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Abstract—Traditional classification algorithms can be 
limited in their performance on imbalanced datasets. In 
recent years, the imbalanced data learning problem has 
drawn significant interest. In this work, we focus on 
designing modifications to neural network, in order to 
appropriately tackle the problem of multiclass imbalance. 
We propose a method that combines two ideas:  diverse 
random subspace ensemble learning with evolutionary 
search, to improve the performance of neural network on 
multiclass imbalanced data. An evolutionary search 
technique is utilized to optimize the misclassification cost 
under the guidance of imbalanced data measures. Moreover, 
the diverse random subspace ensemble employs the 
minimum overlapping mechanism to provide diversity so as 
to improve the performance of the learning and optimization 
of neural network. Furthermore, the ensemble framework 
can determine the optimal amount of non-redundant 
components automatically. We have demonstrated 
experimentally using UCI datasets that our approach can 
achieve significantly better result than state-of-the-art 
methods for imbalanced data. 

I. INTRODUCTION 
Recently, the class imbalance learning has been 

recognized as a crucial problem in machine learning and 
data mining [1, 2]. The issue occurs when the training data 
is not evenly distributed among classes. Imbalanced data 
learning is growing in importance and has been identified 
as one of the 10 main challenges of Data Mining [3]. This 
problem is also especially critical in many real 
applications, such as fraud detection and medical 
diagnoses. In these cases, standard classifiers generally 
perform poorly. Classifiers usually tend to be 
overwhelmed by the majority class and ignore the 
minority class examples. Most classifiers assume an even 
distribution of examples among classes, and are designed 
to maximize accuracy, which is not a good metric to 
evaluate effectiveness in the case of imbalanced training 
data. Therefore, we need to improve traditional algorithms 
so as to handle imbalanced data. 
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Much work has been done in addressing the class 
imbalance problem. These methods can be grouped in two 
categories: the data perspective and the algorithm 
perspective [4]. The methods with the data perspective 
re-balance the class distribution by re-sampling the data 
space either randomly or deterministically [5-7].  
Cost-sensitive learning tries to learn more characteristics 
of samples with the minority class by setting a high cost to 
the misclassification of a minority class samples [8-10]. 
Most existing imbalance data learning approaches so far 
are still limited to the binary class imbalance problems. 
The common approaches have been shown to be less 
effective or even cause a negative effect in dealing with 
multiclass tasks [9-10]. The multi-class imbalance 
problem poses a new challenge for classification task [9, 
11]. It is desirable to develop an effective method to 
handle the multiclass imbalance issue. 

We make the traditional cost-insensitive neural 
network classification algorithm into cost-sensitive by 
injecting the costs of misclassification into the output of 
posterior probability (CSNN) to overcome the multiclass 
imbalanced data classification issue. In the construction of 
cost sensitive learning, the parameter of misclassification 
cost plays an indispensable role. However, the appropriate 
cost cannot be required, and the empirical methods are not 
workable as the search space is expanded exponentially 
for the multiple classes as the number of imbalanced 
classes increases. We propose a new algorithm, called 
EDS (Evolutionary search combined with Diverse random 
Subspace ensemble), to help CSNN improving the 
classification performance on multiclass imbalanced data. 
In EDS, an evolutionary search method is used as the 
searching strategy to effectively search the optimum 
misclassification costs in the multiclass imbalance 
scenario according to the objective function defined with 
G-mean [12]. In addition, since combining multiple neural 
networks can achieve stronger generalization ability [13], 
we extend the random subspace method [14] to enhance 
the diversity by employing the minimum overlapping 
mechanism, so as to avoid overfitting in the procedure of 
the learning and optimization of CSNN. Furthermore, the 
ensemble can determine the optimal amount of 
non-redundant components automatically. 

  The outline of the paper is as follow: Cost sensitive 
neural network is described in Section 2. In Section 3, we 
describe the details of EDS-CSNN algorithm. In Section 4 
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we give experimental results of the evaluation of our 
algorithms. We conclude and present some future research 
directions in Section 5. 

II. COST SENSITIVE NEURAL NETWORK  
The main disadvantage of re-sampling techniques 

are that they may cause loss of important information or 
the model overfitting, as they change the original data 
distribution. Assigning distinct costs to the training 
examples seems to be the most effective approach to deal 
with the class imbalance problem [8-10, 15-16]. 

The cost-sensitive learning technique takes 
misclassification costs into account during the model 
construction, and does not modify the imbalanced data 
distribution directly. The standard neural network is cost 
insensitive. In standard neural network classifiers, the 
class returned is C* by comparing probability of each 
class directly for each instance x according to Eq.(1).  
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number of the class. 
The probabilities generated by standard neural 

network are biased in the imbalanced data distribution. To 
improve the recognition of the minority class, the 
probability a sample belongs to a certain class is replaced 
with the altered probability, which takes the 
misclassification costs into account, is found to be 
relatively a good choice in training CSNN [9]. This 
method uses the training set to construct a neural network, 
and the cost sensitivity strategy is introduced in the test 
phase. Given a certain cost matrix, the CSNN returns the 
class C*, which is computed by injecting the cost 
according to Eq.(2).  
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where Pi
* denotes the class probabilities from the neural 

network combined with misclassification cost. iη is a 

normalization term such that *
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III. THE OPTIMIZED COST SENSITIVE NEURAL NETWORK 
ON IMBALANCED DATA  

A. Threshold moving CSNN on binary class 
In the binary class classification, given a certain cost 

matrix, the CSNN will classify an instance x into minority 
class (+) if and only if: 
                 ( | ) ( ) ( | ) ( )P x cost P x cost+ + > − −             (3) 

Therefore the theoretical threshold for making a 
decision on classifying instances into minority is obtained 
as: 
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where Crf is ratio of two cost value, Crf= cost(+)/cost(-). 
Thus the final decision criterion is only decided by the 

ratio misclassification cost Crf. In the normal classification 
without considering the cost, Crf  is 1, that means both of 
the classes have the same weight. In the class imbalance 
scenario, we need to change the default decision threshold 
by adjusting the parameter of the Crf. The value of Crf  
plays a crucial role in the construction of CSNN, but the 
value is unknown in many domains where it is in fact 
difficult to specify the precise cost ratio information. It is 
not exact to set Crf by inverting the ratio of prior 
distributions between minority and majority class. 
Therefore, to achieve the best performance on the 
imbalanced data, we adjust Crf using a heuristic search 
strategy guided by evaluation measures. This is the 
method known as threshold moving [8, 16]. Adjusting the 
decision threshold can move the output threshold toward 
the inexpensive class such that instances with high costs 
become harder to be misclassified. The idea is based on 
the classifier producing probability predictions rather than 
classification labels, and it can converts any existing 
cost-insensitive classifiers into cost-sensitive ones.   

B. Evolutionary search CSNN on multiple classes 
For binary classes (M=2), we can iteratively search the 

best Crf for which the evaluation measure is maximized. 
However for a multiclass application (M>2), it is difficult 
to select the appropriate cost vector in the expanded space. 
Hence, searching an efficient cost setup becomes a critical 
issue for applying the cost sensitive neural network to 
multiclass applications. We propose a method that we call 
ECSNN (Evolutionary search CSNN), which employ an 
evolutionary technique to carry out the meta-learning for 
searching an optimal class cost setup, which will be 
applied to the CSNN algorithm trying to improve the 
classification performance of the imbalanced datasets. 

The popularity of evolutionary search has also 
instigated the development of numerous data mining 
algorithms [17]. In evolutionary search approach, 
individuals of a swarm move through a solution space and 
look for solutions for the data mining task at hand. We 
utilize the evolutionary search method as the optimization 
strategy to search the cost. The Artificial Bee Colony 
(ABC) algorithm is a swarm-based algorithm that was 
introduced based on the intelligent foraging behavior of 
honey bee swarms [18]. In the ABC algorithm, the position 
of a food source represents a possible solution to the 
optimization problem and the nectar amount of the food 
source corresponds to the quality (fitness) of the associated 
solution. It consists in a set of possible solutions xi that is 



represented by the position of the food sources. On the 
other hand, in order to find the best solution, three classes 
of bees are used: employed bees, onlooker bees and scout 
bees. These bees have different tasks in the colony. In a 
robust search process, exploration and exploitation 
processes must be carried out together. In the ABC 
algorithm, onlookers and employed bees carry out the 
exploitation process in the search space, and the scouts 
control the exploration process. The process is repeated 
through a predetermined number of cycles, called 
Maximum Number of Cycle (MCN). From the results 
obtained in [19], it can be concluded that the performance 
of the ABC algorithm is better than or similar to that of a 
Genetic algorithm and Particle swarm optimization 
although it uses less control parameters and it can be 
efficiently utilized for solving multimodal and 
multidimensional optimization problems.  

ABC algorithm can optimize the proper class cost 
parameters based on the posterior probabilities produced 
by the neural network to maximize the performance 
measure. According to the specific objective function of 
artificial bee colony, we can optimize the class cost vector 
to achieve the optimum classification performance. In the 
procedure of searching for the best class cost vector, 
evaluation measures play a crucial role in both assessing 
the classification performance and guiding the modeling 
of the classifier. For imbalanced datasets, the evaluation 
metric should take into account the imbalance. The 
average accuracy is not an appropriate evaluation metric.  
We used G-mean as the fitness of the ABC algorithm to 
guide the optimization process. The G-mean is the 
geometric mean of accuracies measured separately on 
each class, which is commonly utilized when performance 
of both classes is concerned and expected to be high 
simultaneously. This metric has been used by several 
researchers for evaluating classifiers on imbalanced 
datasets. 
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We set the cost values for instances in the same class 
with an identical value. Let Cost(Ci) denote the cost value 
of class i. Cost values of M classes then make up a cost 
vector [Cost(C1), Cost(C2), …, Cost(CM)]. Since only the 
ratio of costs is effective, we set the cost of the largest 
class to 1, thus there are M-1degrees of freedom. This cost 
vector is encoded in each bee.  

In order to optimize class cost parameters with 
avoiding overfitting, the training data is partitioned into 
two subsets, training subset and validation subset. The 
training subset is used to construct the cost sensitive neural 
network classifier that yields posterior probabilities, while 
the validation subset is used for obtain the optimal cost 
vector. The detailed algorithm of ECSNN is shown in 
Algorithm 1. The wrapper paradigm can discover the 

bestCostVector for a dataset based on optimizing 
evaluation functions. When predicting test instance, all the 
class posterior probabilities have to be multiplied with the 
corresponding cost parameter.  The algorithm belongs to 
the post-processing strategy, which does no change the 
data distribution and distorting the information like 
re-sampling techniques. 

Algorithm 1 ECSNN  
Input: Training set TrainingSet, Test set TestSet, Maximum 
Cycle Number MCN; Population size SN; Limit limit 
Training phase: 
1. Separate TrainingSet into TrSet  (80%) for training and 

ValSet  (20%) for validation  
2. Construct a classifier L on the TrSet; 
3. Predict probability estimates on the ValSet   
4. Initialize the food source positions xi, i =1...SN 
5. Obtain the G-mean GMi with the CostVector optimized in xi  
6. cycle=1 
repeat 
7.    Produce new solutions xi

’ for the employed bee and evaluate 
them with G-mean 

8.     Apply the greedy selection process 
9.     Calculate the probability pi for the solutions xi

’ 
10. Produce new solutions vi for the onlooker from solutions xi

’ 
selected depending on pi and evaluate them 

11. Apply the greedy selection process 
12. Determine the abandoned solution for the scout according 

to the value of limit, if exists, and replace it with a new 
randomly produced solution 

13. Memorize the best solution achieved so far; cycle++ 
until cycle=MCN 
14. Obtain the bestCostVector from the best solution  
Test phase: 
15. Generate probabilities of each instance on the TestSet with L  
16. Obtain the class of each instance with bestCostVector using 

Eq.(2) 

C. ECSNN  combined with diverse random subspace 
ensemble, EDS-CSNN 

The ECSNN algorithm introduced above is based on the 
outputs of neural network on the whole feature space. The 
performance of optimization by ABC searching in 
ECSNN depends on the outputs of posterior probabilities 
generated by neural network. However, the outputs 
generated may be not accurate due to irrelevant features or 
noisy instances.  Moreover, the imbalanced problem is 
often accompanied by high dimensional data in the 
practical domain [20-21]. All the issues can decrease the 
performance of ECSNN. Therefore, we propose an 
ensemble, diverse random subspace, an improvement of 
random subspace [14], can provide an effective and 
diverse framework to improve the performance of 
learning and optimization of ECSNN (EDS-CSNN).   

The use of different spaces for ensemble construction 
has been extensively explained in recent research. Ho 
showed that the random subspace was able to improve the 



generalization error [14]. In the random subspace method, 
individual classifiers are built by randomly projecting the 
original data into feature subspaces and training a proper 
base-learner on these subspaces. Since the random 
subspace combines multiple classifiers of this type, each 
with a random bias based on the features it sees, random 
subspace often prove more effective than learning the base 
classifier on all of the features. 

Since diversity is known to be an important factor 
affecting the generalization performance of ensemble 
methods, several means have been proposed to get varied 
base-classifiers inside an ensemble. We propose an 
improvement of random subspace method, called diverse 
random subspace in order to obtain more diversity in each 
classifier. The common random subspace method is 
extended by integrating bootstrapping samples to obtain 
more diversity in each classifier at first. In the 
bootstrapping method, different training subsets are 
generated with uniform random selection with 
replacement. In addition, in the random subspace method, 
different features in each training subsets are randomly 
chosen for producing component classifiers. However, 
this cannot ensure the diversity of each subset since the 
instances and the features are chosen randomly. 
Therefore, for improving diversity between each subset, 
we use a formulation to make sure each subset is diverse. 
Firstly, we introduce a concept of overlapping rate: 
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where the subset is the subset within a certain subspace, 
Nfea and Nins are the feature size and instance size of each 
subset. All the subsets are of equal size; e.g., in Figure 1, 
the overlapping rate is 16%. 

          
          
          
          
          
          
          
          
          
          

Figure 1 The overlapping rate between two subsets 

In addition, we guarantee that the class ratio of each 
subset follows the one of the original training data 
distribution. We quantify data diversity between each 
subset with the data overlapping region, which measures 
the proportion of feature and instance subspace overlap 
between the training data of different classifiers in the 
ensemble. We then introduce a threshold Tover to control 
the intersection between each subset. The overlapping 
rate of all the subsets needs to be smaller than the 
threshold Tover. Therefore Tover is critical to the 
performance of the ensemble. If it is too large, the 
subsets lack diversity. If it is too low, the ensemble size 

is small, diminishing the advantage of ensemble 
classification. It is a trade-off between the diversity and 
the required ensemble size.  

Through quantifying data diversity between each subset 
for a component classifier with the data overlapping 
region which measures the proportion of feature and 
instance subspace overlap between the training data of 
different classifiers in the ensemble, we can guarantee the 
diversity of subsets provided to each classifier, and at the 
same time provide a way to adaptively determine in an 
iterative way the number of classifiers in the ensemble. 
The GenerateDiverseSets algorithm can be described as 
in Algorithm 2. The function isDiverse(Ds

k, 
DiverseSet, Tover) examines if the new projection Ds

k is 
diverse enough from the previously collected 
projections in DiverseSet based on the overlapping 
region threshold Tover. The generation of projections stops 
when there is stagnation – i.e. after enough trials, no new 
projection is diverse enough from the collected subspaces. 
Hence, the number of individual classifiers is determined 
dynamically. 

Algorithm 2 GenerateDiverseSets 
Input: Training set TrainingSet, Ratio of bootstrap samples 

Rs, Ratio of feature subspace Rf，Overlapping region 
threshold Tover, Stagnation rate sr=100 

1.  change=0; DiverseSets={}; 
while change<sr do 

2.      A bootstrap sample Ds selected with replacement  from   
     TrainingSet with Rs 

3.      Generate subset Ds
k
  by selecting a random subspace   

     with Rf  
          if isDiverse(Ds

k, DiverseSets, Tover)==true  
4.           then DiverseSets->add(Ds

k); change=0;    
5.      else change=change+1;  
         end if 

end while 
Output: DiverseSets  

 
Algorithm 3 EDS-CSNN 

Input: Training set TrainingSet, Test set TestSet, Ratio of 
bootstrap samples Rs, Ratio of feature subspace Rf，
Overlapping region threshold Tover, 

Training phase: 
1. DiverseSets = GenerateDiverseSets(TrainingSet, Rs, Rf, 

Tover);  
for each subset Dk

 in DiverseSets 
2.       Construct a classifier Lk in Dk

 

3.       Obtain bestCostVector  according to the Algorithm 1. 
4.       Lk->Subspace= subspace(Dk) 
5.       Lk->bestCostVector = bestCostVector 
6.      Ensemble=Ensemble∪Lk 

end for 
Testing phase: 
7. Calculate output from each classifier Lk of Ensemble with its 

bestCostVector in its Subspace on the TestSet   
8. Generate the final output by aggregating all the outputs  



After obtaining the diverse set, both the construction of 
neural network and optimization of class costs are 
conducted on each subspace instead on the whole feature 
space, then ultimately combine classifiers with different 
characteristics and achieve improved performance. 
Therefore, varying the feature subsets gives an 
opportunity to control the diversity of the feature sets 
provided to each classifier in the ensemble and capture 
possible patterns that are informative on classification. 
The procedure of training and optimization of CSNN can 
be carried out in parallel to reduce the learning time. In 
addition, each CSNN classifier is modeled in the reduced 
subset with fewer instances and features. Hence the 
computational time is acceptable. Algorithm 3 illustrates 
the EDS-CSNN algorithm. 

IV. EXPERIMENTS 

A. Dataset description 
We choose twelve publicly available datasets from 

different domains with differing levels of class imbalance 
and number of class. Table 1 shows the varying 
characteristics of the datasets, which are comprised of a 
mixture of continuous and nominal values.  

Table 1. The data sets used for experimentation 
Dataset C Inst. F Class distribution 

Cmc 3 1473 9 629/333/511 
Balance 3 625 4 49/288/288 
New Thyroid 3 215 5 150/35/30 
Car 4 1728 6 1210/384/69/65 
Annealing 4 898 38 8/99/684/67/40 
Nursery 4 12958 8 4320/328/4266/4044 
Page 5 5473 10 4913/329/28/88/115 
Ecoli 5 327 7 143/77/52/35/20 
Cleveland 5 303 13 164/55/36/35/13 
Glass 6 214 9 70/76/17/13/9/29 
Satimage 6 6435 36 1533/703/1358/626/707/1508 
Yeast 10 1484 9 463/429/244/163/51/44/35/30/20/5 

B. Experiment design 
In our empirical experiments, the Backpropagation 

neural network is employed as the base learner in our 
empirical experiments. The number of input neurons is 
equal to the number of features for each dataset, and the 
number of neurons in the hidden layer is set to be 10. The 
sigmoid function is used as the activation function, and the 
inner training epochs is set to be 200 with a learning rate 
of 0.1. All of methods in the comparison were 
implemented in Java on the platform of the WEKA  

Like most of the optimization algorithms, the ABC 
algorithm also has control parameters to be set before 
running the algorithm. According to the introduction of 
ABC above, it is clear that there are three control 
parameters of basic ABC: the number of food sources 
which is equal to the number of employed or onlooker 
bees (SN), the value of limit (limit) and the maximum 

cycle number (MCN). We set the SN twice as many as the 
number of classes in our experiment. Through 
experiments, we found that the optimization can get a 
good and stable solution before the 500 cycles, thus the 
MCN is set to 500. The control parameter limit is the core 
parameter of the algorithm dictating the occurrence of 
scout bees that are responsible for providing the diversity 
in the population. We set the limit as the square of the 
number of class, which is generally appropriate. 

C. Experiment I: Evaluating the effectiveness of 
EDS-CSNN 

In this experiment, we assess the performance of the 
EDS algorithm on the CSNN and compared it with 
original random subspace (ES-CSNN) as well as the 
single ECSNN. In ES-CSNN and ECSNN, each training 
set is separated randomly into training subset  (70%) for 
training cost sensitive classifier and validation subset 
(30%) for adjusting decision threshold. The ensemble size 
of ES-CSNN is set to 50. In the construction of 
EDS-CSNN, we enforce the independence of each subset 
by minimizing the overlapping region among the subsets 
for each classifier in the ensemble. This approach allows 
us to determine the ensemble size adaptively with a 
certain overlapping region threshold. Since ES-CSNN 
has a limit on the ensemble size, to have a fair 
comparison, we set the maximum of the ensemble size 
of diverse random subspace to the same limit, typically 
fixed at 50. To that end, we selected the first 50 from 
the DiverSets if the limit is exceeded. In diverse random 
subspace, the ratio parameters are under the default 
condition where the ratio of bootstrap sampling Rs is 0.7 
and the ratio of features Rf is 0.5.  

Here we vary the value of Tover to exploit the 
relationship between Tover and classification performance. 
The range of Tover is [0.2, 0.5], the step is 0.02. For each 
value of Tover, 10-fold cross validation is conducted to 
obtain the average value. For space considerations, we 
only show the results on Page dataset in Figure 2. 
Figure 2 shows the performance of single ECSNN, 
ES-CSNN and EDS-CSNN with varying Tover. 
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Figure 2. The classification performance when varying the threshold 
parameter Tover on Page dataset 

From Figure 2, we can see the result of G-mean 
changes as we vary the value of Tover in EDS-CSNN. A 



smaller Tover represents stronger diversity in the subsets. 
Increasing the value of Tover loosens the restriction of 
diversity. EDS-CSNN can outperform the single ECSNN 
and ES-CSNN when Tover gets to a certain value. We can 
see that the best overlapping parameter was 30% for Page 
dataset and the corresponding G-mean value is 0.744.  

What should the value of Tover be? Clearly, this value 
should not be constant as the optimal value of Tover 
depends on the distribution of the dataset. It determines 
the diversity and number of components, so as to affect the 
final performance directly. Therefore, we have to estimate 
the optimal parameter for obtaining the best performance 
on each dataset. In order to estimate the optimal parameter 
Tover for obtaining the best performance, the threshold Tover 
is chosen by cross validation in the data set. In imbalanced 
data case, available data instances, mainly instances of the 
minority classes, are insufficient for traditional cross 
validation in the training set. For this reason, we randomly 
divided the original data set into two sets: the training set 
(80%) and the validation set (20%) for measuring the 
performance of each Tover. This process is repeated 10 
times, and then an average G-mean result for each Tover is 
obtained.  The output is a Tover which obtains the best 
G-mean value among all tests. We also optimize the 
optimal Tover for diverse random subspace framework 
methods combined with traditional neural network (NN) 
and CSNN with default cost setup separately. In the 
default CSNN, the misclassification cost for class Ci is set 
to ImbaRatioi which is the size ratio between the largest 
class and each class Ci. After obtaining the individual 
optimal Tover for diverse random subspace framework; we 
compare the performance of the three different types of 
neural network classifiers working on the single model, 
original random subspace with a fixed ensemble size, as 
well as our diverse random subspace separately. All the 
experiments are carried out by 10-fold cross-validation. 
For the diverse random subspace framework, the section 
of the 10 fold cross validation is totally independent from 
the one of cross validation for obtaining the optimal Tover. 

It is clear from the experimental results in Table 2 that 
EDS-CSNN obtained the best result on the majority 
datasets. This indicates that diverse random subspace 
ensemble with evolutionary search optimizing is a very 
effective strategy for cost sensitive neural network. 
Diverse random subspace method emphasizes ensemble 
diversity explicitly during training, so as to enhance the 
learning of neural network and optimization of cost 
parameters. Moreover, each CSNN constructed in the 
individual subset under different subspaces can find 
potentially interesting local data characteristic and 
property. Especially for the datasets with high 
dimensional feature such as Annealing and Satimage, 
EDS-CSNN offers a great advantage over other solutions. 
Furthermore, the diverse subset construction can achieve 
better performance than the complete ensemble on the 

imbalanced data. The result indicates that the diversity in 
the ensemble can facilitate class imbalance learning. 
However, diverse random subspace ensemble cannot 
achieve the best result on some low dimensional datasets, 
such as Balance and New Thyroid which have 4 and 5 
attributes respectively. That is because the random 
subspace method is more effective when datasets have a 
large numbers attributes. Note that even the original 
random subspace was not the winner on these small 
dimensional datasets. With a very small number of 
attributes, each classifier receives a small set of features 
and thus is weak. 

Furthermore, regardless of the single or ensemble 
model, the artificial bee colony optimization improves the 
performance of traditional cost sensitive neural network. It 
demonstrates the misclassification cost based on the prior 
distributions between two classes is not appropriate, 
resulting in obtaining an unexpected performance. The 
optimization method can achieve the optimum 
misclassification cost under the guidance of G-mean, so as 
to achieve the best performance. Table 2 also lists the 
optimal Tover value and the corresponding ensemble size of 
EDS-CSNN. We found that the size is smaller than 50 on 
the majority cases. The results reveal that diverse random 
subspace can generate an ensemble model with smaller 
sizes but stronger generalization ability. 

D. Experiment II: Comparing EDS-CSNN with 
the-state-of-art methods for imbalanced data learning 

After finding out that EDS-CSNN method can 
improve the classification performance of neural network, 
we empirically assessed the algorithm against the 
state-of-the art methods for multiclass imbalanced data 
learning, such as Editing Nearest Neighbour rule 
under-sampling (ENN) [7], SMOTEBoost (SMB) [5], 
Random subspace method combined with SMOTE 
(SM-RSM) [6], MetaCost (MC) [10] and AdaBoost.NC 
combined with random over-sampling (ANCOS) [11]. 
ENN does not require a user specified under-sampling 
ratio and K is set to 3. For SMB and SM-RSM, the nearest 
neighbor parameter k is set to 5, the most accepted value in 
the literature. For the over-sampling methods including 
SMB, SM-RSM and ROS, the amount of new data for a 
class Ci is set to be the size difference between the largest 
class and class Ci. In the setting of MC, the 
misclassification cost for class Ci is set to ImbaRatioi 
which is the size ratio between the largest class and each 
class Ci. ANCOS approach utilized AdaBoost.NC [22] 
that combines the strength of negative correlation learning 
and random over-sampling to address the multiclass 
imbalanced data classification. The penalty strength 
parameter in AdaBoost.NC is set 9.  The sizes of 
components are 50 in the all ensemble classifiers. Table 3 
summarizes the performance of the compared algorithms, 
in which the best performance for each dataset is 



highlighted. It is evident from Table 3 that EDS-CSNN 
outperforms the current re-sampling and cost-sensitive 
learning strategies on 8 of 12 datasets.  

ENN is the worst method since it is hard to identify the 
noise when the distribution is complex and imbalanced. 
Some border points may also be removed as noise while 
they are useful for training, resulting in loss of 
information. Both SMB and SM-RSM benefit from the 
diversity of the ensemble framework. However they 
manipulate the instances blindly without taking into the 
majority class consideration, resulting in generating noise 
instance. The diversity characteristic of ANCOS can 
improve the generalization performance, but random 
over-sampling may result in overfitting for minority class. 
MetaCost performs slightly worse than the other advanced 
methods. It may be because the ratio misclassification cost 
based on the size ratio between two classes is not 
appropriate, which reveals again that the misclassification 

cost is vital for cost sensitive learning, and needs to be 
searched by some heuristic methods. 

We seek to determine whether our approaches 
significantly outperform the state-of-the art methods. In 
order to evaluate the significance of the results, we 
performed a statistical analysis of our results. Following 
Demsar’s recommendation in [23], we concluded that 
there is a significant difference among the methods by 
applying Friedman test. Since the null hypothesis is 
rejected we have to proceed with further analysis to better 
understand the behavior of the classification algorithms. 
We performed a series of Wilcoxon tests and provide the T 
value for our EDS-CSNN against all contenders in Table 
3. Since there are 12 datasets, T should be less than or 
equal to 13 to reject a null hypothesis in the significance 
level of 0.05, according to the critical value table. One can 
conclude that EDS-CSNN statistically outperform the 
other state-of-the-art methods for imbalanced data 
methods at a significance level of 0.05. 

Table 2. The comparative results of the neural network methods in terms of G-mean on the multiclass class 
Datasets Single Random subspace Diverse random subspace  

NN CSNN ECSNN NN CSNN ECSNN NN CSNN ECSNN 
G-mean G-mean G-mean G-mean Tover size 

Cmc 0.714 0.745 0.723 0.738 0.763 0.744 0.738 0.764 0.783 0.44 36 
Balance 0 0.214 0.557 0 0.232 0.528 0 0.226 0.532 0.32 29 
New Thyroid 0.875 0.921 0.946 0.889 0.919 0.902 0.887 0.911 0.908 0.22 21 
Car 0.752 0.815 0.837 0.766 0.827 0.853 0.807 0.834 0.879 0.36 35 
Annealing 0.921 0.930 0.928 0.939 0.945 0.948 0.933 0.947 0.961 0.5 50 
Nursery 0.462 0.637 0.769 0.557 0.644 0.781 0.581 0.639 0.798 0.3 29 
Page 0.654 0.693 0.703 0.659 0.701 0.722 0.688 0.718 0.741 0.3 31 
Ecoli 0.816 0.822 0.846 0.831 0.834 0.867 0.829 0.834 0.863 0.26 24 
Cleveland 0.171 0.186 0.221 0.164 0.191 0.235 0.168 0.197 0.264 0.28 43 
Glass 0.374 0.424 0.535 0.429 0.438 0.589 0.426 0.440 0.578 0.28 28 
Satimage 0.786 0.806 0.821 0.827 0.842 0.878 0.833 0.842 0.894 0.5 50 
Yeast 0 0.232 0.278 0 0.323 0.385 0.254 0 0.406 0.38 36 

 
Table 3. G-mean on 12 UCI datasets for several classification methods 

Datasets MC ANCOS ENN SMB SM-RSM EDS-CSNN 
Cmc 0.685 0.744 0.719 0.749 0.742 0.783 
Balance 0.348 0.516 0 0.542 0.514 0.532 
New Thyroid 0.921 0.929 0.890 0.922 0.905 0.908 
Car 0.821 0.858 0.579 0.848 0.854 0.879 
Annealing 0.928 0.944 0.928 0.931 0.954 0.961 
Nursery 0.759 0.808 0.758 0.811 0.802 0.798 
Page 0.737 0.736 0.684 0.739 0.741 0.741 
Ecoli 0.842 0.847 0.786 0.871 0.839 0.863 
Cleveland 0.204 0.249 0.027 0.142 0.075 0.264 
Glass 0.515 0.554 0.425 0.557 0.561 0.578 
Satimage 0.834 0.865 0.825 0.841 0.864 0.894 
Yeast 0.138 0.237 0 0.327 0.263 0.406 
T 1 8 0 10 2 — 

E. Experiment III: Evaluating the diverse random 
subspace ensemble on binary class 

In the binary class, there is only one parameter (Crf) 
need to be optimized. Threshold searching can obtain the 
optimal Crf for CSNN. We choose five binary datasets to 
evaluate the performance of the diverse random subspace 
ensemble with Threshold moving CSNN (TDS-CSNN). 

Detailed information of the datasets can be found in Table 
4. From Table 5 it is apparent that TDS-CSNN obtains the 
best G-mean as compared to the other considered 
algorithms on all the datasets except Breast Cancer. It 
demonstrates that the characteristic of the diversity in 
diverse random subspace can help in improving the 
searching of cost parameter and generalization 
performance for CSNN on the binary class datasets. 



 
 

 

Table 4. The binary class datasets used for experimentation 
Dataset C Inst. F Class distribution 

German 2 1000 24 300/700 
Pima 2 768 8 268/500 
Sick 2 3772 29 231/3541 
Spambase 2 4601 57 1813/2788 
Breast Cancer 2 699 9 458/241 

Table 5. The G-mean results for several classification methods on the 
binary class imbalanced datasets 

Datasets MC ANCOS ENN SMB SM-R
SM 

TDS- 
CSNN 

German 0.675 0.775 0.651 0.747 0.758 0.796 
Pima 0.759 0.782 0.755 0.782 0.731 0.798 
Sick 0.876 0.903 0.844 0.885 0.889 0.912 
Spambase 0.837 0.861 0.825 0.843 0.855 0.863 
Breast Cancer 0.957 0.978 0.926 0.953 0.972 0.968 

V. CONCLUSIONS 
In practice, many problem domains have more than 

two classes with uneven distributions, but there are fewer 
solutions in multiclass imbalance problems. In this paper, 
we present EDS framework for cost sensitive neural 
network in order to advance the classification of 
multiclass imbalanced data. The key characteristics of 
EDS are cost searching and ensemble learning. In EDS, 
artificial Bee Colony algorithm is employed to search the 
optimal misclassification cost parameters from the 
available data; and diverse random subspace offers a good 
framework for imbalanced data learning as it produces 
varied and complementary base classifiers by explicitly 
encouraging the diversity of subsets used by each 
classifier. The proposed method provides an effective 
solution to deal with the multi-class imbalance problems. 
The experimental results show that the improved 
algorithm significantly outperforms existing methods over 
a variety of datasets. It also demonstrates the optimization 
of cost setup and ensemble learning are two critical factors 
to improve the cost sensitive learning.  

As a new method for imbalanced learning problems, 
there are several interesting future research directions for 
EDS framework. First, we will apply strategy of EDS to 
other existing cost sensitive classifiers with different 
fitness functions. Second, we fixed the two ratios of 
sampling Rs and Rf  according to the default settings of 
bootstrap and random subspace ensemble in our work. We 
would like to automatically find the optimal value for 
these parameters based on a given dataset. 
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