
I5 fO1; O2; O2; O3; O4; O4g

Object Support Max. Occurrence

fO1g 1 1
fO2g 8 3
fO3g 2 1
fO4g 6 2
fO5g 1 1
fO6g 1 1
fO7g 1 1

Table 3. Top: Image transaction table D1. Bot-
tom: C1 and M tables.

Object Support Max. Occurrence

fO2g 8 3
fO3g 2 1
fO4g 6 2

Image ID Sufficiently Frequent Objects

I1 fO2; O2; O2; O4g
I2 fO2; O2; O4; O4g
I3 fO2; O3; O4g
I4 fO2; O2; O3; O4; O4g

Table 4. Top: F1 and M tables. Bottom: Fil-
tered image transaction table D2.

2 item-sets Support

fO2; O3g 2
fO2; O4g 6
fO3; O4g 2

fO2; O2g 3
fO4; O4g 2

2 item-sets Support

fO2; O3g 2
fO2; O4g 6
fO3; O4g 2
fO2; O2g 3
fO4; O4g 2

Table 5. Candidate 2 item-sets C2 and suffi-
ciently frequent 2 item-sets F2.

The above example and discussion proceed to the fol-
lowing algorithm for mining content-based multimedia as-
sociation rules. Note that the supports used in the example
are absolute values for the sake of simplicity. Support for a
k-item-set should beCount k�item�set in DkP

8 transaction t
(
jtj

k
)

, where(jtjk ) are

3 item-sets Support

fO2; O3; O4g 2
fO2; O2; O3g 1
fO2; O2; O4g 3
fO2; O4; O4g 2
fO3; O4; O4g 1

fO2; O2; O2g 1

3 item-sets Support

fO2; O3; O4g 2
fO2; O2; O4g 3
fO2; O4; O4g 2

Table 6. Candidate 3 item-sets C3 and suffi-
ciently frequent 3 item-sets F3.

4 item-sets Support

fO2; O2; O4; O4g 2

4 item-sets Support

fO2; O2; O4; O4g 2

Table 7. Candidate 4 item-sets C4 and suffi-
ciently frequent 4 item-sets F4.

k-combinations of objects in transactiont without redun-
dancy of unique objects.

Algorithm 3.1 (MaxOccur) Find sufficiently frequent
item-sets for enumerating content-based multimedia asso-
ciation rules in image collections.

Input: (i) D1 a set of transactions representing images,
with items being the visual and non-visual descrip-
tors of the images; (ii) a set of concept hierarchies for
each attribute; (iii) the minimum and maximum sup-
port thresholds�0 and�0 for each conceptual level.

Output: Sufficiently frequent item-sets with repetitions.

Method: The pseudo-code for generating sufficiently fre-
quent item-sets is as follows:

begin
(1) C1  fCandidate 1 item-sets and theirsupportg
(2) F1  fSufficiently frequent 1 item-sets and theirsupportg
(3) M  fMaximum occurrence in an image offrequent 1 item-setsg
(4) Count # of k-item-sets (total[1::k])
(5) for (i  2;Fi�1 6= ;; i  i + 1) dof
(6) Ci  (Fi�1 ./ Fi�1)[

fy �X j X 2 Fi�1 ^ y 2 F1 ^ Count(y;X) < (M [y]� 1)g
(7) Ci  Ci � fc j (i � 1) item-set ofc =2 Fi�1g
(8) Di  FilterTable(Di�1; Fi�1)
(9) foreach imageI inDi dof
(10) foreachc in Ci dof
(11) c:support c:support + Count(c; I)
(12) g
(13) g
(14) Fi  fc 2 Ci j

c:support

total i itemset
> �0g

(15) g
(16) Result 

S
i
fc 2 Fi j i > 1 ^ c:support < �0g

end

Line 1, 2, 3 and 4 are done in the same initial scan.M
contains the maximum number of times an object appears in
the same image. This counter is used later to generate po-
tential k-item-sets. The total number of k-item-sets is used
for the calculation of the item-set support in line 14.

In line 6 and 7, the candidate item-sets are generated by
joining (i-1) frequent item-sets and the use ofM to gen-
erate repetitive objects (M [y] > 1). The pruning process



(line 7) eliminates infrequent item-sets based on theapriori
property.

Line 8 filters the transactions inD to minimize the data
set scanning time.

In line 14, only the frequent item-sets that are higher than
the minimum support�0 are kept. It is only at the end of the
loop (line 16) that maximum support�0 is used to eliminate
item-sets that appear too frequently.

The calculation of the support for one item-set is based
on the occurrence of the item-set in the images. Line 11 cu-
mulates this count. A particular precaution has to be taken
when counting appearances of k-item-set in an image, es-
pecially that objects and features can be repeated. A simple
k-permutation (Ckn = n!

n!(n�k)! wheren =j t j) can lead to
miscalculations. The correct calculation of the repetitions
of these item-sets in the transaction requires caution in or-
der not to calculate occurrences more than necessary [13].

4. Mining multimedia association rules with
spatial relationships.

While the previously presented content-based multime-
dia association rules exclusively use visual atomic features
such as in Table 1, multimedia association rules with spa-
tial relationships in addition use the extended relation with
spatial predicates such as in Table 2. A method for min-
ing multimedia association rules with spatial relationships
is introduced in this section. The method uses MaxOccur
after minimizing predicates. Since spatial predicates (next-
to, overlap, etc.) have two arguments, the strategy is to find
frequent one and two-item-sets, combine the spatial pred-
icates with only these frequent item-sets and consider the
result as the candidate 1-item-sets of the multimedia asso-
ciation rules with spatial relationship. MaxOccur is then
used to find the k-item-sets of frequent spatial predicates.
This strategy is based on the following property:for a spa-
tial predicate P (X;Y ) to be sufficiently frequent,X and
Y have to be sufficiently frequent, and the 2-item-set
fX;Y g has to be sufficiently frequent. This can be done
at any conceptual level, starting from the highest concept in
the hierarchy to the lowest ones. The na¨ıve method would
be to combine all pairs of object attributes at a given con-
ceptual level and join them with all spatial predicates to
derive potential 1-item-sets. This, however, would gener-
ate a very large number of candidates and even candidates
that do not exist in the data set. Our modus operandi is to
lessen the candidate set to the minimum before computing
the frequent spatial predicate k-item-sets. To simplify the
discussion, we will analyze an abstract example with one
conceptual level and one dimension (shape) as follows:

Example 4.1 Considering the three images in Figure 2
with one dimensional objects, we would like to find as-

sociation rules involving the spatial relationships between
the objects in the images. For simplicity, we are only con-
sidering the dimension shape at a given conceptual level,
but the same can be applied for other dimensions such as
colour, texture, etc. with related concept hierarchies. Find-
ing sufficiently strong association rules with spatial rela-
tionships essentially consists of finding the sufficiently fre-
quent conjunctions of spatial predicates. To do so, given
the transaction-based minimum support threshold�0 = 3, a
first scan of the image set reveals only three frequent items:
;4 and , each occurring in the three images and ap-
pearing at maximum twice in an image. Considering only
these three frequent items, a second scan of the data set
reveals the frequent pairs of items. The first table in Ta-
bles 8 indicates the support of each of these pairs. Only
three of them are frequent enough and are coupled with
the spatial predicates. Notice that if we added a wildcard
� to the frequent items with a de facto support equal to
�0, we could combine it with the frequent pairs of items,
and thus generate association rules with wildcard attributes.
Since we only have four spatial predicates (H-next-to, V-
next-to, overlap, and include), this gives us up to 12 pos-
sibilities. However, a scan of the data set would reveal
that only 7 combinations are possible, and at the same time
would also compute their support and maximum occurrence
in an image. The second table in Tables 8 shows the re-
sult of this scan, which is the set of frequent 1-item-set
found in the first step of the MaxOccur. MaxOccur can
then be used to discover the following frequent k-item-
sets: Overlap(;4), H-Next-to(;4); Overlap(;4),
H-Next-to(; ); H-Next-to(;4), H-Next-to(; );
Overlap(;4), H-Next-to(;4), H-Next-to(; ), and
all the derived association rules such as: H-Next-to(; )
^ H-Next-to(4; ) ! Overlap(;4) [100%]

Pairs of Objects Frequency

f;g 1
f;4g 3
f; g 3
f4;4g 2
f4; g 3
f ; g 1

1-item-set Frequency Max Occurrence

Overlap(;4) 3 2
H-Next-to(;4) 1 1
H-Next-to(; ) 3 2
H-Next-to(4; ) 3 2
H-Next-to( ; ) 1 1
V-Next-to(;4) 1 1
V-Next-to(4; ) 2 1

Table 8. Frequent pairs of objects and Fre-
quent spatial predicates.

The above example and discussion proceed to the fol-
lowing algorithm for mining multimedia association rules
with spatial relationships.
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Figure 2. Examples of images with objects.

Algorithm 4.1 (MM-Spatial ) Find sufficiently frequent
item-sets for enumerating multimedia association rules with
spatial relationships in image collections.

Input: (i) D1 a set of image descriptors with spatial re-
lationships being the visual and non visual descrip-
tors of the images; (ii) a set of concept hierarchies for
each attribute; (iii) the minimum and maximum sup-
port thresholds�0 and�0 for each conceptual level.

Output: Sufficiently frequent spatial predicate conjunc-
tions.

Method. The pseudo-code for generating sufficiently fre-
quent item-sets with spatial relationships is as follows:

begin
(1) P1  fFrequent atomic itemsg
(2) P2  fFrequent pairs inP1 � P1g
(3) C1  fP2� fSpatial predicate setg and theirsupportg
(4) F1  fFrequent 1 item-sets fromC1g
(5) line 3 to line 16 ofMaxOccur
end

In the process of discovering multimedia association
rules with recurrent spatial relationships, we have assumed
the existence of enumerated spatial relationships such as in
Table 2. These relationships are simply processed by com-
paring the centroid of each locale as well as the radius of the
locale’s shape approximated to a circle (minimum bound-
ing circle). The centroids and the radii of locales are suf-
ficient to rapidly and efficiently give a good approximation
of spatial relationships between objects in an image such as
closeness, overlap and inclusion. There exist other methods
for determining more precise spatial relationships. How-
ever, these methods to be effective can be computationally
costly. The coarse-to-fine strategy of the PRR algorithm
simplifies the process by de facto eliminating in each round
the images and objects not leading to interesting rules. Ide-
ally, we would preprocess once the detailed spatial relation-
ships at a fine granularity and lower granularity, and have
a table such as Table 2 provided to the mining module. If
this computation is not preprocessed before the discovery
of association rules, another step could be added to the loop
of PRR (Algorithm 4.2) to determine rough spatial relation-
ships at the current resolution level and discover association
rules with these approximate spatial relationships; then, the

next rounds would refine the spatial relationships for only
the frequent item-sets discovered. Notice that removing the
minimum bounding circles at any resolution level like in
Figure 3, assists in removing false positives from enumer-
ated frequent spatial relationships.

4.1. A progressive refinement methodology.

For effective and efficient discovery of patterns in mul-
timedia databases, we chose a multi-resolution strategy by
first finding patterns at a low (i.e. rough) resolution and
persevering the search at a higher (i.e. finer) resolution
with only the data selected in lower resolutions. This as-
sumes the preservation of the patterns to be discovered in
coarse resolutions. The basic idea of progressive refine-
ment is to quickly approximate patterns at a coarse level,
then eliminate false positives by verifying them at a higher
resolution. The refinement, however, has to be done care-
fully without inadvertently eliminating false negatives. For
instance, by knowing how visual features are preserved in
coarse resolutions, some visual features can be tested at low
resolution such as colours, others like edge density could
be tested at an intermediate level, while fine texture should
only be tested at a high resolution. Spatial relationships
are not completely preserved. The topological character-
istics are not fully retained, making the topological fea-
tures change from one resolution level to the other. We
discuss later the preservation and the potential changes of
topological features when the image resolution is altered or
improved. The refinement of the image resolution can be
done in many ways. We distinguish three different refine-
ments: (i) a cleansing at the pixel level (raster refinement).
The pixel based is the traditional definition of resolution for
images as in the left column of Figure 1. This refinement
has many resolution levels; (ii) an approximation with min-
imum bounding circles. This refinement has only two res-
olution levels: one that approximates locales to their mini-
mum bounding circles, and one that excludes the minimum
bounding circles; and (iii) a zooming by changing the size
of local tiles (tile shrinking). This refinement has five or
more levels, with tile sizes32� 32; 16� 16; 8� 8; 4� 4,
and2� 2.

The following is the general algorithm of the progressive
resolution refinement for multimedia data mining.

Algorithm 4.2 (PRR) Progressive Resolution Refinement
for Mining Multimedia Association Rules.

Input: (i) D a set of transactions representing images at
different resolution levels, with items being the visual
and non visual descriptors of the images; (ii) a set of
concept hierarchies for each attribute; (iii) the mini-
mum and maximum support thresholds�0 and�0 for
each conceptual level; (iv) the maximum number of
resolution level available.



Output: Sufficiently frequent item-sets with recurrent
items at different resolution levelsRi.

Method. The progressive resolution refinement mining of
multimedia association rules proceeds as follows:

begin
(1) i  0 /* Lowest resolution level */
(2) D0  D
(3) while (i < maximum resolution level) dof /* Coarse to fine discovery */
(4) Ri  fr j r is a sufficiently frequent item-set at resolution leveli (inDi)g
(5) i i + 1 /* Move to higher resolution level */
(6) Di  Filter(Di�1; Ri�1)
(7) g
end

The algorithm is a loop with two considerable steps: (a)
finding frequent item-sets at a given resolution level; (b) re-
ducing the size of the data set by filtering out images and
infrequent objects to prepare the next round at a higher res-
olution. The move from one level to another does not have
to be one at a time (Line 5). It is sometimes desirable to
skip some resolution levels and jump to a higher one. Note
that depending upon the application and the user’s needs,
it is not always necessary to do all the resolution levels
and iterate to the highest resolution (Line 3). Line 4 calls
the algorithm for enumerating frequent item-sets with re-
current items at a given resolution level. This can either be
for frequent visual features or for frequent spatial relation-
ships. We will discuss in the coming subsections the dis-
covery procedure for these two types of association rules.
Filter(Di�1; Ri�1) in line 6 removes images that do not
contain the frequent item-sets discovered at the resolution
level i � 1 and filters out the infrequent objects in the re-
maining images. This reduces the set of images and visual
features to be processed at higher resolution. The filtering,
however, does not consider the re-occurrence of items since
the low resolution can affect the numbering of visual fea-
tures. Figure 3, for example, shows one blue locale at a
coarse level that becomes clearly two distinct blue locales
at a finer resolution. This shows that only the presence and
absence of a feature should be considered in the filtering
process, and not the frequency of appearance of the features
in the image. Figure 3 also illustrates an example depict-
ing the relativity of some spatial relationships, like overlap,
based on the resolution used for defining locales. While
two locales may appear overlapping because their minimum
bounding circles intersect, considered at the locale envelope
level, they do not. Moreover, reducing the size of the tile’s
edge form16 � 16, as in our experiments, progressively
down to pixel by pixel, another level of coarse-to-fine re-
finement can be performed.

In [2, 3] Max Egenhofer presents a formal derivation
for eight spatial relationships namelydisjoint, inside, con-
tains, equals, meets, covered by, covers,andoverlap. The
relationships are formulated for areas based on intersections
of the boundary of an areaA denoted@A, the interior of the

Coarse
Resolution

Resolution

Feature Localization Minimum Bounding
Circles

Finer

Figure 3. Relativity of visual feature concepts
at different resolution levels.

area denotedAÆ , and the exterior of the area denotedA�.
In our study, we use the eight relationships as described by
Egenhofer, but we use only boundary (@A) and interior(AÆ)
to define them since the boundary and interior suffice to dis-
tinguish between the different spatial relationships in our
case.

Spatial relationships between locales are non determin-
istic from one resolution level to a finer resolution level. In
other words, a given topological configuration between two
areas can become a different topological configuration at a
higher resolution level. Fortunately, the possible changes in
topological configurations from one resolution level to the
other are limited. In [13], we demonstrate the restrictions
in these changes which allow a reasonable and effective fil-
tering procedure for the progressive resolution refinement
process.

Figure 4 shows the possible topology change from one
resolution level to the other for the resolution refinement
with exclusion of minimum bounding circles. Formal
demonstrations and examples for the topology changes in
both cases of resolution refinement with exclusion of min-
imum bounding circles and of resolution refinement with
resizing of locale tiles can be found in [13].

5. Performance.

We have generated sets of synthetic images, each im-
age with up to 15 objects. The different sized image sets
produced were intended to demonstrate the scalability of
the algorithms and compare their performance. Since the
algorithm for mining multimedia association rules with re-
current spatial relationships uses theMaxOccur algorithm
after two extra scans of the data set, we will only show in
this section the performance ofMaxOccur. It is obvious
that the scalability of both algorithms are related. We im-
plemented the Apriori algorithm [1] and two versions of the
MaxOccur algorithm, as well as the na¨ıve algorithm pre-
sented earlier, in ANSIC on a Pentium PC 166Mhz with
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Figure 4. Topology and resolution increase
with minimum bounding circles.

64Mb of main memory. Since the Apriori algorithm uses
the number of transactions as support, and we wanted to
compare our algorithm with Apriori, we have implemented
MaxOccur and the na¨ıve with transaction based support
(MaxOccur1). The second version of MaxOccur (MaxOc-
cur2) used the object-based support as presented in Algo-
rithm 3.1. Table 9 shows the average execution times for the
four algorithms with different image set sizes and�0 = 0:05
for Apriori, “Naı̈ve” and MaxOccur1, and0:0035 for Max-
Occur2. The results are graphically illustrated in Figure 5.
Clearly, MaxOccur scales well with both versions treating
one thousand images in 1.3 seconds, on average, regard-
less of the size of the data set. The running time for fil-
tering the frequent item-sets with�0, the maximum support
threshold (line 16 of Algorithm 3.1), is negligible since it
is done in main memory once the frequent item-sets are
determined. Moreover, the calculation of the total num-
ber of items (line 4 of Algorithm 3.1) is done during the
first scan of the data set and has limited repercussion on
the algorithms’ execution time. The major difference be-
tween Apriori and MaxOccur is in ascertaining the candi-
date item-sets and counting their repeated occurrences in
the images. Obviously, MaxOccur discovers more frequent
item-sets. The na¨ıve algorithm also finds the same frequent
item-sets but is visibly capable of less performance in exe-
cution time. The left graphic in Figure 6 shows the average
number of frequent item-sets discovered with the three al-
gorithms: Apriori found on average 109 different frequent
k-item-sets, while MaxOccur1 and Na¨ıve found 148 on the
same data sets, and MaxOccur2 found 145 on average. The
discrepancy between MaxOccur1 and MaxOccur2 is basi-
cally due to the different definition of support. The price
we pay in performance loss with MaxOccur is gained by
more frequent item-sets and thus, more potentially useful
association rules with recurrent items discovered.

# of images Apriori Naı̈ve MaxOccur1 MaxOccur2

10K 6.43 70.91 13.62 13.68
25K 15.66 176.69 32.35 34.11
50K 30.54 359.38 66.07 67.44
75K 44.93 514.33 97.27 101.23
100K 60.75 716.01 130.12 137.81

Table 9. Average execution times in seconds
with different number of images.
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Figure 5. Scale up of the algorithms.

6. Discussion and conclusion.

We have introduced in this paper multimedia association
rules based on image content and spatial relationships be-
tween visual features in images using coarse to fine res-
olution approach and we have demonstrated the preserva-
tion and changes in topological features during resolution
refinement. We have put forth a Progressive Resolution Re-
finement approach for mining visual media at different res-
olution levels, and have presented two algorithms for the
discovery of content-based multimedia association rules.
These rules would be meaningful only in a homogeneous
image collection; a collection of semantically similar im-
ages or received from the same source channel.

Many improvements could still be added to the multime-
dia mining process to speed up the discovery or to refine or
generalize the discovered results.

� One major enhancement in the performance of the
multimedia association rule discovery algorithms is
the addition of some restrictions on the rules to be dis-
covered. Such restrictions could be given in ameta-
rule form. Meta-rule guided mining consists of dis-

# of images �0 = 0:25 0:20 0:15 0:10 0:05

10K 1.43 2.20 2.70 5.06 13.51
25K 2.80 4.78 6.31 11.20 32.35
50K 6.27 9.28 11.59 22.74 66.07
75K 8.24 13.57 17.69 33.94 97.27
100K 11.32 17.63 23.13 46.74 130.12

Table 10. Average execution time in seconds
of MaxOccur with different thresholds.
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Figure 6. Frequent item-sets found by the dif-
ferent algorithms.

covering rules that not only are frequent and confi-
dent, but also comply with the meta-rule template. For
example, with a meta-rule such as “H-Next-to(X;Y )
^ Colour(x, red) ^ Overlap(Y; Z) ! P (Y; Z)” one
need only to find frequent 3-item-sets of the formfH-
Next-to(red,Y ), Overlap(Y; �), P (Y; �)g whereY is
an attribute value andP a visual descriptor or spatial
relationship predicate. Obviously, such a filter would
greatly reduce the complexity of the search problem.
A method for exploiting meta-rules for mining multi-
level association rules is given in [5].

� We have approximated an object in an image to a lo-
cale which is an area with a consistent visual feature
such as colour. Objects in images and videos are ob-
viously more complex. In a recent paper [9], regions
and their signatures are used as objects in a similarity
retrieval system. A computationally efficient way to
identify distinct objects in images is however still to be
proposed. Automatically identifying real objects and
using spatial relationships between real objects would
reduce the number of rules discovered and make them
more significant for some multimedia applications.

� Object recognition (or identification) in image process-
ing and computer vision is a very active research field.
Accurately identifying an object in a video, for exam-
ple, as being an object in itself, is a very difficult task.
We believe that data mining techniques can help in this
perspective. Multimedia association rules with spatial
relationships using the motion vector of locales as a
conditional filter, can be used to discover whether lo-
cales moving together in a video sequence are part of
the same object with a high confidence.

� There are many application domains where multime-
dia association rules could be applied and should be
tested, such as global weather analysis and weather
forecast, medical imaging, solar surface activity un-
derstanding, etc. We are investigating the application

with Magnetic Resonance Imaging (MRI) to discover
associations between lesioned structures in the brain or
between lesions and pathological characteristics.

Further development and experiments with mining mul-
timedia data will be reported in the future.
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