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Abstract

Clusteringspatialdatais a well-knownproblemthathas
beenextensivelystudied. Grouping similar data in large
2-dimensionalspacesto findhiddenpatternsor meaningful
sub-groupshasmanyapplicationssuch assatelliteimagery,
geographic information systems,medical image analysis,
marketing, computervisions,etc. Althoughmanymethods
havebeenproposedin the literature, very few havecon-
sideredphysicalobstaclesthat mayhavesignificantconse-
quenceson the effectivenessof the clustering. Taking into
accounttheseconstraints during the clusteringprocessis
costlyandthemodelingof theconstraintsis paramountfor
goodperformance. In thispaper, weinvestigatetheproblem
of clusteringin the presenceof constraints such as physi-
cal obstaclesandintroducea new approach to modelthese
constraints usingpolygons.We also proposea strategy to
prunethesearch spaceandreducethenumberof polygons
to testduring clustering. We devisea density-basedclus-
tering algorithm, DBCluC, which takes advantage of our
constraint modelingto efficientlyclusterdataobjectswhile
consideringall physicalconstraints.Thealgorithmcande-
tect clusters of arbitrary shapeand is insensitiveto noise,
theinputorder, andthedifficultyof constraints. Its average
runningcomplexity is O(N

�����
N) where N is the numberof

datapoints.

1. Introduction

Unsupervisedclassificationof objectsinto groupssuch
thatthesimilarity of objectsin a groupis maximizedwhile
the similarity betweenobjectsof differentgroupsis mini-
mized, is an interestingproblemthat hasattractedthe at-
tention of statisticiansfor many yearsbecauseof the nu-
merouspotentialapplications.Recently, we arewitnessing
a resurgenceof interestin new clusteringtechniquesin the
datamining community, and many effective and efficient
methodshave beenproposedin the machinelearningand

datamining literature.The rapid increasein digitizedspa-
tial dataavailability haspromptedconsiderableresearchin
whatis known asspatialdatamining [19]. Clusteringanal-
ysis for datain a 2-dimensionalspaceis consideredspatial
dataminingandhasapplicationsin geographicinformation
systems,patternrecognition,medical imaging, marketing
analysis,weatherforecasting,etc.Clusteringin spatialdata
hasbeenan active researchareaandmostof the research
hasfocusedon effectivenessandscalability. As reportedin
surveys on dataclustering[11, 14] clusteringmethodscan
beclassifiedinto Partitioningapproaches[17, 21, 5, 22, 31],
Hierarchicalmethods[26, 32, 10, 15], Densitybasedalgo-
rithms [8, 2, 13], Probabilistictechniques[6], Graphtheo-
retic [31], Fuzzy methods[4, 23], Grid-basedalgorithms
[30, 25, 1], and Model basedapproaches[24, 18]. As
pointedout earlier, thesetechniqueshave focusedon the
performancein terms of effectivenessand efficiency for
largedatabases.However, almostnoneof themhave taken
into accountconstraintsthatmay be presentin the dataor
constraintson the clustering. Theseconstraintshave sig-
nificant influenceon the resultsof the clusteringprocess
of large spatial data. In medical imaging, for example,
while 2 pointscould be closetogetheraccordingto a dis-
tancemeasurethey shouldbe restrainedfrom beingclus-
teredtogetherdueto physicalor biological constraints.In
a GIS applicationstudyingthemovementof pedestriansto
identify optimalbankmachineplacements,for example,the
presenceof a highway hindersthe movementof pedestri-
ansandshouldbe consideredasan obstacle. To the best
of our knowledge,only two clusteringalgorithmsfor clus-
teringspatialdatain thepresenceof constraintshave been
proposedvery recently: COD-CLARANS [28] basedon a
partitioningapproach,andAUTOCLUST+ [9] basedon a
graphpartitioningapproach.[29] introducesthetaxonomy
of constraintsfor clustering:Constraintson individual ob-
jects;Obstacleobjectsasconstraints;Clusteringparameters
asconstraints;andConstraintsimposedon eachindividual
cluster. Its primarydiscussionhasbeenfocusedonSQLag-
gregateandexistentialconstraints.Thoseconstraintshave



Figure 1. Clustering data objects with con-
straints

considerableeffect on clusteringa database,takinginto ac-
countthecapacityof involvedresource.COD-CLARANS
[28] andAUTOCLUST+[9] proposealgorithmsto solvethe
problemof clusteringin thepresenceof physicalobstacles
to crosssuchasrivers,mountainranges,or highways,etc.
[28] definesobstaclesby building visibility graphsto find
theshortestdistanceamongdataobjectsin thepresenceof
obstacles.Thegraphhasedgesbetweendatapointsthatare
visible to eachother and the edgeis eliminatedif an ob-
stacleobstructsthe “visibility”. Thevisibility graphis ex-
pensive to build andis consideredaspre-processedin [28],
thusmakingtheapproachlook performingandscalingwell
since the pre-processingis taken out of the performance
evaluation. [9] builds a Delaunaystructureto clusterdata
pointsconsideringobstacles,a morescalableandefficient
datastructure.However, it is expensive to constructandis
not flexible to combinea differentkind of constraints.As
anexample,Figure1 shows clusteringdataobjectsin rela-
tion to their neighboursaswell asthephysicalconstraints.
Ignoring theconstraintsleadsto incorrectinterpretationof
the correlationamongdatapoints. Figure1(b) shows two
clusters. The correctgrouping(Figure1(c)) visually gen-
eratesfour clusters,four clustersdueto highway andriver
constraints,andonenaturallygroupedcluster.

The algorithm we propose in a 2-dimensionalpla-
nar space,DBCluC (Density-BasedClusteringwith Con-
straints,pronouncedDB-clu-see),is basedon DBSCAN
[8] adensity-basedclusteringalgorithmthatclearlyoutper-
forms the effectivenessandefficiency of CLARANS [21],
thealgorithmusedfor COD-CLARANS.Theperformance
is betternot only in termsof time complexity, but also in
termsof clusteringperformance;detectionof naturalclus-
ter shapesandnoisesensitivity.

In this paper, we also introducea new ideafor model-

ing constraintsusingsimplepolygons.Note that thereare
two classesof polygonswith respectto mathematicalcon-
text, as illustratedin the geometrylieterature[12, 27]: a
simplepolygonandacrossingpolygon(seeObstacleMod-
eling). Polygonscanrepresentobstaclesof arbitraryshapes,
lengths,thickness,etc. Giventhepotentiallargenumberof
edgesrepresentingall thepolygonsin thespaceto cluster,
wehavereducedthesizeof thesearchspaceby introducing
theideaof representingpolygonswith a minimumnumber
of lines that preserve the connectivity anddisconnectivity
betweenpointsin space.

The remainderof the paperis organizedasfollows: In
Section2, we briefly introducethe notionsof reachability
andconnectivity neededin the expansionprocessof DB-
SCAN[8] sincethesamereachabilityideais adoptedin our
algorithm,andpresentthe motivating conceptssignificant
to thisstudy. In Section3, weshow how wemodelthecon-
straints,obstacles,andillustratehow theedgesof thepoly-
gonsarereducedto improve performance.Themainclus-
teringalgorithmthat considersconstraintsduring theclus-
tering is introducedwith its complexity analysisin Section
4. Section5 shows the performanceof this algorithmand
its clusteringresults.Finally, Section6 concludesthisstudy
with somediscussionof futurework.

2. Background Concepts

While COD-CLARANSis basedon thepartitioningap-
proachof CLARANS, which adoptsEuclideandistances
andconsidersonly clusterswith sphericalshapes,we have
selectedthe density-basedideabehindDBSCAN that ex-
pandstheneighbourhoodof a point basedon a fixedmini-
mumnumberof pointsreachablewithin anareaof a given
radius.Unlike thepartitioningapproach,thedensity-based
methodweadopteddoesnot requiretheapriori knowledge
of thenumberof clustersin thedata. In thefollowing sec-
tion, we presentthe importantconceptsof DBSCAN and
definetheimportantnotionsthatmotivateourclusteringal-
gorithm.

2.1. DBSCAN

DBSCAN is a clusteringalgorithm with two parame-
ters, Eps andMinPts, utilizing the densitynotion that in-
volvescorrelationbetweena datapoint andits neighbours.
In order for datapoints to be grouped,theremust be at
leasta minimum numberof points called MinPts in Eps-
neighbourhood,N���	� (p), from a datapoint p, given a ra-
diusEps. Its intuition hasfocusedondetectingnaturalclus-
tersamongdataobjects,while discriminatingnoises(out-
liers) from clusters.In DBSCAN, thefollowing definitions
aredenoted.
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Figure 2. Density-reac hable and Density-
connected

Definition1. (Directly density-reachable)A pointp isdi-
rectly density-reachablefrom a point q with respectto Eps,
MinPts if

(1) p 
 N ���	� (q)

(2) �N ���	� (p) ��
 MinPts, where �N ���	� (p) � denotesthe
numberof pointsin thecircleof radiusEpsandcentre
p.

Definition 1 is importantto understandthe differencebe-
tweencore points and borderpoints, sinceborderpoints
have the less number of Eps-neighbourhoodthan core
pointsdo.

Definition2. (Density-reachable)A point p is density-
rea-chablefrom a point q with respectto EpsandMinPts,
if thereis a chainof pointsp� , .., p� , p� = q, , p� = p such
thatp����� is directlydensity-reachablefrom p� .

Definition3. (Density-connected)A point p is density-
connectedto a point q with respectto Eps and MinPts,
if there is a point o suchthat both, p and q are density-
reachablefrom o with respectto EpsandMinPts.

Definition4. (Cluster)Let D bea databaseof points. A
clusterC with respectto Eps and MinPts is a non-empty
subsetof D satisfyingthefollowing conditions�
(1) Maximality ��� p, q if p 
 C andq is density-reachable
from p with respectto EpsandMinPts,thenq 
 C.

(2) Connectivity ��� p, q 
 C, p is density-connectedto q
with respectto EpsandMinPts.

Definition5. (Noise)Let p 
 a databaseD. p is noise,if
p �
 C� , whereC� is i ��� cluster, 0 � i � k, k is thenumber
of clustersin D.

Figure2 illustratesthe above definitions. Thedetailedfig-
uresanddiscussionarefoundin [8].

Oncethe two parametersEps and MinPts are defined,
DBSCAN starts to group data points from an arbitrary

point. If a cluster cannot be expandedwith respectto
the densityreachableanddensity-connecteddefinitions,it
startsgroupingdatapointsfor anothercluster. This proce-
dureis iterateduntil thereis no datapoint to be expanded
andall datapoints in the datasetclusteredor labelledasa
noise.Onemajorissuewith DBSCAN,aspresentedin [8],
is theproblemof high dimensionalityof dataobjectswhen
looking for rangequeriesto quickly identify points in the
neighbourhoodof anotherpoint. In [8] theauthorsindexed
dataobjectsusing the R*tree [3], but this structurehasa
dimensionalitylimitation of 16 dimensionswith respectto
efficiency, as reportedin [7]. While we are only dealing
with 2 dimensionsfor spatialdata,we useSR-Treestruc-
tures[16] insteadin our implementationof DBCluC,which
allows us to do efficient rangequeriesfor neighbourhood
datapoints.

2.2. Motivating Concepts

As briefly mentionedin the introduction,the existence
of constraintsmay not only affect the efficiency but also
the accuracy of theclustering.This leadsus to investigate
meansto overcomethesetwo problemswhile considering
constraints.In thefollowing,wecharacterizethesephysical
constraintsby introducingsomedefinitions.Weassumethat
obstaclesaregivenin theform of polygonswith rigid edges.

Definition6. (Obstacle)An obstacleis a polygon de-
notedby P(V, E) whereV is a setof k pointsfrom an ob-
stacle:V = � v � , v � , v  , !	!"! , v #%$ andE is a setof k line seg-
ments:E = � e� , e� , e , !	!"! , e#%$ wheree� is a line segment
joining v � andv ����� ,1 � i � k, i+1=1if i+1 & k. Therearetwo
classesof obstacles:convex andconcave. Thedistinctionis
importantaswe shallseelater.

Thereare two classesof obstacles:convex and concave.
Thedistinctionis importantasweshallseelater.

Definition7. (Visibility) Visibility is a relationbetween
two datapoints, if the line segmentdrawn from onepoint
to the otheris not intersectedwith a polygonP (V, E) rep-
resentinga given obstacle.Given a setD of n datapoints
D = � d� , d� , d , !	!"! , d� $ , a line segmentl joining d� andd'
whered� , d'(
 D, i )* j, i andj 
 [1..n], anda line segment
e# 
 E, If + a point p that is an intersectionpoint between
two line segmentsl ande# , thend� is visible to d' .

Definition8. (Visible Space)Given a set D of n data
pointsD= � d� , d� , d , !"!	! , d�,$ , A visible spaceis a setS
of k pointsS=� s� , s� , s , !	!"! , s#�$ suchthat � s� ,s' 
 S, s�
ands' arevisible to eachother, while s# is not visible to
s’ #.-0/ S’ , whereS’ is a visible spacesuchthatS’ 1 S = 2 ,
S’ andS 3 D, i )* j, andi andj 
 [1..n].



Beforedefiningtheproblemof clusteringdatapointsin
thepresenceof obstacles,weneedto redefineacluster(Def-
inition 4) thatconformsto Definition 7.

Definition9. 4 Cluster5 Given a set D of n datapoints
D= � d � , d� , d , !"!	! , d� $ , a cluster is a set C of c points
C=� c� , c� , c , !	!"! , c67$ , satisfyingthe following condi-
tions, whereC 3 D, i )* j, andi and j 
 [1..n]. Let D be
a databaseof points. A clusterC with respectto Epsand
MinPtsis a non-emptysubsetof D satisfyingthefollowing
conditions�
(1) Maximality: � d� , d'8
 D, if d� 
 C andd' is density-
reachablefrom d� with respectto EpsandMinPts,thend'9

C.

(2) Connectivity.� c� , c' 
 C, c� is density-connectedto c'
with respectto EpsandMinPts.

(3) � c� , c':
 C, c� andc' arevisible to eachother.

3. Modeling Constraints

We have definedthe problem of clusteringwith con-
straintsin the previoussection.Consideringtheefficiency
of theprocessof clustering,it is essentialto modelthecon-
straintsefficiently to limit the impactof the constraintson
thecost-effectivenessof theclusteringalgorithm. As men-
tioned in Section1, we have optedto model the physical
constraintswith polygons.However, with alargenumberof
obstacles,wewouldhavealargenumberof edgesto testfor
the division of visibility spaces(Definition 8). We present
hereinaschemeto modelpolygonsthatminimizesthenum-
berof edgesto take into consideration.

3.1. Obstacle Modeling

Many researchareassuchasspatialdatamining, com-
putationalgeometry, computergraphics,robotnavigations,
etc, have consideredobstaclesas polygons. The perfor-
manceof the algorithmsusedis dependenton the sizeof
inputs(i.e. thenumberof polygonedges).For instance,for
finding a shortestpathbetweena startingpoint anda desti-
nationin thepresenceof obstructions,it is requiredto eval-
uateobstaclesto minimize a tour distance.Understanding
connectivity amonggiven datapoints is also necessaryto
evaluateobstacles.[28] and[9] discusstheclusteringprob-
lem in thepresenceof obstacles,but [9] doesnot explicitly
explain how to model obstaclesbut simply usesa Delau-
naygraphto modelthewholedataspace.Eventhough[28]
modelsobstaclesusing a visibility graph,the authorsdid
not presenthow the typesof obstaclesarespecified,since
the classificationof an obstacletype improve the searchin
costin [28]. In addition,thevisibility graphis assumedto
begivenandneverconsideredin thecomplexity analysisor
executiontime.

While we modelobstacleswith polygons,a polygonis
representedwith a minimum set of line segments,called
obstructionlines,suchthatthedefinitionof visibility (Def-
inition 7) is not compromised.This minimum setof lines
is smallerthanthenumberof edgesin thepolygon.This in
turn reducestheinputsizeandenhancesthesearchingtask.
Theobstructionlinesin a polygondependuponthetypeof
polygon: convex or concave. Note thatanobstaclecreates
a certainnumberof visible spacesalongwith the number
of convex points. Beforewe discussthe ideato convert a
givenpolygoninto a smallernumberof line segments(ob-
structionlines),weneedto testif agivenpolygonis convex
or concave. If any point of the polygon is categorizedas
concave,thepolygonis saidto beconcave. It is convex oth-
erwise.Theconvexity testis fundamentalin composingthe
obstructionlines.Theproblemthenconsistsin determining
whetherpolygonpointsareeitherconcave or convex. The
convex point testandthemultifacetedprocessto determine
theobstructionlines,representingagivenpolygon,is given
in detailsin [20]. For thesake of brevity andlack of space,
weonly presenttheessentialideaherein.

3.1.1. The Convexity test: Turning Directional Approach

The“TurningDirectional”approachhasbeenintroducedby
[27]. The intution of the Turning directioanlapproachis
to evaluatethe convexity of polygonsvia the definition of
a polygonthat is mathematicallydefined. [27] classifiesa
polygonaseithera simplepolygonor a crossingpolygon.
A simplepolygonis a polygonsuchthatevery edgein the
polygonis not intersectedwith otheredgesthatexist in the
polygon.A crossingpolygonis apolygonsuchthatthereis
anedgethatis intersectedwith otheredgesthatexist in the
polygon. Therefore,crossingpolygonsarenot determined
asconvex. Notethat this paperconsidersa simplepolygon
anda crossingpolygon,astheformer is a dominantobject
in spatialapplicationsandthelatteris simply dealtwith set
of simplepolygon.

Now weclaimthatapolygonis aconvex polygon,if and
only if all pointsfrom thepolygonmakea samedirectional
turn. Theclaim canbe easilyproved. Supposea polygon
P doesnot follow theclaim. It thenis obviousthatP is not
a convex. As desrcribedin Figure3 (a), pointsb andc are
concavevertecesthatmakeP a concave. Let P bea convex
polygon. Thenall possibleline segmentthat join two non-
consecutive points from P shouldbe interior to P. Hence
the vertex f mustbe pulled out at leastup to the line l in
orderfor P to bea convex. If thevertex f lies on theline l,
thena convex is composederasingonevertex. Note thata
differentshapeof a polygonis drawn, if f lies over theline
l.

In order to test a turning direction for 3 consecutive
verteces,the sign of the triangleareaof 3 points is exam-
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Figure 3. Turning examples in pol ygons

inedvia adeterminant.As a result,thesignof thedetermn-
inant evaluatesthe turning directioneithera clockwiseor
a counterclockwise.Note that we assumeall points in a
polygonareenumeratedin an ordereitherclockwiseor a
counterclockwise.Hence,wecaneasilyidentify a typeof a
polygonaswell asa typeof eachvertex from thepolygon
in a linear time O(n), wheren is the numberof pointsin a
polygon.

3.1.2. Polygon Reduction

In orderto generateobstructionlines for a givenpolygon,
we first needto identify the type of the polygon. convex
or concave. Noticethat thenumberof obstructionlinesde-
pendson a polygontype. Theconvex point teston a point
from a givenpolygonis basedon testingwhethertheturn-
ing directionof all points is in a sameway. Note that the
Convex Hull algorithmin thegraphtheoryliteratureis not
applicablein this context. For instance,thepolygonon the
bottomof Figure4 couldbeidentifiedasaconcave,whereas
the Convex Hull algorithmscannot recognizea type of a
point. It is critical for PolygonReductionalgorithmto la-
bel a type of a point from a polygon. Oncewe categorize
a polygoninto a convex or a concave, we find theobstruc-
tion linesto replacetheinitial line segmentsfrom thepoly-
gonaswemakesurethevisibility spacesarenot dividedor
merged. It is clearfor a convex polygonto have the same
numberof visible spaces(Definition 8) as the numberof
its convex pointssinceeachline segmentfrom the convex
point blocks visibility of its neighbourvisible spaces.In
contrast,aconcavepointdoesnotcreatetwo visiblespaces,
but doesa visible spacethat is createdby its nearestcon-
vex point. Accordingly, aconvex pointcreatestwo adjacent
visible spaces.We observe the fact that two adjacentline
segmentssharinga convex vertex in a polygon are inter-
changeablewith two line segmentssuchthatoneof which
obstructsvisibility in a dimensionbetweentwo neighbour
visible spacesthat are createdby the convex vertex and
theotherimpedesvisibility betweentwo neighbourvisible
spacesandtherestof visiblespacescreatedby thepolygon.
As a consequence,the initial polygonis to be represented
asa lose-lesssetof primitive edgeswith respectto visibil-
ity. Now, it is sufficientto discoverasetof obstructionlines

 
 
 

Figure 4. Simple pol ygons and generated ob-
struction lines

that impedesvisible spacesfor every convex vertex from a
polygonminimizing the numberof obstructionlines. It is
obviousthatwe reducen linesfor aconvex to ; � �=< obstruc-
tion lines. Due to a bi-partition methodthat dividesa set
of convex points into two setsby an enumerationorder, it
is straightforward to composea setof obstructionlines by
joining two pointsfrom eachpartition. In addition,thebi-
partitionmethodachievesthelose-lessreductionof a poly-
gon.

It is not, however, trivial for a concave dueto its char-
acteristic,whereasan obstructionedgeis easilydrawn be-
tweentwo convex vertex in a convex. It is requiredfor a
concave to checka possibleobstructionline drawn by the
bi-parititionmethodis intersectedwith a line segmentfrom
theconcavepolygonandis exteriorto thepolygon,whichis
a “non-admissible”obstructionline. If a possibleobstruc-
tion line is non-admissibleto agivenconcavepolygon,then
it is to bereplacedwith a setof obstructionlinesthatmight
be line segmentsfrom the concave or are interior to and
not intersectedwith theconcave polygon,which is a setof
“admissible” obstructionlines. In orderto constructa set
of obstructionedgesfrom a concave,asa possibleobstruc-
tion edgecandidateis not admissible,we employ a mod-
ified single-sourceshortestpathalgorithm[20] converting
concave P(V, E) into a weightedgraphwhoseedgesareall
possibleobstructionlinesfor eachpoint in theconcaveand
whoseweight is the distancebetweena sourceanda des-
tination. The distanceon a path > ?@%A betweentwo pointsv
andw is notEuclidean, but thenumberof pointsonthepath
> ?@�A . Note the sourceandthe destinationvertex areoneof
two endpointsfrom possibleobstructionedgecandidates.
Thedetailedstudyis foundin [20]. Thesemeasuresshould
ensurethatthegeneratednumberof obstructionlinesis less
thantheoriginalnumberof line segmentsfrom a polygon.



4. Algorithm

Oncewe have modeledobstaclesusingthe polygonre-
ductionalgorithm,DBCluC startstheclusteringprocedure
from anarbitrarydatapoint. Henceit is not sensitive to an
orderof the datainput. The clusteringprocedurein DB-
CluC is quitesimilar to DBSCAN [8]. As illustratedin [8],
thedistancebetweenclustersC� andC� is definedasamin-
imum distancebetweendataobjectsin C� andC� , respec-
tively. Normally definedclustersthatarenot satisfiedwith
Definition 9 or whosedistancebetweenclustersis larger
thanEpsareisolated.

A databaseis a setof datapointsto be clusteredin Al-
gorithm1. Line 1 initiatestheclusteringprocedure.In the
courseof clustering,Line 4 assignsa new clusterid for the
next expandablecluster.

TheExpandClusterin Algorithm 2 mayseemsimilar to
the function in the DBSCAN. However, the distinction is
thatobstaclesareconsideredin RetrieveNeighbours(Point,
Eps,Obstacles)illustratedby Algorithm 3. Given a query
point,neighboursof thequerypointareretrievedusingSR-
tree. In DBCluC, we have adoptedthe rangeneighbour
queryapproachinsteadof thenearestneighbourqueryap-
proachfrom SR-tree,sinceit is extremelydifficult for the
latter to expanda set of clustersif a densityof dataob-
jectsis high. Its averagerun time of a neighbourqueryis
O(
���B�

N) whereN is the numberof dataobjects. Notice
thattherangesearchin SR-treeis veryexpensive,especially
whenthedensityis veryhigh with a largedatabase.

Onceretrieving neighboursof a querypoint, it is trivial
to evaluatevisibilities betweena querypoint andits neigh-
bours.Thevisibility betweentwo dataobjectsin thepres-
enceof obstaclesis computedusinga line segmentwhose
endpointsarethe two dataobjectsin question.If any line
segment representingan obstacleis intersectedwith this
line, thenthetwo datapointsarenotgroupedtogether, since
they arenot visible to eachotheraccordingto Definition 7.
ThoseacceptedneighboursdefinedastheSEEDthatarere-
trievedby RetrieveNeighboursof Algorithm 2 continueto
expanda clusterfrom elementsof theSEED,if thenumber
of elementsin theSEEDis not lessthanMinPts.A dataob-
ject is labeledby aproperclusterid, if retrievedneighbours
aresatisfiedwith theparameterMinPtsdiscriminatingout-
liers. Notethatline 15 in Algorithm 2 doesexcludea noise
from being an elementof the SEED in order to enhance
queryefficiency.

The “RESULT” in Algorithm 3 is a setof dataobjects
thatareneighboursof a givenqueryobjects.Theelements
in theRESULT is collectedandtheobstaclesareevaluated
by Alogorithm 3. The RESULT elementsareconstructed
by removing dataobjectsthatarenot visible eachotherbe-
causeof the blockageof obstacles.This is performedby
line 3 in Algorihtm 3. Notice that line 1 in Algorihtm 3

Input : DatabaseandObstalces
Output : A setof clusters

1 // Startclustering;
2 for Point 
 Databsedo
3 if ExpandCluster(Database,Point,ClusterId,Eps,MinPts,Obstacles)

then
4 ClusterId= nextId(ClusterId);

endif
endfor

Algorithm 1: DBCluC

retrievesneighboursof a given querypoint usingSR tree
[16].

4.1. Complexity

As discussedbefore, the polygon reductionalgorithm
modelsobstaclesby classifyingan obstacleinto convex or
concave. Let n bethenumberof pointsof a polygonp, and
n6C6 andn60D arethenumberof concavepointsandthenum-
berof convex pointsrespectively with n = n6C6 + n60D . The
convexity test for p requiresO(n). The polygonreduction
algorithmrequiresa weightedgraph[20] to replacea non-
adimissibleobstructionline segmentwith a setof admissi-
ble line segments.Thecomplexity in thereplacementis in
worstcaseO(n

�����
n) with anindexing schemeto searchline

segments.It in turncreatesasetwith E numberof edgesin-
cludinga setof line segmentsthat lies in P. Noticethat the
numberof E is lessthan E *n, where EGF n. The polygon
reductionalgorithmfor P requiresO(n

���B�
n + n60D I E) in the

worstcasewhereI is thenumberof non-admissibleline seg-
mentsto bereplaced,while thelowerboundis H (n). Hence,
the upperboundof the polygonreductionalgorithmis de-
pictedby O(n60D I n). Whenwe evaluatea setof polygons
andn6C6 andI thatareonaveragefarsmallerthann, thecom-
plexity of thepolygonreductionis on averagein theorder
of O(n). PolygonReductionAlgorithm is a pre-processing
phasethat precedesthe clustering. The complexity of the
clusteringalgorithmalone,is in the orderof O(NI logNI L),
whereL is thenumberof obstructionlinesgeneratedby the
polygonreductionalgorithm,andN is thenumberof points
in the database.Thecomplexity can,however, be reduced
to O(NI ���B� N), if weadoptanindexing methodfor obstacles.
Currently, to checkthe visibility betweentwo datapoints,
all obstructionlinesaretested.Wecouldreducethenumber
of obstructionlines to be checkedby evaluatingonly lines
that traversethepoint neighbourhood(seeconclusionsand
futurework).



Input : Database,a data point Point, ClusterId,
Eps,MinPts,andObstacles

Output : Trueor False
1 SEED= RetrieveNeighbours(Point,Eps,Obstacles);
2 if sizeof seedis lessthanMinPtsthen
3 ClassifyPointasNOISE;
4 ReturnFalse;

endif
5 changeclusteredof all elementsin SEEDinto Clus-

terId;
6 deletePointfrom SEED;
7 while SEED.SIZEJ 0 do
8 CurrentPoint= SEED.first();
9 RESULT = RetrieveNeighbours(CurrentPoint,

Eps,Obstacles);
10 if RESULT.SIZE 
 MinPtsthen
11 for element
 RESULT do
12 if elementis UNCLASSFIEDthen
13 put it into SEED;
14 setits clusterid to ClusterId;

endif
15 if elementis NOISEthen
16 setits clusterid to ClusterId;

endif
endfor

endif
17 deleteCurrentPointfrom SEED;

endw
18 ReturnTrue;

Algorithm 2: ExpandCluster

Input : a dataobjectPoint,Eps,andObstalces
Output : A setof datapoints

1 RESULT = getNeighbour(Point,Eps);
2 for elementRESULT do
3 if CheckVisibility with(element,Obstacles)then
4 RESULT.delete(element);

endif
endfor

5 ReturnRESULT;

Algorithm 3: RetrieveNeighbours(Point,Eps, Obsta-
cles)

5. Performance

In this sectionwe evaluatetheperformanceof thealgo-
rithm in termsof effectivenessand scalability. Although
COD-CLARANS andAUTOCLUST+ discussthe cluster-
ing problemin thepresenceof obstacles,it is hardto com-
parequantitatively theperformancewith theirrespectiveap-
proachesdueto the differencein the datasetsused.To re-
alistically comparethealgorithms,we oughtto usetheex-
act datasetswith the sameconstraints. However, we did
not have accessto thesedatasets,evenif they aresynthetic
datasets,we can not regeneratedthem . Yet it is known
thatdensity-basedclusteringalgorithmssuchasDBSCAN
[8] outperformspartitioningalgorithmssuchasCLARANS
[28] in termsof efficiency andeffectivenss.It canbecon-
cludedthat DBCluC would outperformCOD-CLARANS
with respectto the scalability and clusteringquality. We
have evaluatedDBCluC by generatingdatasetswith com-
plex clustershapesandby varying the sizeof dataaswell
asthenumberandcomplexity of thephysicalconstraints.

For the purposeof the experiments,we have generated
syntheticdatasets.Wereportthreeof themhereinDataset1,
Dataset2,andDataset3.Obstaclessuchasrivers,lakes,and
highwaysarealsosimulatedin thesedatasets.Dataset1con-
taining434datapointswith four obstaclesis for illustration
purposes.Figure5 shows the16 polygonline segmentsre-
ducedto 8 obstructionlines. SinceDataset1is sparse,it is
primarily groupedinto onecluster. Adding obstaclescre-
atesfour distinct clusters(Figure 5(c)). Figures6 and 7
illustrate the effectivenessof DBCluC in the presenceof
obstacles.For theconvenienceof comparisonof clustering
results,Figure 6 and 7 illustrate sequentiallydatapoints,
andobstacles,beforeclustering(a);clusteringresultsin the
absenceof constraints(b); clustersin thepresenceof obsta-
cles(c). Theredlinesfrom obstaclesin all datasetsarethe
obstructionlines to replaceinitial polygonsthataredrawn
in blue. Dataset2hasabout1063 datapoints with 4 ob-
stacles.Therearevisually 6 clustersignoringobstacles,as
shown in Figure6(b). Dataset2representstheprimaryintu-
ition of theproblemwehave investigatedin thispaper. The
correctclusteringshows 8 groupsof datapoints. Dataset3
has11775datapoints with 6 obstaclesthat consistof 29
line segments.Theinitial 29 line segmentsfrom simulated
obstaclesarereplacedwith 15 obstructionlines.

We alsoconductedexperimentsvarying the sizeof the
datasetandthe numberof obstaclesto demonstratescala-
bility of DBCluC.Figure8 representstheexecutiontime in
secondsfor eightdatasetsvaryingin sizefrom 25K to 200K
with an incrementof 25K datapoints. The figure shows a
goodscalability. Theexecutiontime is almostlinear to the
numberof dataobjects.Figure9presentstheexecutiontime
in secondsfor clustering40Kdataobjectsbut byvaryingthe
numberof obstacles.The numbersin the X-axis represent



Figure 5. Clustering dataset Dataset1

the total numberof polygonedgesand the respective ob-
structionlines.Noticethatourpolygonreductionalgorithm
managesto reducethe numberof lines by approximately
half eachtime. Thedifferentialin the increaseof thepoly-
gon edgesis not constant. However, in the proportionof
the increasein the polygons,the executiontime is almost
linear. ThusDBCluC is scalablefor large databaseswith
complicatedobstaclesin termsof sizeof the databaseand
in termsof thenumberof constraints.

6. Conclusions

In this paperwe have addressedthe problemof cluster-
ing spatialdatain thepresenceof physicalconstraints.The
constraintswe consideredare not only obstaclessuchas
rivers,highways,mountainranges,etc. We have proposed
a modelfor theseconstraintsusingpolygonsandhave de-
viseda methodfor reducingthe edgesof polygonsrepre-
sentingobstaclesby identifying a minimumsetof line seg-
ments,calledobstructionlines, that doesnot compromise
the visibility spaces.The polygonreductionalgorithmre-
ducesthe numberof lines representinga polygonby half,

Figure 6. Clustering dataset Dataset2

Figure 7. Clustering dataset Dataset3
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Figure 8. Algorithm Run Time by varying the
number of data points
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andthusreducesthesearchspaceby half. Wehavealsode-
finedtheconceptof reachabilityin thecontext of obstacles
andhaveusedit in thedesignationof theclusteringprocess.
Finally, wehavedevelopedadensity-basedclusteringalgo-
rithm, DBCluC, which takesconstraintsinto accountdur-
ing theclusteringprocess.Owingto theeffectivenessof the
density-basedapproach,DBCluCfindsclustersof arbitrary
shapesandsizeswith minimumdomainknowledge.In par-
ticular, it is notnecessaryto know thenumberof clustersto
bediscovered. In addition,experimentshave shown scala-
bility of DBCluCin termsof sizeof thedatabasein number
of datapointsaswell asscalabilityin termsof numberand
complexity of physicalconstraints.

In thecurrentimplementationof DBCluC,obstaclesare
not indexed. This obligesa checkof all obstructionlines
beforeexpandingthe reachabilityof any point. While the
numberof line segmentsto test is reducedsignificantly
thanksto thepolygonreductionalgorithm,this numbercan
still be reducedwith a better indexing of the obstruction
lines. Indeed,it sufficesto testonly thelinestraversingthe
neighbourhoodof a datapoint to expand. However, since
linesarerepresentedby their end-points,andend-pointsof
a close line can be relatively far, it is difficult to issuea
rangequeryfor suchlines.With agoodindexing schemeof
theobstructionlines,thecomplexity of theclusteringalgo-
rithm canbereducedto O(NI ���B� N). Moreover, mostof the
executiontime in thecurrentimplementationis spentin re-
trieving neighbourswith rangequeriesin theSR-treestruc-
tureindexing datapoints.SR-treesperformwell for k- NN
type of queriesinstead. For spatialdatabases,with an in-
dex structureoptimizedfor rangequeriesof 2- dimensional
dataobjects,therun timeof DBCluCcouldbedramatically
improved.

Wehaveaddressedtheproblemof clusteringin thepres-
enceof constraintssuchasphysicalobstaclesbut only in a
2-dimensionalspace. While the SR-treestructureallows
us to cluster spacesof higher dimensionality, our model
for constraintshasnot beentestedat higherdimensional-
ity andour polygonreductionalgorithmis limited to two-
dimensionalplans. We believe that someconsideration
shouldbe given to modelingconstraintswhen clustering
high dimensionalspaces. We are currently investigating
otherconstraintssuchasbridgesandpedwaysthat canin-
validateobstaclessuchasriversandhighwaysatsomegiven
pointsor simply connectdistantclusters.Moreover, opera-
tional constraints,not consideredin this paper, have a key
role with respectto the effectivenessof clusteringresults,
eventhoughthey requireexpensiveprocessing.
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