
Clustering Spatial Data when Facing Physical Constraints

Osmar R. Zaı̈ane
University of Alberta, Canada

zaiane@cs.ualberta.ca

Chi-Hoon Lee
University of Alberta, Canada

chihoon@cs.ualberta.ca

Abstract

Clustering spatial data is a well-known problem that has
been extensively studied to find hidden patterns or mean-
ingful sub-groups and has many applications such as satel-
lite imagery, geographic information systems, medical im-
age analysis, etc. Although many methods have been pro-
posed in the literature, very few have considered constraints
such that physical obstacles and bridges linking clusters
may have significant consequences on the effectiveness of
the clustering. Taking into account these constraints during
the clustering process is costly, and the effective modeling of
the constraints is of paramount importance for good perfor-
mance. In this paper, we define the clustering problem in the
presence of constraints – obstacles and crossings – and in-
vestigate its efficiency and effectiveness for large databases.
In addition, we introduce a new approach to model these
constraints to prune the search space and reduce the num-
ber of polygons to test during clustering. The algorithm
DBCluC we present detects clusters of arbitrary shape and
is insensitive to noise and the input order. Its average run-
ning complexity is O(NlogN) where N is the number of data
objects.

1. Introduction

Recently, we are witnessing a resurgence of interest in
new clustering techniques in the data mining community,
and many effective and efficient methods have been pro-
posed in the machine learning and data mining literature
[7]. Those methods have focused on the performance in
terms of effectiveness and efficiency for large databases.
However, almost none of them have taken into account con-
straints that may be present in the data, or constraints on the
clustering. These constraints have significant influence on
the results of the clustering process of large spatial data. In
a GIS application studying the movement of pedestrians to
identify optimal bank machine placements, for example, the
presence of a highway hinders the movement of pedestrians
and should be considered as an obstacle, while a pedway

over this highway could be considered as a bridge. To the
best of our knowledge, only two clustering algorithms for
clustering spatial data in the presence of constraints have
been proposed very recently: COD-CLARANS [6] based
on a partitioning approach, and AUTOCLUST+ [2] based
on a graph partitioning approach. COD-CLARANS [6] and
AUTOCLUST+[2] propose algorithms to solve the prob-
lem of clustering in the presence of physical obstacles to
cross such as rivers, mountain ranges, or highways, etc. The
algorithm we propose, DBCluC (Density-Based Clustering
with Constraints, pronounced DB-clu-see), is based on DB-
SCAN [1] a density-based clustering algorithm that clearly
outperforms the effectiveness and efficiency of
CLARANS [5], the algorithm used for COD-CLARANS.
In this paper, we also introduce a new idea for modeling
constraints using simple polygons.

2. Modeling Constraints

DBSCAN, which is extended to DBCluC, is a clustering
algorithm with two parameters, Eps and MinPts, utiliz-
ing the density notion that involves correlation between a
data point and its neighbours [1]. In order for data points
to be grouped, there must be at least a minimum number of
points called MinPts in Eps− neighbourhood, NEps(p),
from a data point p, given a radius Eps. In DBSCAN,
the density concept is introduced by the notations: Di-
rectly density-reachable, Density-reachable, and Density-
connected. These concepts define “Cluster” and “Noise”.
The detailed figures and discussion are found in [1].

The following definitions introduce the spatial relation
between data objects and obstacles in a two dimension pla-
nar space before modeling obstacles represented by poly-
gons.

Definition 1. (Visibility) Let P(V, E) be a polygon with
V vertices and E edges. Given two data objects oi and oj ,
Visibility is the relation between oi and oj in two dimension
planar space, if an edge joining oi and oj is not intersected
by P. Given a database D of n data objects D={d1, d2, d3,
. . ., dn}, an edge l joining vertices di and dj where di, dj

∈ D, i6=j, and i and j ∈ [1..n], di is visible to dj , if l is not
intersected by any ek ∈E.

Definition 2. (Visible Space) Given a set D of n data ob-
jects with a polygon P (V, E), a visible space S is a space
that has a set D′ of data objects satisfying the following

(1) Space S is defined by three edges: the first edge(edges)
e∈E connects two minimal convex points vi, vj ∈V , the
second edge f is the extension of the line connecting vi and
its other adjacent point vk ∈V , and the third edge g is the
extension of the line connecting vj and its other adjacent
point vl ∈V .

(2) ∀ p, q ∈D′, p and q are visible from each other in S.
Thus, D′⊆D.

(3) S is not visible to any other visible space S ′.
Thus, S∩S′ =∅.

2.1. Obstacle Modeling

While we model obstacles with polygons, a polygon is
represented with a minimum set of line segments, called
obstruction lines, such that the definition of visibility (Def-
inition 1) is not compromised. This minimum set of lines
is smaller than the number of edges in the polygon. This
in turn reduces the search space. The obstruction lines in a
polygon depend upon the type of polygon: convex or con-
cave. Note that an obstacle creates a certain number of vis-
ible spaces along with the number of convex points. Before
we discuss the idea to convert a given polygon into a set of
primitive line segments (obstruction lines), we need to test
if a given polygon is convex or concave. For the purpose,
we have adopted a convexity test that determines a class of
polygon as well as a type of all points in the polygon. There
are two principle approaches to label a class of a point in a
polygon: Summation of external angles and Turning direc-
tion [4]. Since Turning direction approach is more efficent
than Summation of external angles approach, we adopt the
Turning direction apporach.

2.1.1 Polygon Reduction

In order to model a polygon with a set of primitive edges,
we have initially categorized the type of the polygon by the
convexity test we presented in the previous section. Once
we have labeled the type of a polygon as well as the type
of vertex for all vertices in a polygon, we construct a set of
primitive edges to maintain visible spaces (Definition 1). It
is clear that a convex polygon should have the same number
of visible spaces (Definition 2) as the number of vertices in
the convex polygon since each convex vertex blocks visibil-
ity against its adjacent visible spaces. We observe the fact
that two adjacent edges sharing a convex vertex in a poly-
gon are interchangeable with two edges such that one of

them obstructs visibility in a dimension between two adja-
cent visible spaces that are created by the convex vertex and
the other impedes visibility between two adjacent visible
spaces and the rest of visible spaces created by the polygon.
As a consequence, the initial polygon is to be represented
as a loss-less set of primitive edges with respect to visibil-
ity (Definition 1). The loss-less conversion of the Polygon
Reduction algorithm is proved in [4]. We introduce the fol-
lowing definition to model obstacles (polygons).

Definition 3. (An Obstruction line) Let P (V, E) be a
polygon with a set of V vertices and a set of E edges. An
obstruction line l is an edge whose two end vertices are two
convex points vi ∈ V and vm ∈ V, while it is interior to P and
not intersected with e ∈ E. An obstruction line of a convex
point v ∈ V from the polygon P obstructs in a dimension
the two visible spaces Aj and Ak created by two adjacent
segments of v.

The detailed discussion about Polygon Reduction Algo-
rithm is illustrated in [4]. Now, we define the concept of
“Cluster“ to extend from [1] since the problem this paper
investigates considers obstacles and formalize their con-
cept. The following notions are necessary to take into ac-
count disconnectivity constraints. Note that the definition
of “Noise” is equivalent to DBSCAN. The illustration of
examples of each notion is shown in [4].

Definition 4. (Directly obstacle free density-reachable)
A point p is directly obstacle free density-reachable from
a point q with respect to Eps, MinPts if

(1) p ∈ NEps(q)

(2) p is obstacle-free from q, where “obstacle-free“ denotes
that an edge joining p and q is not intersected by any obsta-
cle.

(3) |Nobstacle−free(q)| ≥ MinPts, where |Nobstacle−free(q)|
denotes the number of points that are obstacle-free from q
in the circle of radius Eps and centre q

Definition 5. (Obstacle free density-reachable) A point p
is obstacle free density-reachable from a point q with re-
spect to Eps and MinPts if there is a chain of points p1, ..,
pn, p1 = q, , pn = p such that pi+1 is directly obstacle free
density-reachable from pi.

Definition 6. (Obstacle free Density-connected) A point
p is obstacle free density-connected to a point q with respect
to Eps and MinPts, if there is a point o such that both p and
q are obstacle free density-reachable from o with respect to
Eps and MinPts.

Definition 7. (Cluster) Given a set D of n data objects
D={d1, d2, d3, . . ., dn} with respect to a set of obstacles, a
cluster is a set C of c data objects C={ c1, c2, c3, . . ., cc },

where C ⊆ D. Let D be a database of points. A cluster C
with respect to Eps and MinPts is a non-empty subset of D
satisfying the following conditions: Let i and j ∈ [1..n] such
that i 6= j.

(1) Maximality. ∀ di, dj if di ∈ C and dj is obstacle free
density-reachable from di with respect to Eps and MinPts,
then dj ∈ C.

(2) Connectivity. ∀ di, dj ∈ C, di is obstacle free density-
connected to dj with respect to Eps and MinPts.

2.2. Modeling Crossing

In this section, we present a modeling scheme of a con-
straint Crossing (Bridge) in a two dimension planar space.
Before formalizing a crossing that can connect data points
from different clusters, we need a modeling scheme to con-
sign connectivity functionality of a bridge as well as to con-
trol connectivity flow for a wide range of applications. For
this purpose, we introduce “Entry point” and “Entry edge”
notions. An Entry point is a point on the perimeter of the
polygon crossing when it is Eps-reachable given point p
with respect to Eps, where Eps − reachable of an Entry
point is any data point which is in an Eps-neighbourhood.
As a result p becomes reachable by any other point x Eps-
reachable from any other Entry point of the same crossing
with respect to Eps. In other words, given two different En-
try points, p1 and p2, at two extremities of a crossing; a
point a is Eps-reachable to p1 with respect to Eps; and a
point b is Eps-reachable to p2 with respect to Eps, a and b
are then connected by Definition “density-connected [1]”.
An Entry edge is an edge of a crossing polygon with a set
of Entry points starting from one endpoint of the edge to
the other separated by an interval value ie where ie ≤ Eps.
The descriptions of Entry points and Entry edges are amal-
gamated with the definition of crossings as follows.

Definition 8. (Crossing) A crossing (or bridge) is a set B
of m points generated from all Entry edges. By definition
any point bm ∈ B is reachable by all other points in B.

Before a bridge is modeled, the bridge B is denoted by
B(P, E), where P is a set of Entry points and a set of Entry
edges E. Thus a bridge “connects” objects such as clus-
ters or data points that are Eps− reachable from all Entry
points generated from the bridge. The Eps − reachable

are not affected by any obstacle entities. In other words,
crossing entities have a priority over obstacle entities, un-
less otherwise specified.

3. DBCluC Algorithm

Once we have modeled obstacles using the polygon re-
duction algorithm and modeled crossing constraints, DB-
CluC starts the clustering procedure from an arbitrary data

point. This is the advantage of DBCluC in that the perfor-
mance is not sensitive to an input order. Due to the arbitrary
selection of an initial starting point, DBCluC can consider
crossing constraints after or while clustering data points.
This enables DBCluC to be flexible in revising discovered
clusters. The clustering procedure in DBCluC is similar to
that of DBSCAN [1], with respect to the density notion.
Hence, all definitions introduced in Section 2 are extended
to DBCluC. Using the Polygon Reduction algorithm, DB-
CluC efficiently performs the clustering of data objects with
obstacles. In addition, DBCluC groups distant clusters with
crossing constraints, which maximize the density-reachable
by Entry edges and Entry points.

Input : Database, Crossings, and Obstacles
Output : A set of clusters

1 // While clustering, bridges are taken into account;
2 Start clustering from Entry points of crossings ;
3 for Remaining Data Points Point from Database do
4 if ExpandCluster(Database...) then
5 ClusterId = nextId(ClusterId);

endif
endfor

Algorithm 1: DBCluC

In Algorithm 1, crossing constraints are taken into ac-
count while clustering data objects. DBCluC maximally
expands a set of clusters such that all data points that are
reachable by crossings are grouped together. Note that DB-
CluC can also consider crossing constraints after clustering.
However, when it comes to dynamic evaluation of corre-
lations between data objects and constraints, the crossing
constraints must be processed in the course of clustering.
“Database” is a set of data points to be clustered in Algo-
rithm 1. In this paper, the database is limited to two dimen-
sional space for experimental purposes. Line 1 initiates the
clustering procedure from a set of entry points that are mod-
eled from crossing constraints. Thus, a set of data objects
is maximally grouped according to the crossing connectiv-
ity defined by a set of entry points in crossing constraints.
Once a maximum set of clusters is discovered after Line
2, Line 3 builds up a cluster from data objects that are not
reachable by the crossing connectivity in the database. In
the course of clustering, Line 5 assigns a new cluster id for
the next expandable cluster. The ExpandCluster in Algo-
rithm 1 may seem similar to the function of the DBSCAN.
However, the distinction is that obstacles are considered in
RetrieveNeighbours (Point, Eps, Obstacles). Given a query
point, neighbours of the query point are retrieved using SR-
tree [3].

4. Performance

In this section we evaluate the performance of the algo-
rithm in terms of effectiveness and scalability on a Pentium
III 700Mhz machine running Linux 2.4.17 with 256MB
memory. For the purpose of the experiments, we have gen-
erated synthetic datasets. Due to the limited space, we re-
port evaluations varying the size of the dataset and the num-
ber of obstacles in order to demonstrate the scalability of
DBCluC. More experiments are available in [4]. Figure 1
represents the execution time in seconds for eight datasets
varying in size from 25K to 200K showing good scalability.
The execution time is almost linear to the number of data
objects. Figure 2 presents the execution time in seconds by
varying the number of obstacles. According to our experi-
ments, DBCluC is scalable for large databases with compli-
cated obstacles and bridges in terms of size of the database
and the number of constraints running in O(N · log N),
where N is the number of data objects in a database, if we
adopt an indexing scheme for obstacles.

0

100

200

300

400

500

600

700

800

25k 50k 75k 100k 125k 150k 175k 200k

Numbers of data points

T
im

e(
s)

Figure 1. Algorithm Run Time by varying the
number of data points

5. Conclusions

In this paper we have addressed the problem of cluster-
ing spatial data in the presence of physical constraints: ob-
stalces and crossings. We have proposed a model for these
constraints using polygons and have devised a method for
reducing the edges of polygons representing obstacles by
identifying a minimum set of line segments, called obstruc-
tion lines, that does not compromise the visibility spaces.
The polygon reduction algorithm reduces the number of
lines representing a polygon by half, and thus reduces the
search space by half. We have also defined the concept of
reachability in the context of obstacles and crossings and
have used it in the designation of the clustering process.
Owing to the effectiveness of the density-based approach,
DBCluC finds clusters of arbitrary shapes and sizes with
minimum domain knowledge. In addition, experiments

Figure 2. Algorithm Run Time by varying the
number obstacles

have shown scalability of DBCluC in terms of size of the
database in number of data points as well as scalability in
terms of number and complexity of physical constraints.

References

[1] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In Knowledge Discovery and Data Mining, pages
226–231, 1996.

[2] V. Estivill-Castro and I. Lee. Autoclust+: Automatic clus-
tering of point-data sets in the presence of obstacles. In In-
ternational Workshop on Temporal and Spatial and Spatio-
Temporal Data Mining (TSDM2000), pages 133–146, 2000.

[3] N. Katayama and S. Satoh. The SR-tree: an index structure
for high-dimensional nearest neighbor queries. In Proc. of the
1997 ACM SIGMOD Intl. Conf., pages 369–380, 1997.

[4] C.-H. Lee. Density-based clustering of spatial data in the pres-
ence of physical constraints. Master’s thesis, University of
Alberta, Edmonton, AB, Canada, July 2002.

[5] R. Ng and J. Han. Efficient and effective clustering methods
for spatial data mining. In Proc. of VLDB Conf., pages 144–
155, 1994.

[6] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the
presence of obstacles. In Proc. 2001 Int. Conf. On Data En-
gineering(ICDE’01), 2001.

[7] O. R. Zaı̈ane, A. Foss, C.-H. Lee, and W. Wang. On data
clustering analysis: Scalability, constraints and validation. In
Sixth Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD’02), Lecture Notes in AI (LNAI 2336),
pages 28–39, Taipei, Taiwan, May 2002.

