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Abstract

A bottleneck to detecting distance and density based out-
liers is that a nearest-neighbor search is required for each
of the data points, resulting in a quadratic number of pair-
wise distance evaluations. In this paper, we propose a new
method that uses the relative degree of density with respect
to a fixed set of reference points to approximate the degree
of density defined in terms of nearest neighbors of a data
point. The running time of our algorithm based on this ap-
proximation is O(Rn log n) where n is the size of dataset
and R is the number of reference points. Candidate outliers
are ranked based on the outlier score assigned to each data
point. Theoretical analysis and empirical studies show that
our method is effective, efficient, and highly scalable to very
large datasets.

1 Introduction

Detecting distance-based outliers in very large datasets

has attracted much attention over the past several years in

data mining. Compared to traditional outliers studied in

statistics [1, 6], the definition of distance-based outliers is

distribution-free, more flexible, and more computationally

feasible. A bottleneck to the detection of distance-based

outliers is that a nearest-neighbor search is required for each

of the n data points. Consequently, straightforward imple-

mentations such as the Nested-Loop method need to com-

pute the distance between each pair of data points, resulting

in an O(n2) running time.

Since the seminal work of Knorr and Ng [8], much effort

has been devoted to improving the efficiency of algorithms

for detecting distance-based outliers. By using spatial index

data structures such as the k-d tree and its variants, the aver-

age running time can be reduced to O(n log n) with a hid-

den constant depending exponentially on the dimensionality

of the data. Several heuristics have also been proposed to re-

duce the number of required nearest neighborhood search.

In [8], a cell-based approach for detecting distance-based

outliers was investigated, which is still exponential in the

dimensions, but linear in the size of the dataset under the

assumption that both of the two negatively-correlated pa-

rameters (percentage p and radius D) of the algorithm are

set to their ideal values. In [12], some clusters of data points

are eliminated from consideration based on the result of pre-

clustering the dataset, a task that is dual to outlier detection.

In [2], it is observed that by keeping track of the closest

neighbors found so far, the nearest-neighbor search for a

specific data point can be stopped if it becomes clear that

the data point cannot be one of the pre-specified number

of outliers. While the algorithm can indeed prune many

distance calculations, the worst-case running time is still

O(n2). Empirical evidence and theoretical arguments un-

der some assumptions in [2] show that the algorithm based

on this observation may have a sub-quadratic execution time

in practice.

In this paper, we propose a new approach to reduce the

number of distance evaluations. The idea is to rank the data

points based on their relative degree of density with respect

to a fixed set of reference points. For each reference point,

we calculate its distance to each of the data points and trans-



form the original data space into a one dimensional dataset.

Based on the obtained one-dimensional dataset that con-

tains the distances from a reference point to each data point,

the relative degree of density (w.r.t the reference point) of

each data point is calculated. The overall relative degree of

density of a data point is defined as the minimum relative

degree of density over all the reference points. The execu-

tion time of the algorithm is in O(Rn log n) where R is the

number of reference points and n is the size of the dataset.

Theoretical analyses and extensive empirical studies indi-

cate that the proposed approach is effective, efficient, and

highly scalable in detecting global and local outliers in large

datasets.

The paper is organized as follows. In Section 2, we

review the basic definitions of distance-based outliers and

their extensions in the literature. In Section 3, we describe

the proposed reference-based outlier detection method, in-

cluding the definition of the reference-based outlier score

and its relationship with the traditional distance-based out-

lier detection approaches. Also discussed in Section 3 are

(1) an algorithm that compute the reference-based outlier

score in O(Rn log n) time and several implementation de-

tails; and (2) a comparison study on the benefit of using

the reference-based approach in detecting local outliers. In

Section 4, we report empirical performance evaluation of

our proposal on synthetic and real-world data. Section 5 is

the conclusion.

2 Review of Distance-based Outliers

In the following discussion, let X = {x1, · · · , xn} be

the dataset and let d(·, ·) be a distance metric.

Distance-based outliers are defined by using some de-

gree of density relative to the nearest neighbors, or the so

called neighborhood density of a data point, under a dis-

tance metric [8, 12, 4]. Let x be a data point in X , k be an

integer and t be a real number, the neighborhood density of

a data point x ∈ X can be defined in three ways:

Definition 2.1. 0-1 Density D(x, k, t): D(x, k, t) = 0 if
there are fewer than k other data points within distance t
and D(x, k, t) = 1 otherwise;

The definition considers being an outlier as a binary

property such that the obtained density for each data point

divides the whole dataset into exactly two groups: inliers

and outliers. There is no measure of how much a data point

is outlying and the identified outliers are not ranked.

Definition 2.2. Max Density Dm(x, k): Dm(x, k) is the
reciprocal of the distance to the k-th nearest neighbor.

Definition 2.3. Average Density Da(x, k): Da(x, k) is the
reciprocal of the average distance to the k nearest neigh-
bors.

Definitions 2.2 and 2.3 introduce the ranking mechanism

based on the distance to the k nearest neighbors of a point.

The identified outliers are more meaningful since the infor-

mation of the degree of being an outlier has been integrated

into the analysis process.

Some local outlier detection methods [3, 7, 14] gener-

alize the above concepts further. For example, the well-

known local outlier factor (LOF) introduced in [3] measures

the degree of being an outlier by taking into consideration

the data point’s relative density as compared to those of its

nearest neighbors. The advantage of LOF is that the local

densities of the non-outlier datapoints will have less impact

on the ranking of the outliers. The major parameter in LOF

is MinPts, the minimum number of the nearest neighbors

to consider. This parameter is highly application-dependent

and some insight into the structure of the dataset is required

in order to set it correctly. What makes the selection of

MinPts even harder is the fact that the LOF of a given data

point is not monotone in MinPts, as has been observed by

the authors [3]. Another related issue with LOF is the exis-

tence of duplicated data in a dataset. Roughly speaking, the

LOF of duplicated data points is infinity unless the MinPts
is larger than the number of duplicated data points. As has

been mentioned in [3], this difficulty can be overcome by

slightly changing the original definition of LOF to ignore

the neighboring data points that are duplicated.

Our approach follows Definition 2.3. Based on the aver-

age distance to the k nearest neighbors, each data point is

assigned an outlier score indicating the degree of its devia-

tion from its close neighbors. Outliers are those with a low

neighborhood density but high outlier scores.

3 Reference-based Outlier Detection Method

We use the relative degree of neighborhood density with

respect to a fixed set of reference points to approximate the

degree of density defined in the distance-based method. Let

X = {x1, ..., xn} be a dataset and p be a point (not nec-

essarily in X). Consider the vector that consists of the dis-

tances between p and each of the data points in X:

Xp = {d(xi, p), 1 ≤ i ≤ n},

which can be viewed as a one-dimensional representation

(w.r.t p) of the original data.

Definition 3.1. Given a data point x ∈ X . A data point
y ∈ X, (y �= x) is the reference-based nearest neighbor of
x with respect to the vector Xp if

|d(x, p) − d(y, p)| = min
1≤i≤n

|d(x, p) − d(xi, p)|

where the minimum is taken over all the xi ∈ X and xi �= x.



Figure 1. Reference-based nearest neighbors
in the one-dimensional dataset Xp

The above idea is illustrated in Figure 1 with a

small dataset X = {x1, x2, x3, x4, x5}. For the given

reference point p, we have a one-dimensional dataset,

whose values are the distances to p, i.e., Xp =
{d(x1, p), d(x2, p), d(x3, p), d(x4, p), d(x5, p)}. For a

given data point, the reference-based nearest neighbor is the

closest point to it in the one dimensional data space Xp. For

example, the reference-based nearest neighbor of x1 is x5

and the reference-based nearest neighbor of x2 is x1. Intu-

itively, reference-based nearest neighbors with respect to p
are not necessarily the closest in the original data space. For

2D data, points located on the same circle (p is the center)

have a reference-based distance of 0. This property indi-

cates that we usually need more than one reference points to

improve the distance approximation in order to find global

outliers. On the other hand the use of reference points is a

major factor to contribute to the successful identification of

local outliers in a complex dataset. We will discuss this in

detail in the next section.

Definition 3.2. Let x be a data point in X and {x1, ...xk}
be the set of k reference-based nearest neighbors to x. The
relative degree of density for x in the one-dimensional data
space Xp, denoted as D(x, k, p), is defined as

D(x, k, p) =
1

1
k

k∑
j=1

| d(xj , p) − d(x, p) |
.

Given a reference point, the neighborhood density of x
is the reciprocal of the average distance to its k reference-

based nearest neighbors in the one-dimensional space Xp =
{d(xi, p), 1 ≤ i ≤ n}.

Definition 3.3. Let P = {p1, · · · , pR} be a set of R refer-
ence points. We define the neighborhood density of a data
point x w.r.t. P as

DP (x, k) = min
1≤r≤R

D(x, k, pr)

where k is a fixed parameter, indicating the number of
reference-based nearest neighbors considered for each ref-
erence point.

Essentially, data points deviated from their surrounding

data patterns will get lower neighborhood density values.

Based on the neighborhood density, each data point is as-

signed a reference-based outlier score, or ROS, which is

defined as

ROS(x) = 1 − DP (x, k)
max

1≤i≤n
DP (xi, k)

Data points in a given dataset are ranked according to

their relative degree of density computed on a set of refer-

ence points. Outliers are those with higher values of outlier

scores.

3.1 Compatibility with Distance-based
Method

By using a set of reference points, we intend to best ap-

proximate the k nearest neighbor search in the original data

space so that global outliers can be identified in a more ef-

ficient way. If the distance metric satisfies the triangle in-

equality, we have the following observations which show

evidence on the effectiveness of using the relative degree of

density to approximate the traditional definition of density.

Consider a reference point p and two data points xi, xj ∈
X . Based on the triangle inequality, we have

|d(xi, p) − d(xj , p)| ≤ d(xi, xj).

Note that the two sides in the above equation are equal when

p, xi and xj are on the same line.

Figure 2. Reference-based nearest neighbors
satisfying the triangle inequality

Using the dataset in Figure 1 as a simplified example,

we can see from Figure 2 that the reference-based nearest

neighbor of x3 is x2, and

|d(x3, p) − d(x2, p)| ≤ d(x2, x3).

Formally, we have the following



Lemma 3.1. For any set of reference points P and any data
point xi ∈ X = {x1, x2, · · · , xn},

DP (xi, k) ≥ Da(xi, k)

where Da(xi, k) is the average density as defined in Defini-
tion 2.3.

Proof. Let {xi1 , · · · , xik
} be the k nearest neighbors of xi

with respect to the distance in the original data space X .

Then, based on the triangle inequality,

1
k

k∑

j=1

|d(xi, p) − d(xij , p)| ≤ 1
k

k∑

j=1

d(xi, xij ). (1)

Since {xi1 , · · · , xik
} are not necessarily the k referenced-

based nearest neighbors of xi in the data space Xp, we have

by Definition 3.2

D(xi, k, p) ≥ 1

1
k

k∑
j=1

|d(xi, p) − d(xij
, p)|

(2)

From equations (1) and (2), we get

D(xi, k, p) ≥ 1

1
k

k∑
j=1

d(xi, xij )

Since above holds for any reference point in P , it follows

that

DP (xi, k) ≥ Da(xi, k).

The above shows that for a given data point x, the

reference-based density is lower bounded by the neigh-

borhood density computed using the traditional k nearest

neighbor search method. If a data point has a small enough

density to be identified as outliers using the reference-based

approach, it will have a even smaller density value using

the distance-based method. If, instead of ranking, we are

to use a density threshold α to determine the outliers, then

the above analysis indicates that outliers detected under our

reference-based density definition are also outliers under the

original density definition.

The following special cases are also interesting and pro-

vide further justification to our proposal. When the data

set is one-dimensional, a single reference point (say 0) is

sufficient and our approach is equivalent to the traditional

distance-based approach. On the other hand, if the dataset

itself is used as the set of reference points, then our ap-

proach is identical to the traditional KNN approach. For-

mally, we have the lemmas which are easy to prove.

Lemma 3.2. Assume that the dataset X = {x1, · · · , xn} is
one dimensional. Then, DP (xi, k) = Da(xi, k),∀xi ∈ X
for any set P of reference points.

Lemma 3.3. Assume that the set P of reference points con-
tains a data point xi in the dataset X = {x1, · · · , xn}.
Then, DP (xi, k) = Da(xi, k).

3.2 Algorithm and Its Implementation

Let P = {pr, 1 ≤ r ≤ R} be a given set of refer-

ence points. The algorithm finds the potential outliers in

the dataset X in three major steps:

1. For each reference point p ∈ P , sort the origi-

nal dataset X in the one-dimensional space Xp =
{d(xi, p), 1 ≤ i ≤ n}, i.e., data points in X are or-

dered according to the distances to p.

2. For each data point x ∈ X , find the k reference-based

nearest neighbors and compute the average neighbor-

hood density D(x, k, p);

3. Set DP (x, k) of each point x to be the minimum of

D(x, k, pr) w.r.t. P and compute the outlier score

ROS.

Outliers tend to have a higher value of ROS and they are

ranked according to their ROS value. See Algorithm 1 for

the details.

Algorithm 1 The Algorithm for computing DP (x, k)
Input: dataset X = {xi, 1 ≤ i ≤ n}, reference point

set P = {pr, 1 ≤ r ≤ R}
Let Xp be one-dimensional data space containing dis-

tances to a reference point p and k be a positive integer

p = p1;

Xs = mergeSort(X) according to Xp1 ;

for each x ∈ X do
D(x, k, p)=computeDensity(x, Xs);

DP (x, k) = D(x, k, p);
end for
for each 2 ≤ r ≤ R do

p = pr; //next reference point closest to p
Xs = Sort(Xs) according to Xpr using an appropri-

ate sorting algorithm;

for each x ∈ X do
D(x, k, p)=computeDensity(x,Xs, k);

if D(x, k, p) < DP (x, k) then
DP (x, k) = D(x, k, p);

end if
end for

end for



It takes O(n) time to compute the distance vector Xp

for each reference point p ∈ P . The calculation of

the average neighborhood density D(x, k, p) involves find-

ing the k reference-based nearest neighbors. Since the

reference-based nearest neighbors are calculated on the one-

dimensional space Xp, it suffices to find them by sorting

the original dataset X using the values in Xp (i.e., the dis-

tances to the given reference point p) as the key. Sorting the

distance vector Xp can be done in O(n log n) time. Once

the distance vector Xp has been sorted, the calculation of

D(x, k, p) for all the data points x ∈ X can be done in

O(n) time. Thus, the overall time complexity of our algo-

rithm is in O(Rn log n) where R is the number of reference

points.

3.2.1 Further Speedup

To further improve the efficiency in computing DP (x, k),
we make the following observation. Assume that p1 and p2

are two reference points and that d(p1, p2) is small. Then,

data points in X sorted according to their distances to p1

is usually “almost” sorted according to their distance to

p2. Thus, if we have processed p1 and recorded the cor-

responding sorted order Xp1 = {xi1 , · · · , xin
}, we can

calculate D(x, k, p2) by sorting the ordered list Xp1 =
{xi1 , · · · , xin

} with the various adaptive sorting algorithms

that can take advantage of the “near sortedness” of the

vector Xp1 . One example of such adaptive sorting algo-

rithms is the simple insertion sort whose running time is in

O(n + REV ) where REV is the number of pairs of ele-

ments whose relative order is wrong [5]. Therefore, while

the worst case execution time of computing DP (x, k) is

O(Rn log n), the practical execution time of our algorithm

can be much lower.

3.2.2 Determination of Reference Points

The determination of suitable reference points plays an im-

portant role in terms of both the effectiveness and the effi-

ciency of our algorithm. In our implementation, each refer-

ence point is not necessarily a data point in X . We use as

reference points the vertices on a grid obtained by partition-

ing the axes in the data space to facilitate the selection of

the closest next reference point in the second for loop of the

above algorithm. The advantages of using vertices on the

grid over randomly selecting reference points is two-fold:

(1) Reference points are evenly distributed in the whole data

space, and (2) the outlier detection result is deterministic,

i.e., the obtained results would be the same with each run.

Recall that the overall running time of our algorithm is in

O(Rn log n) where R is the number of the reference points

that is determined by the characteristics of the dataset rather

than the size n of the dataset. For simple datasets that con-

tain only one cluster, a few reference points are enough to

correctly detect the outliers in even very large datasets. For

more complicated datasets, domain knowledge can usually

help in determining the number of reference points. By us-

ing the grid vertices, we are able to partition the space in-

crementally from coarse resolution to fine resolution to de-

termine the appropriate number of reference points. Also,

notice that all calculations in the current partition is not lost

in the next partition, and only calculation for additional ref-

erence points is computed. Our experiments show that with

datasets containing a single data distribution, a few refer-

ence points are enough to correctly detect all the outliers

even with very large dataset.

3.3 Detecting Global and Local Outliers
in Complex Datasets

The distance-based method is static in that it uses param-

eters with fixed values for all the data points in a dataset. It

ignores the cases where data patterns have different densi-

ties, thus considers all data points in a dataset in the same

setting. Consequently, it always assigns low density values

to data points located in sparse regions even though some of

them are deep in a sparsely distributed clusters. The authors

in [3] also argue that the distance-based outlier detection

method can only take a global view of the dataset, resulting

in its failure to identify outliers local to certain clusters in a

complex dataset.

By using a set of reference points, our reference-based

approach is dynamic and able to see the whole dataset from

various viewpoints. It is possible that the reference-based

nearest neighbors of a given data point are different with re-

spect to different reference points. Therefore, at one refer-

ence point, the local outliers may have a high neighborhood

density, while at another reference point, it may be shown

lying in a very sparse neighborhood. Since the reference-

based neighborhood density of a data point x is determined

by the minimum among all its densities computed based on

the set of reference points, it is guaranteed that with a set

of reference points evenly covering the data space, data de-

viated from the surrounding data patterns will be assigned

lower density values. In the following, we will use exam-

ples to show that reference-based method can successfully

identify local outliers as well as global outliers in complex

datasets that contain clusters of different densities.

To facilitate the evaluation of data clustering and outlier

analysis, we developed a synthetic data generation system

that can produce datasets with various cluster and outlier

patterns. Interested readers are referred to [10, 11] for the

details. Using our synthetic data generator, we generated

a small 2D dataset X that contains 850 data points. There

are three clusters C1, C2 and C3, where data in clusters

C1 and C2 are uniformly distributed and data in C3 are in

normal distribution. Cluster C1 has a smaller density com-



pared to C2 and C3. In addition to the three clusters which

form the main body of the dataset, there are a few local out-

liers as well as some global outliers in this dataset. In our

experiment, we set the number of reference-based nearest

neighbors k = 4. To ensure that the reference points are

evenly positioned in the 2D data space, we set the number

of reference points to be the 16 points on the 4 by 4 grid

that divides the data space evenly. In the first run to mine

the top 3 outliers, the three global outliers o1, o2 and o3 are

found. See Figure 3 for the details of the dataset. Since we

want to check if the local outliers specific to the clusters can

be found, the program is set to mine the top eight outliers

in the second run. The result is displayed in Figure 3 (a),

where the outliers are marked with a cross.

(a) (b)

Figure 3. Finding top eight outliers (a) using
reference-based method and (b) using the
traditional KNN method

(a) (b)

Figure 4. Finding top 76 outliers (a) using
reference-based method and (b) using the
traditional KNN method

We tested the distance-based outlier detection method

with the same dataset. The implementation is based on

Definition 2.2, where the neighborhood density Dm(x, k)
is the reciprocal of the distance to the kth nearest neigh-

bor. As above, we set k = 4. The top 3 outliers iden-

tified are the same as those identified using our method.

However, distance-based method fails to find the two lo-

cal outliers specific to cluster C2 when mining the top 8

outliers. The result is shown in Figure 3 (b), where the un-

detected local outliers are marked with arrows. It is ob-

served that Dm(x, k)-based method tends to identify data

points in sparse regions as outliers such as those located in

the perimeter of cluster C1. The ranking result shows that

using Dm(x, k) method, o5 is ranked in the 9th place but

o4 is ranked in the 76th place. In order to find the local out-

lier o4, the distance-based method has to falsely mark many

other data points as outliers.

This actually poses an interesting question: what will

happen if the number of real outliers in a dataset is less than

the number of top outliers the program is set to mine? Such

issue can be important with large real world datasets whose

domain knowledge is unknown. We test both reference-

based approach and the distance-based approach to mine

the top 76 outliers, when o4 can only be identified using the

distance-based method. The results are shown in Figure 4.

We can see that in Figure 4 (b) many data points deep in the

relatively sparse cluster C1 are falsely marked as outliers

before distance-based method is able to find the real local

outlier o4. Although there are a few points inside cluster C1
that are marked as outliers by our approach, they ranked af-

ter most of the real outliers. Careful observation shows that

they are the next best outliers within C1 compared to those

points on the border of C1. The overall outliers identified

indicate that the reference-based approach is more likely to

consider those data points deviating from or lying on the

edge of the data patterns as outliers.

The above examples demonstrate that compared to the

distance-based approach, reference-based method is not

only superior in differentiating data deep inside a sparsely

pact cluster from local outliers deviated from a dense pat-

tern in a dataset, but also capable of eliminating false identi-

fication of outliers inside the sparse data patterns of a com-

plex dataset.

One of the motivations of the reference-based approach

is to best approximate the neighborhood density obtained

using the traditional k nearest neighbor approach so that

global outliers can be effectively identified in a rather ef-

ficient way. In this sense, the more the number of reference

points, the better the distance approximation and the more

accurate the identification of global outliers in a dataset.

However as shown earlier, when the whole dataset is used

as the set of reference points, reference-based approach is

reduced to the traditional distance-based approach, which

can lead to false identification of local outliers in a complex

dataset. While this is an intrinsic problem with the exist-



ing distance-based approaches, it can be easily solved in

our reference-based method by starting with a few number

of reference points and incrementally increasing the num-

ber of reference points. Since the reference-based near-

est neighbors of the data points computed with respect to

a given set of reference points can be reused for the next

round when more reference points are added, such adjust-

ment will have little impact on the performance of the out-

lier detection method. The detection process stops when

certain outliers have been found and such inspection often

involves human intervention.

To further explain why the reference-based density def-

inition can facilitate the identification of local outliers, we

use the previous dataset as an example. Suppose we have a

set of 16 reference points P = {p1, ..., p16}, which are the

vertices on a grid obtained by partitioning the axes in the

data space as shown in Figure 5.

Figure 5. Finding local outliers using
reference-based approach

Take the reference point p1 as an example. If we draw

circles with p1 as the center and the distance to each data

point as the radius, the k reference-based nearest neighbors

of a certain data point x with regard to p1 would be those on

or closest to the circle where x is located. As is shown in the

plot, there are no other data points that fall on the circle that

passes through the local outlier o4. In contrast, data deep

in clusters C1, C2, and C3 generally have nearest neigh-

bors with little or no distance difference. Consequently, o4

will have a relatively smaller neighborhood density in the

one dimensional data space Xp1 than data in the clusters.

Though with another reference point, say, p2, it is possi-

ble that o4 may be assigned a high density if the circle (p2

as the center and d(p2, o4) as the radius) pass through one

or more dense data patterns, the overall neighborhood den-

sity is determined by the minimum among all the calculated

densities for x in terms of Xpr . Assume that the reference

points are sparsely distributed such that each data point in

the data patterns are not isolated by the circle around a ref-

erence point, i.e., the number of reference points accounts

only a small portion of the number of the whole data, then

data deep in clusters are ensured to have very close neigh-

bors which contribute to high neighborhood densities with

regard to each reference point. Therefore, o4 will have a

lower neighborhood density and a higher outlier score than

data in the clusters.

It is noticed that there is indeed a tradeoff between the

number of reference points and the ability of the reference-

based method to detect global and/or local outliers. On the

one hand, if all the data points in the original dataset are

used as the reference points, then our approach is equivalent

to the traditional KNN approach. On the other hand, by

using a small set of reference points, local outliers will have

a better chance of being detected at the potential cost of

some inaccuracy in detecting global outliers. We leave it as

a future research topic to investigate how to achieve such a

tradeoff and how to integrate our approach with the various

approaches to local and/or global outlier detection in the

literature such as LOF [3].

4 Empirical Evaluation

In this section, we show experimently that the proposed

method can efficiently identify local and global outliers in

various datasets. We compare the performance of our ap-

proach with the existing distance and density based meth-

ods.

4.1 Results on Synthetic Datasets

To compare the performance of the proposed reference-

based approach with the existing k nearest neighbor ap-

proach, our first test is to see how fast each method can

find outliers in large datasets. We generated a set of syn-

thetic datasets using the synthetic data generating system

[10, 11]. It is well accepted that the evaluation of outlier

detection involves human intervention. We limit our exper-

iments to two-dimensional synthetic data so that the evalu-

ation can be performed by simple visual inspection. The

sizes of these datasets range from 1,000 to 500,000 data

points. To be consistent, each dataset has a major data pat-

tern that is normally distributed. Based on the fact that out-

liers accounts for only a very small portion in a dataset, the

number of outliers to be mined is set to be 1% of the data

size in all the following experiments. For the reference-

based approach, the number of reference points can be set

to a constant for all these datasets. This is because all the

test datasets have similar probability distribution and each

of them contains only one normally distributed cluster. In



such cases, a few reference points that cover different areas

in the data space are sufficient to ensure the successful de-

tection of outliers. As discussed before, the reference points

are evenly located in the grid vertices of the data space. In

our experiment, the number of reference points is set to 9

for all these datasets. We implemented the reference-based

method in Java to facilitate the visualization of the outlier

detection results. For the distance-based method, we down-

loaded the executable version of Orca, the C implementa-

tion of the distance-based method discussed in [2]. Since

Orca is based on the distance-based algorithm with a near-

linear running time, it is believed to be one of the most

efficient KNN-based outlier detection methods. To com-

pare the two programs, we run our method in command line

mode so that the execution time includes time for input and

output as Orca does. Orca also requires a preprocessing

step to randomize the order of the original data and convert

it to binary format. In our experiments, the cost of data pre-

processing for Orca is not counted when recording Orca’s

execution time. The number of nearest neighbors is set to

be k = 6 for both programs.

Figure 6. Log-scale execution time vs data
size for reference-based approach and Orca

Since each dataset contains a single cluster that is nor-

mally distributed, both programs can effectively mark the

data lying farther away from the mean as outliers in a

dataset. There is hardly any difference in the identified out-

liers using the two methods. However, the difference of

execution time between our reference-based approach and

Orca gets bigger and bigger with the increase of the data

size, despite the fact that our implementation of ROS is in

Java while Orca is in C. Figure 6 is the log-scale plot of ex-

ecution time vs data size for the two methods. Although the

plot for Orca does not include the data preprocessing time,

Figure 6 shows that with large datasets, reference-based ap-

proach has orders of magnitude improvements in execution

speed compared to Orca, one of the optimized implementa-

tion of the distance-based approach.

Outliers are defined as data points that deviate from the

main patterns of a dataset. They are most likely to be con-

sidered in the context of clusters with different types of data

distributions. That is, an object is marked as an outlier if

it is isolated from the clusters in a given dataset. To test if

the reference-based approach can effectively find meaning-

ful outliers in a complex dataset, we generated a dataset of

10,000 datapoints. There are six data patterns. Three are

uniformly distributed and the other three are normally dis-

tributed. The densities of the six data patterns are different.

Unlike the datasets containing only normally distributed

data where outliers lie on the outer fringe of each cluster,

this dataset has two types of outliers: outliers uniformly dis-

tributed around the main data patterns and outliers lying on

the outer skirt of the three normally distributed clusters. To

demonstrate the effectiveness of reference-based approach

in finding both global and local outliers, we implemented

LOF according to [3] that is well known for its performance

in detecting local outliers. We compare the effectiveness

of the distance-based method, LOF, and our ROS on this

dataset. For the distance-based method, and ROS, we set

k = 4. For LOF, we set MinPts = 30 as recommended in

[3]. The number of reference points for ROS is set to be 2%
of the data size.

Figure 7. Outlier detection result from
distance-based approach

Figure 7, 8 and 9 are the screen shots showing the re-

sults for mining the top 100 (1% of data size) outliers. In all

the three figures, detected outliers are marked with crosses.

Visual inspection shows that the KNN-based method, LOF,

and our referenced-based method are all able to discover



Figure 8. Outlier detection result from LOF

Figure 9. Outlier detection result from
reference-based approach

the global outliers. Furthermore, two local outliers (the

two crosses surrounded by small circles) are discovered by

our reference-based method, while LOF can only find one

of them and the KNN-based method fails to find either of

them. Therefore, our approach is not only effective in find-

ing outliers that lie far away from the major patterns in the

dataset, it also achieves similar or even better results than

LOF in detecting local outliers.

4.2 Results on Hockey Data

The National Hockey League (NHL) data have been used

as a benchmark in several outlier analysis works [8, 3, 13].

We use the statistics of NHL 2003-2004 season obtained

from NHL website [9]. The dataset contains 916 entries.

We compare our approach with both Orca and LOF on

this dataset. The goal is to see if our approach can effi-

ciently find the outliers identified by Orca and/or LOF in

real-world datasets. We set the number of reference points

for reference-based approach to be two to the power of the

data dimensionality. For example, given a 3D set of data,

the reference points are the 8 vertices of a cube in the 3D

space with all data inside the cube. We set k = 4 for both

Orca and our approach and MinPts = 30 for LOF to en-

sure LOF finding meaningful outliers.

We conduct the experiment in a similar way as other

outlier analysis works. It consists of two tests. The first

test mines the outliers based on the three attributes: games

played, goals scored and shooting percentage. LOF, Orca

and our reference-based approach achieve identical results

and the top three outliers are listed in Table 1(a). The out-

lier status of the three identified players are obvious. They

only played a few games and scored once, but their shooting

percentage is unusually high.

The second test is to mine outliers based on the three

attributes: points scored, plus-minus statistic and penalty

minutes. The top 3 outliers found by our reference-based

approach are listed in Table 1(b). Sean Avery is on top be-

cause his points and plus-minus figures are moderate but the

number of penalty minutes is the highest among all the play-

ers. LOF gets the similar result as ours while Orca’s result

is slightly different. The top rank from Orca, Zdeno Chara,

is ranked as the 9th outlier by our approach and 26th outlier

by LOF. Careful investigation shows that outliers identified

by Orca tend to be in a sparse region regardless of the data

distribution. Reference-based method instead favors out-

liers that deviate from the main data patterns and the results

are close to LOF in this aspect. For example, Jody, who is

ranked third by our approach lies far away from the trend of

the data body due to his low points and plus-minus statistic

but extremely high penalty minutes. With 3D datasets of

size about 1,000, the execution time for both Orca and our

reference based approach is within 0.1 seconds and can be

neglected.

5 Conclusion

In this paper, we have proposed an efficient reference-

based outlier detection method that uses the relative degree

of density with respect to a fixed set of reference points to

calculate the neighborhood density of a data point. In addi-

tion to being compatible with the traditional distance-based

outlier detection methods, our approach performs better in

identifying local outliers that deviate from the main patterns

in a given dataset. The execution time of our algorithm is

O(Rn log n) where n is the size of dataset and R is the

number of reference points. Candidate outliers are ranked

based on the reference-based outlier score that is assigned to



Table 1. Outlier detection on NHL(03/04) data

(a) Outlier detection result 1 on NHL(03/04) data

Our Rank LOF Rank Orca Rank Player Games Played Goals scored Shooting Percentage
1 1 1 Milan Michalek 2 1 100

2 2 2 Pat Kavanagh 3 1 100

3 3 3 Lubomir Sekeras 4 1 50

minimum 1 0 0
median 57 4 6.6

maximum 83 41 100

(b) Outlier detection result 2 on NHL(03/04) data

Our Rank LOF Rank Orca Rank Player Points Scored Plus- Minus Penalty minutes
1 1 3 Sean Avery 28 2 261

2 2 2 Chris Simon 28 15 250

3 7 15 Jody Shelley 6 -10 228
...

...
...

...
. . .

9 26 1 Zdeno Chara 41 33 147

minimum 0 -46 0
median 12 -1 26

maximum 94 35 261

each data point. Theoretical analysis and empirical studies

show that the reference-based approach is not only highly

efficient and scalable to very large datasets, but also able

to achieve better results than distance-based approaches.

When all the data points are used as references points, our

method becomes a distance-based approach finding global

outliers. When only one reference point is used, local out-

liers relative to the reference point are discovered. We advo-

cate the use of a small number of reference points uniformly

distributed over the data (using a grid) to find global and lo-

cal oultiers effectively and efficiently.
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