
Feature Space Enrichment by Incorporation of Implicit Features for 
Effective Classification 

 
Abhishek Srivastava 

Dept. of Computing Science 
University of Alberta 
Edmonton, Canada 

sr16@cs.ualberta.ca 

Osmar. R. Zaïane 
Dept. of Computing Science 

University of Alberta 
Edmonton, Canada 

zaiane@cs.ualberta.ca       

Maria-Luiza Antonie 
Dept. of Computing Science 

University of Alberta 
Edmonton, Canada 

  luiza@cs.ualberta.ca 
 

               
 

Abstract 
 
      Feature Space Conversion for classifiers is the 
process by which the data that is to be fed into the 
classifier is transformed from one form to another. The 
motivation behind doing this is to enhance the 
“discriminative power” of the data together with 
preserving its “information content”. In this paper, a 
new method of feature space conversion is explored, 
wherein “enrichment” of the feature space is carried 
out by the augmentation of the existing features with 
new “implicit” features. The modus operandi involves 
generation of association rules in one case and closed 
frequent patterns in another and the extraction of the 
new features from these.   
      This new feature space is first made use of 
independently to feed the classifier and then it is used in 
unison with the original feature space. The effectiveness 
of these methods is subsequently verified experimentally 
and expressed in terms of the classification accuracy 
achieved by the classifier. 
 
1. Introduction 
 
      Classifiers are computational models that have the 
ability to predict the class of a data item on the basis of 
the values of its characteristic attributes [2]. For doing 
this, the classifier has to be first “trained” with a set of 
representative data items. Once trained, the classifier 
has the ability to assign the most suitable class to an 
unlabelled data item. The accuracy of a classifier is 
measured by “hiding” the class labels of a set of labeled 
data items and monitoring the percentage of these data 
items that the classifier correctly classifies. 
      The classifier that has been used in our work is the 
Support Vector Machine (SVM) [3] for its reputation to 
be one of the best, if not the best, classifier in many real 
applications. The SVM separates data into classes by 
attempting to find a linear “maximum margin hyper-
plane”. If the data is linearly separable, such a hyper-
plane is found and the  data is classified. If the data is 

not separable linearly then the SVM “raises” the data to 
a much higher dimension making use of special 
functions called kernels. At a higher dimension when 
the data becomes separable the SVM finds the suitable 
hyper-plane. 
      The “feature space” of a classifier refers to the 
attributes of the data item that are made use of by the 
classifier for distinguishing one item from another. For 
example, a set of creditors at a bank may be 
distinguished from one another on the basis of their 
income, age and education level. In this case, the 
feature space comprises : {Income, Age, Diploma}. 
Feature space conversion therefore implies a change in 
the set of attributes that are thus used. This change may 
be brought about by modifying the current attributes 
used, by making use of an entirely new set of attributes, 
or a combination of the two. 
      Normally, the feature space that is made use of 
comprises the explicit features i.e. the original 
characteristic attributes of the data item. This paper 
makes an attempt to enrich this feature space by 
incorporating certain implicit features which are not 
obvious but which have to be extracted from the 
available attributes. We explore two possible methods 
of doing this: (1) a method based on generation of 
association rules, and (2) one based on closed frequent 
patterns.  The first of these entails the generation of 
association rules which are relationships that exist 
between different data items in a transactional database 
such that the presence of one item implies the other or 
the presence of a combination of items implies the 
presence of a third item [12]. For example, weather: 
sunny and day: Saturday implies mood: happy.  
As an association rule, this is written as: 
                                  
Sunny  ^  Saturday    →    happy  
     (antecedent)             (consequent) 
 
The support of an association rule X → Y refers to the 
fraction of transactions that contain (X U Y) items and 
the confidence of  X → Y is the fraction of the 
transactions containing X that also contain Y.  



Note that in this paper we are not claiming a new 
associative classifier [6, 14, 15] (i.e. a classifier based 
on association rules) but investigate feature space 
enrichment to potentially improve any classifier; in our 
case we use SVM. 
  
      In this paper, each data point which comprises a set 
of attributes and a class label, is considered a 
transaction and the association rules generated are those 
between the union of the different attribute values and 
the class labels. Having been generated, the rules are 
“filtered” to obtain only those that have the class-labels 
as the consequent i.e . the implied value. From these 
select association rules, two sets of features are derived: 
Rule Based features and Class Based features [4]. 
These will be discussed in detail later. 
This converted feature space is subsequently made use 
of to train the classifier, in this case SVM, and the 
accuracy of the classifier is monitored. 
The rule based and class based features are first used to 
train the SVM independently. They are further used in 
combination with the original feature space of the data. 
The variation in accuracy of the classifier is studied 
over different values of minimum support threshold 
(i.e. by using features generated from association rules 
whose support is above the minimum support 
threshold).  
      In addition to this, closed frequent patterns are also 
made use of, to generate new features [13]. A group of 
items X in a transactional database is a closed frequent 
pattern if X occurs in the database more frequently than 
the minimum support threshold and there is no proper 
super-set of X that has the same support as X. 
      All the frequent patterns for the concerned dataset 
are generated and from these patterns, a new feature 
vector is fabricated for each original data vector. The 
new feature space thus obtained, like in the case of the 
association rules ones, is first used independently to 
train the SVM and then in combination with the 
original features. 
Some work on feature space augmentation or 
enrichment has been done but limited and not 
necessarily related to our focus of study. For instance 
feature space augmentation was investigated in the 
context of classification with taxonomies [16]. The 
authors of  [17] investigating image clustering highlight 
the need for feature space augmentation in the context 
of image datasets but do not exploit the possibility. 
      Relatively less work has been done on feature space 
augmentation of the kind we are dealing with. Rather 
most of the related work concentrates on the 
“trimming” of the feature space so as to effectively 
handle large volumes of high dimensional data. It is 
referred to as feature selection. This has especially been 
done in text categorization. Yang et al. reduce the 
dimensionality of the feature space of text documents 

by quantitatively expressing the relevance of terms 
using Information Gain and the χ2-test methods and 
expressing the content using the highly relevant terms 
only [9].  Koller et al .  in their work attempt to 
transform the feature space of text documents by first 
creating a hierarchy of topics and then merging 
sufficiently close topics to each other [10]. From this 
reduced number of  modules, representative terms are 
chosen as features. Scott et al.  explore the “syntactic 
and semantic” relationships that exist between words in 
a text, rather than the morphological relationship as was 
normally done [11]. All synonymous terms were 
mapped to one feature. This way, they were able to 
substantially reduce the feature space. One recent work 
that does concentrate on feature space augmentation is 
that of Cheng et al.[8]. They map a relationship 
between minimum support threshold and information 
gain, and modify the original feature space by 
generating closed frequent patterns corresponding to the 
optimal support threshold and combining them with the 
original features. 
 
2. Feature Space Conversion 
  
            As mentioned, two broad methodologies of 
feature conversion are made use of in this paper. The 
new features are mainly used to enrich the feature space 
i.e. they are used in combination with the original 
features although we also briefly analyze their 
respective independent influence on the classifier 
accuracy. The two categories of feature conversion 
being dealt with here are: 
 

• Association rules based features. 
• Closed frequent patterns based features. 

 
2.1. Association Rules based Features  
 
      The methodology followed to carry out feature 
space conversion involves first the generation of 
association rules from the data-set, followed by filtering 
out irrelevant rules, and finally the construction of the 
rule-based and class-based features. 
 
2.1.1. Generation of the Relevant Association Rules. 
The data-set that is made use of for classification 
usually consists of a set of data points each represented 
by a unique vector. This vector comprises the attribute 
values of the data-point as also the class to which the 
data point belongs. This is illustrated in the following: 
                               
                X: x1, x2, x3, ….. xn    Cx     
 
xi  (i = 1-n) represents the values of n attributes of data 
point X and Cx represents the class to which X belongs.  



            The association rules are generated by 
considering each data vector to be a transaction, and the 
attributes and class labels as the data items. Let us 
consider a simple example of a very small data-set: 
 
              2, 12, 1, 67, 3, 6, 7, 23, 9, 8, C1  
              54, 7, 8, 22, 1, 9, 78, 12, 91, C1  
              7, 1, 89, 4, 22, 12, 3, 9, 54, 2, C2 

                      1, 123, 7, 8, 3, 35, 65, 2, 9, 66, C3 

                      2, 1, 4, 6, 89, 3, 56, 3, 88, 9, C2  
              7, 12, 95, 16, 9, 1, 56, 78, 70, C1 
 
The attributes Ci are the class labels. 
 
      From this data-set, the association rules are 
generated. Further, from these rules the only rules that 
are relevant are the ones that have a class label as the 
consequent. All other rules are “filtered” out. Below is 
a simple example of a possible set of relevant rules.  
       
Table 1. Example of a set of relevant rules 
 
9 ^ 78 ^ 12 → C1     Sup. = 33.33%, Conf. = 66.67% 
7 ^ 1 ^ 9 → C1         Sup. = 50%, Conf. = 60% 
3 ^ 89 → C2             Sup. = 33.33%, Conf. = 100% 
 
        
      The more practical approach however is to make 
use of tools that directly generate association rules with 
the constraint that the consequent should be a class 
label rather than generating all the association rules and 
filtering out the irrelevant ones. 
 
2.1.2. Construction of the New Feature Space. This 
portion of the methodology is the crux. Based on the 
selective association rules obtained in the previous two 
steps, two new feature spaces are generated:  
              

(i) Rule Based feature Space. 
(ii) Class Based Feature Space. 

 
 
2.1.3. Rule Based Features. In the rule based feature 
conversion method, for every data point in the data set, 
a new feature vector is generated. The steps followed in 
doing this are simple. All the relevant association rules 
obtained in the previous steps are scanned. The rules 
whose antecedent is contained in the original attributes 
of the data point are checked. In the new feature vector 
every relevant rule generated is assigned two fields. 
The first field takes a value of 1 if the rule is marked 
(i.e. its antecedent is contained in the attributes of the 
data point) otherwise it takes a value 0. The other field 
is assigned the confidence value of the respective rule. 
A simple example follows: Let us consider the set of 
relevant rules in Table 1. 

Let the data points be :  
  
        23, 45, 8, 1, 3, 54, 7, 123, 89, 9, 17, C3 

            1, 4, 3, 12, 78, 9, 7, 52, 654, 89, 90, C2 
 
The rules whose antecedents are contained in the 
attributes of the first data point are the second and the 
third rule in Table 1 whereas the antecedents of all 3 
rules are contained in the second data point. 
 
The rule based feature vectors for these data points thus 
become: 
 
    Rule 1                    Rule 2                     Rule 3 

                                                                                                               
Rule 1                        Rule 2                     Rule 3 

 
2.1.4. Class Based Features. The methodology for 
obtaining the class based feature vector is similar to the 
rule based one. Here, too the rules are scanned and 
those rules whose antecedents are contained in the data 
point are marked.  
            The feature vector in this case, however, has a 
different construction. All the rules that are marked are 
examined for their respective consequents (i.e. class 
labels in this case). The new feature vector constructed, 
has two fields allocated for each unique class that the 
marked rules have as their consequents. The first field 
is given the value of the number of rules that have that 
class label as their consequents, and the other field is 
allocated  the average confidence values of all the rules 
to which that class applies. 
Continuing with our example : 
Two rules are contained in the first data point, the 
second rule and the third rule. Each of these rules has a 
unique class label in its consequent, rule 2 has class C1, 
and rule 3 has class label C2. Therefore there would be 
four fields in the new feature vector, two corresponding 
to class C1  and two to C2. Whereas in the second data 
point, all three rules are contained. The first two rules 
have the same class label C1, therefore the “Avg. Conf.” 
field in this case becomes 63.33 ( average of 66.67% 
and 60% of the first and second rules respectively) . 
The third rule is the only rule with the label C2 and 
therefore the Average Confidence is equal to the 
confidence of the rule. 
 
The feature vectors obtained are shown below : 
 

   
Conf. 

 
Marked 

   
Conf.   

 
Marked 

  
Conf. 

   
Marked 

66.67       0      60        1    100        1 

   
Conf. 

 
Marked 

   
Conf.   

 
Marked 

  
Conf. 

   
Marked 

66.67       1      60        1    100        1 



.             Class 1                             Class 2                                          

 
             Class 1                             Class 2                                          

 
 
2.2 Closed Frequent Patterns based Features 
 
      This approach of generating features is more 
straightforward. Here, the first step is the generation of 
all the closed frequent patterns corresponding to the set 
minimum support threshold. The patterns generated are 
then numbered from 1 to n (n being the number of 
closed frequent patterns). Next, given a data vector, all 
the generated patterns are scanned to see if they exist 
within the data vector. If a certain pattern does exist 
within  the data point, its corresponding number is 
assigned a “1” in the new feature vector, else it is 
assigned a “0”.  
      Again, considering a simple example. Let the set of 
closed frequent patterns generated that are subsequently 
numbered be: 
 
   
 
 
 
 
 
Let the original data vector be: 
  
      23, 45, 8, 1, 3, 54, 7, 123, 89, 9, 17, C3  
 
The patterns numbered 1, and 3 exist in the data vector 
whereas pattern number 2, and 4 are absent. Therefore 
the new feature vector becomes as shown below. Here 
the first field corresponds to the first pattern. Since it 
does exist within the data vector, the field is assigned a 
“1”. The other fields similarly correspond to the 
numbered patterns and are assigned relevant 
values. 
 
 
             
           
3. Experiments 
 
      The experiments were conducted on 4 datasets: 
Pima, Glass, Hayes-Roth, and Lymphography obtained 

from the UCI Machine Learning Repository [5]. The 
association rules corresponding to the closed frequent 
patterns for these datasets were generated using an ‘in-
house’ software. Several groups of association rules 
were generated corresponding to different minimum 
support thresholds within a restricted range (15 – 25% 
for Glass dataset, 1-51% for Lymphography, and 1-
11% for the others). The range was restricted because 
beyond the upper-bound, very few rules were generated 
to be of relevance. The same  software was also made 
use of to generate the closed frequent patterns. The 
minimum support threshold was deliberately kept the 
same as that for the association rules. 
      The rule based and class based feature conversion 
was carried out using the association rules generated 
from the closed frequent patterns only  and the closed 
pattern based feature conversion was carried out using 
the closed frequent patterns generated. 
       The classifier made use of was LIBSVM [7]. 10-
fold cross validation (which is performed by the 
classifier itself) was considered and the accuracy was 
calculated on the training data. The kernel used was the 
linear kernel. 
       All the new feature spaces obtained were first used 
independently to train the classifier and then combined 
with the original features and the combined features 
were used to train the classifier. Subsequently, the 
following combinations of features were also used: 

1. Rule-based + Class-based 
2. Rule-based + Class-based + Original Features 
3. Closed Frequent Patterns based features + 

Rule-based + Class-based + Original features 
(i.e. all features) 

The classification accuracy achieved is plotted against 
the different minimum support thresholds used for the 4 
datasets.            

3.1 Experimental Results 
 
       The results are plotted as the classification 
accuracy achieved as a percentage against the minimum 
support threshold also expressed as a percentage. The 
plots in Figures 1, 2, 3, and 4 are the accuracy versus 
support threshold for the four datasets respectively. The 
accuracy achieved using all the combinations 
mentioned above are plotted i.e. the new features 
independently, the new features in combination with the 
original features, and the three combinations indicated 
explicitly above. The accuracy achieved by the original 
features is also indicated in each of the graphs as a 
reference by 
a straight dotted line (above the line indicates an 
improvement in accuracy) 
           
       Figure1 shows the plot for the Glass dataset. Here, 
a demarcation is clear between the new features in 

No of 
rules 

Avg. 
Conf. 

No of 
rules 

Avg. 
Conf, 

        1       60         1      100 

No of 
rules 

Avg. 
Conf. 

No of 
rules 

Avg. 
Conf, 

        2       63.33         1      100 

1. 7,9 
2. 23,48,2 
3. 1,7,17 
4. 53,49,78,61 

    1     0     1    0 



combination with the original (which return a much 
higher accuracy) and the new features taken alone. 
Figures 2 and 3 show the plots for the Hayes-Roth, and 
the Pima datasets respectively. In these cases the 
difference between the two groups is not as marked as 
in Glass but broadly, the combined (i.e. the new 
features + original) perform better than the new features 
alone. Figure 4, for the lymphography dataset is a 
contrast, with the new features taken alone returning 
better accuracy results than when taken in combination 
with the original features. There is therefore no clear 
‘winner’. The only point that is consistent is the fact 
that the augmented features usually perform better. 
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Figure 1. Accuracy versus min.  support threshold for 
the Glass dataset 
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Figure 2. Accuracy versus min.   support threshold 
for the Hayes-Roth dataset 
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Figure 3. Accuracy versus min. support  threshold for 
the Pima dataset 
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Figure 4. Accuracy versus min. support threshold for 
the Lymphography dataset 
 
       Studying the behaviour of the accuracy achieved by 
the original features augmented by the various feature 
spaces, reveals certain notable points. The average 
(over the four data-sets) variation of the (rule-based + 
original) feature space is interestingly almost identical 
to the average variation of the original feature space 
augmented by the closed frequent patterns based 
features. The other feature spaces when combined with 
the original features have a tendency to gradually 
improve the accuracy achieved, with increasing 
minimum support threshold. This is illustrated in 
Figures 5, 6, 7, 8, 9. This behaviour of the feature 
spaces would compel us to conclude that the best 
accuracy results may be obtained using the features 
generated keeping the minimum support threshold as 
high as practicably possible, and using this feature 
space in combination with the original features.   
 
       Our approach is found to better the accuracy 
achieved by the original feature space in all the data-
sets. It is to be however noted that most of the time the 



improvement in accuracy is achieved only when new 
features generated enrich the original feature space. 
Independently each of the feature spaces falls short of 
the original features.   
            Figure 10 compares the best accuracy results 
obtained by each of the feature spaces in different 
combinations as also the original feature space. 
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Figure 5. Behaviour of the Original features 
when augmented with the Rule-based 
features. 
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Figure 6. Behaviour of the Original features 
when augmented with the Class-based 
features. 
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Figure 7. Behaviour of the Original features 
when augmented together with the Class-
based and the Rule-based features. 
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Figure 8. Behaviour of the Original features 
when augmented with the Frequent Closed 
Patterns based feature  space. 
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Figure 9. Behaviour of the Original features 
when augmented with all the new Feature 
Spaces together. 
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Figure 10.  A comparative chart of the results of different feature spaces (all values in %) 

 
 
 

 
 
Table 2: Accuracy values for different combinations of feature spaces 
 
 O R  C R+O C+O R+C R+C+O Cl Cl+O Cl+O+R+C
Pima 74.56 65.15 65.15 76.88 76.62 65.15   77.11 65.15 76.62       76.36 
Glass 57.00 31.63 31.63 63.26 64.19 65.15   66.05 33.49 61.86       62.79 
Hayes. 59.70 60.90 60.90 73.13 69.40 60.15   69.92 72.18 83.58       79.10 
Lymph. 50.42 62.42 62.42 57.33 67.33 62.42   57.38 55.03 55.33       60.67  

R: Rule –based; C: Class-based; O: Original ; Cl: Closed Freq. Pat. based 
 
 
 

 
5. Conclusion   
 
      A new approach to feature space conversion for 
classifiers was proposed and subsequently tested on a 
few datasets in this paper.  It was found to  substantially 
improve upon the accuracy achieved by  the original 
feature space alone. In spite of this we were unable to 
determine one clear ‘clear’ amongst the methodologies, 

and were able to more broadly conclude that the 
enrichment of the original feature space with the new 
features returned better results than considering either 
of the features separately.  
      More important however was the fact that this 
paper has opened doors to a fresh approach to feature 
conversion using association rules and frequent 
patterns. Future work could concentrate on the 



incorporation of further “implicit information” from 
these  rules and patterns into the feature vector. 
      Studying the behaviour of the classification 
accuracy achieved by using the various transformed 
feature spaces, against minimum support threshold , we 
were able to conclude  that the best results would be 
returned using the features generated from a small 
number of highly frequent association rules or patterns 
in combination with the original features. 
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