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Abstract Finding communities is an important task for the discovery of underlying

structures in social networks. While existing approaches give interesting results, they

typically neglect the fact that communities may overlap, with some hub nodes partic-

ipating in multiple communities. Similarly, most methods cannot deal with outliers,

which are nodes that belong to no germane communities. The definition of community

is still vague and the criterion to locate hubs or outliers vary. Existing approaches

usually require guidance in this regard, specified as input parameters, e.g., the num-

ber of communities in the network, without much intuition. Here we present a general

community definition and a list of requirements for a community mining metric. We

review advantages and disadvantages of existing metrics and propose our new metric

to quantify the relation between nodes in a social network. We then use the new metric

to build a visual data mining system, which first helps the user to achieve appropriate

parameter selection by observing initial data visualizations, then detects overlapping

community structure from the network while also excluding outliers. Experiment re-

sults verify the scalability and accuracy of our approach on real data networks and

show its advantages over existing methods that also consider overlaps. An empirical

evaluation of our metric demonstrates superior performance over previous measures.
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1 Introduction

Many datasets of scientific interest can be modeled as networks, which consist of sets of

nodes representing entities, connected by edges representing various relations between

these entities. For example, the World Wide Web (WWW) can be viewed as a very

large graph where nodes represent web pages and edges represent hyperlinks between

pages. In social networks, nodes typically represent individuals and edges indicate

relationships, e.g., in a tele-communication network, each node is a phone number and

edges represent the fact that two nodes communicated. In such networks, the ability

to detect closely-related entity groups, i.e., communities, can be of significant practical

importance. For instance, the fact that web pages in the same community might focus

on related topics can be used to help page ranking and recommendation. Social network

communities can be used to understand implicit network structures, e.g., organization

structures, academic collaborations or usage pattern in tele-communication networks.

In recent years, there has been a surge of research interests on finding communities

in networks. A community (or cluster) can be seen as a subgraph such that the density

of edges within the subgraph is greater than the density of edges between its nodes

and nodes outside it [1]. Existing community detection approaches, such as spectral

clustering [2], modularity-based [3] and density-based methods [4] achieve good results

for some datasets, and have proposed various metrics to measure the similarity between

social entities. However, all of them implicitly define communities based on metrics

which measure only partial aspects of the social network, thus existing community

definitions can only identify specific types of communities. A new metric is needed to

more thoroughly quantify the relation between two social entities.

Recent studies have also revealed that network models of many real world phe-

nomena exhibit an overlapping community structure, i.e., a node can belong to more

than one community, which is hard to take into account with classical graph cluster-

ing methods where every vertex of the graph belongs to exactly one community [5].

This is especially true for social networks, where individuals can connect to several

groups in the network as hubs. Furthermore, in real networks we also have another

node category, which belongs to no community, i.e., outliers. Therefore, a typical social

network consists of communities, hubs and outliers. It is essential for community dis-

covery methods to identify nodes in these three categories, since the isolation of hubs

and outliers can be crucial for many applications. Unfortunately, a precise description

of what a community really is has not yet been explicitly articulated. Moreover, the

definition would be different across various domains, or even across different networks

of the same domain. Therefore, most proposed approaches [1,6,7,5,4] for overlapping

community detection require the user to describe the communities they are looking for

by giving parameters, e.g., community size, density range, the number of communities,

etc. However, appropriate parameters are usually extremely hard to determine with-

out tedious and repeated testing. Moreover, arbitrary parameters may over-restrain the

space in which communities are found and lead to inaccurate results. Overall, if the

real value of community identification is to be achieved, we want tools that form the

basis for community mining, so that useful and interesting structure emerges without

too much parameter estimation required.

In this paper, we first define social network communities with a list of requirements

for a community mining metric, based on observations of social network characteris-

tics. After reviewing the advantages and disadvantages of existing metrics, we propose

the R (Relation) metric to measure the similarity between any pair of entities in a so-
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cial network, then show its advantages by comparison with existing metrics. We then

propose our approach ONDOCS (Ordering Nodes to Detect Overlapping Community

Structure). Our visual data mining approach first generates preliminary visualizations

of the network in question by ordering nodes based on their reachability scores (RS)

to help the user understand the network structure in order to choose appropriate pa-

rameters. Selected parameters are then used to extract communities, hubs and outliers

from the network. We offer the following contributions in this paper:

– A new metric R to quantify the relation between entities.

– A visual data mining approach to assist the user in finding appropriate parameters

to describe the communities they are looking for.

– A scalable and efficient method to discover communities, hubs, and outliers in social

networks.

The rest of the paper is organized as follows. We discuss related work in Section 2.

Section 3 introduces our community definition and reviews existing metrics. We present

our R metric and the ONDOCS approach in Section 4 and report experimental results

in Section 5, followed by conclusions in Section 6.

2 Related Work

Community Mining. The problem of finding communities in social networks has

been studied for decades in many fields, including computer science, sociology, and

physics. Originally, graph partitioning methods [8,9,2] were applied, but researchers

soon realized that the condition for graph partitioning methods to be valid is that the

number or the sizes of the communities into which the networks are divided should

be fixed, which is not true for community mining. Various benefit functions have been

proposed to solve the problem, such as normalized cut [8] and min-max cut [9], but

they are still biased in favor of divisions into equal-sized parts and thus still suffer

from the same drawbacks that make graph partitioning inappropriate for community

detection. Recently, many quality metrics for community structure have been proposed

[3,10,4]. Among them, modularity Q has been proved to be the most accurate [11] and

has been pursued by many researchers [10,12–16]. While all previous works focus on

clique communities (defined in Section 3.1) and apply hierarchical methods, Xu et al.

[4] propose the density-based SCAN algorithm to detect transitive communities (also

defined in Section 3.1) and locate hubs and outliers in networks. However, all those

metrics focus only on one type of community and do not consider a general community

definition, not the whole picture of community mining in social networks, thus none of

them satisfy all of the requirements listed in Section 3.

Overlapping Community Structure Detection. In general, there are two ways

to detect overlapping community structure in a network. One natural idea is to first

globally partition the network and then locally expand the discovered communities to

locate overlapping components. Wei et al. [17] partition the network using the spectral

clustering method and then locally expand to optimize a variation of the Modularity Q

measure [3]. For overlapping community discovery in a name-entity network, Li et al.

[18] generate community cores by merging triangles (3-clique) so that one vertex can

be part of different communities if it belongs to several cliques. Similarly, Baumes et al.

[19] initialize community cores using the Link Aggregate (LA) Algorithm and then re-

fine the peripheries by an Iterative Scan (IS) procedure. Another mainstream research
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direction for this problem is based on fuzzy clustering. Zhang et al. [20] combine mod-

ularity and a fuzzy c-means clustering algorithm to identify overlapping communities.

Nepusz et al. [7] propose a similarity function based on membership, and solve the fuzzy

community detection problem as a constrained optimization problem. Recently, Palla

et al. [5] propose the CFinder system to partition complex networks to k-clique com-

munities, where k is a given parameter as clique size. Gregory proposes the CONGA

algorithm [1] based on the betweenness score [3] and later extends it to the CONGO

algorithm to improve the scalability [6]. He also shows that CONGO provides the same

level of performance as CFinder, on synthetic networks. While all of the above meth-

ods successfully detect overlapping community structure, some major problems exist.

Most methods do not consider outliers, which belong to no communities, thus many

outliers would be classified as community members, i.e., they force outliers into existing

clusters. Additionally, the fact that they intentionally focus on overlapping community

structure makes them find or force overlap even for data without such structure. More

importantly, many approaches not only require parameters that are difficult to deter-

mine but also their results are very sensitive to parameter settings, e.g., number of

communities [1,20], community density [5,18], or size of a local community region [6].

Visual Data Mining.

Most community mining approaches apply data mining algorithms, e.g, agglom-

erative hierarchical clustering for a bottom-up merge, or partitional clustering for a

top-down split. Having noted that community mining is also a data mining process,

we believe that the idea of visual data mining could be helpful in the mining process,

both to guide the mining towards goals, and to better understand the results, since

visualization and interaction capabilities enable the user to incorporate domain knowl-

edge to finding communities in social networks. Generally speaking, the areas of data

mining and information visualization offer various techniques which effectively com-

plement one another supporting the discovery of patterns in data. Whereas traditional

(algorithmic) techniques are analyzing the data automatically, information visualiza-

tion techniques can leverage the data mining process from an orthogonal direction, by

providing a platform for understanding the data and generating hypotheses about the

data based on human capabilities such as domain knowledge, perception, and creativ-

ity [21]. In the past few years, visualization techniques have been specifically designed

to support human involvement in the data mining process. For example, Ankerst et

al. [22] propose an interactive decision tree classifier based on a multidimensional vi-

sualization of the training data. They later extend the work [23] to include categorical

attributes to interactively build decision trees and thus support a much broader range

of applications. Similar visual data mining ideas are also applied in [24,25] to help users

determine parameters for decision tree construction and classification rule discovery.

3 Preliminaries

In this section, we propose a definition for network communities and provide a list of

requirements for a good measure for community detection. We discuss two existing

measures based on those requirements.
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...

(A) Clique Community

...

...

(B) Transitive Community

Fig. 1 Examples for Clique Community and Transitive Community

3.1 Community Definition

Recent research has proposed community detection methods in two different ways based

on various motivations and similarity measures. First, hierarchical methods [3,10] tend

to find communities globally so that nodes, which are more densely connected to nodes

in the same community than outside nodes, are grouped together; second, density-

based approaches [4] classify nodes into communities based on their local structure,

i.e., nodes are in the same community if they share many neighbours. In experiments,

these two approaches typically yield noticeably different results on the same datasets.

They actually target two different kinds of communities. On one hand, hierarchical

methods partition networks by greedily maximizing an objective function, which in-

creases for pairs of connected nodes that are in the same community and decrease for

pairs of disconnected nodes also in the same community. Their methods favor com-

munities where every node connects to everyone else in the same community, which

we call Clique Communities (Fig 1 A). On the other hand, density-based approaches

expand communities from nodes that are structurally dense, i.e., have enough neigh-

bours, judged by appropriate parameters. Therefore, these approaches do not consider

global properties but only the local network structure. They find communities where

nodes may not directly connect to many others in the same community but are indi-

rectly connected to every other node via some connections, which we call Transitive

Communities (Fig 1 B). The difference between these two strategies is analogous to

hierarchical-based and density-based methods in the data clustering field [26].

While existing methods implicitly describe specific types of communities based on

their metrics and algorithms without clearly defining them, we give a general defini-

tion for social network communities based on the observations highlighted above: A

community is a network partition such that entities within the same commu-

nity share some common trait or proximity, judged by some defined entity

similarity or relationship metric.

No matter how communities are defined, there are two major issues for community

mining that remain to be addressed. First, each pair of nodes should be measured by

their similarity or relationship; second, pairs with high similarity or strong relationship

should be put in the same community. Although it is the algorithm (hierarchical or

density-based) that decides the community type to be found (clique or transitive),

a good similarity metric is vital for both clique and transitive community structure

detection. We present the requirements of a good metric in the following section.
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3.2 Requirements for A Good Community Mining Metric

It is easy to confuse graph partitioning with community mining since these two lines

of research are really addressing the same question, which can be described as dividing

vertices of a network into some number of groups. There are, however, important

differences between network characteristics of the two camps that make quite distinct

approaches and metrics desirable. For instance, in social network community mining,

the relation between two nodes is asymmetric. (Take MySpace.com as an example:

user A might list user B as one of his best friends while he is not even in the friend

list of user B.) Thus, existing measures and approaches that are shown to be effective

for some graph partitioning may not fit for community mining, since they do not take

these differences into consideration. In the following, we propose a list of requirements,

which we believe should be satisfied by a good metric for community mining.

1. A metric should measure the similarity between every pair of nodes.

A similarity score between two nodes is required for all algorithms to decide whether

to put these two nodes into one community or not. The metric should be able

to measure all pairs, connected or disconnected. Metrics, which do not consider

disconnected pairs of nodes, may be able to find some community structure, but

they naively assume that disconnected pairs should not be in the same community.

2. A metric should reflect not only similarity but also dissimilarity.

In other words, the metric not only measures whether two nodes should be in

the same community but also measures whether they should not be in the same

community. For instance, the metric should provide a means to solve a disagreement

while merging a node n in a community when some existing nodes relate to n and

others do not.

3. A metric should consider the asymmetric nature between pairs.

The pair asymmetry in social networks means that Relation(i → j) 6= Relation(j →

i), e.g., consider people pair (i, j) where i has many friends and is j’s only friend,

i is much more important to j than j is to i. For undirected graphs, where the

similarity measure are usually required to be symmetric, the asymmetric nature

between the node pairs should still be considered.

4. An overlapping community metric should handle both hubs and outliers.

We think there are three kinds of nodes in a social network: hubs (nodes that have

many connections and can be seen as community overlaps), outliers (nodes that

have very few connections and do not belong to any community) and normal nodes

(nodes that have some connections and belong to a community). The influences of

hubs and outliers to community discovery have to be minimized by the metric.

3.3 Existing Metrics for Community Detection

Newman et al. proposed the modularity Q as a quality measure of a particular division

of a network [3]. For a social network with k communities, the modularity is defined

as Q =
∑k

c=1[
ec

m − ( dc

2m )2] where m is the number of edges in the network, ec is the

number of edges between nodes within community c, and dc is the sum of the degrees of

the nodes in community c. The modularity Q measures the fraction of the edges in the

network that connect vertices of the same community, i.e., within-community edges,

minus the expected value of the same quantity in a network with the same community
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division but with random connections between the vertices. Q can be transformed as

a sum of similarity scores for all node pairs [12,13]:

Q =
∑

Qij =
∑

i,j

(
Aij

2m
−

di

2m
∗

dj

2m
) (1)

where Aij = 1 if nodes i and j are connected, 0 otherwise, di, dj are the degree of node

i and j, m is the edge number. Note that Qij = 2 ∗ (
Aij

2m − di

2m ∗
dj

2m ) since each pair

(i, j) is calculated twice in the sum as (i, j) and (j, i). Also note that, Qij represents

the difference between the probability of the event i ↔ j (node i and j are connected)

in the given graph structure (P (i ↔ j) =
Aij

m ) and that in a random model with the

same number of vertices, edges and degrees (P (i ↔ j) = 2 ∗ di

2m ∗
dj

2m ). (See [3,13] for

detail.)

The modularity Q provides a similarity score for all pairs of nodes. Whether the

score is positive or negative depends on whether two nodes are connected or not, which

reflects both similarity and dissimilarity. By taking the global information (the total

edge number m) into consideration in the score calculation such that the higher degree

the nodes have the lower score the pair gets, modularity handles the influence from

hub nodes. However, the measure neglects the asymmetric nature between pairs in

social networks by assuming P (i → j) = P (j → i). Moreover, the method fails to

handle outliers. Since outliers have small degrees and can achieve high scores given the

formula, they are usually inaccurately merged first into a community by hierarchical

algorithms.

Recently, Xu et al. [4] proposed another similarity measure S:

Sij =
|Ni ∩ Nj |

√

|Ni| ∗ |Nj |
(2)

where Ni is the neighbourhood of node i, including i itself and all nodes connecting to

i. This metric normalizes the number of common neighbours by the geometric mean

of the two neighbourhoods’ sizes in order to compare the neighbourhood structure of

the two vertices in question.

The S metric considers the local structure of compared nodes (the common neigh-

bour number) as well as their local attributes (the sizes of both neighbourhoods), thus

it minimizes the score for both hubs and outliers. However, this metric does not measure

dissimilarity, e.g., the score will be zero if two nodes share no neighbours, disregarding

the network structure, and it fails to include pair asymmetry as well. Although this

metric is easy to be extended for all pairs of nodes, it was originally proposed for con-

nected pairs only. Additionally, even though the S metric considers the neighbourhood

size of the two nodes in question, it neglects the degrees of other nodes in the neigh-

bourhood, i.e., every node in the neighbourhood is weighted equally as 1 disregarding

whether it is a hub, an outlier or a normal node.

We have summarized two state-of-the-art similarity metrics for community mining

and analyze their advantages and disadvantages (See Table 1). While they successfully

find communities for some datasets, they do not satisfy all given requirements and thus

need to be improved.
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4 Our ONDOCS Approach

In this section, we first present our characterization of the relation between nodes,

then introduce the algorithm to generate network visualizations, and then show how

to detect overlapping community structure based on observed parameters.

4.1 Relationship Definition

Originally, ONDOCS is inspired by the OPTICS algorithm proposed by Ankerst et

al. [27], where points are ordered for data clustering. However, unlike their clustering

approach, we do not have a distance measure between nodes, so we need to define a new

node relationship. The existing community metrics reviewed in Section 3 are designed

to find optimal communities of a specific type, i.e., Q for clique communities and S

for transitive communities, which means they focus only on partial aspects of network

structure. We think that comparing the community structure to a random model, in

which nodes are randomly connected in a network, is a practicable way to quantify

node relations. The intuition is that community structure can be identified as that

which is non-random; so developing a measure with a notion of random connections

should help identify non-random structure. The neighborhood around any two nodes

in question is also important in assessing their relationship. Therefore we proposed a

new measure R to combine these two aspects, defined as follows:

R(i, j) =
R(i → j) + R(j → i)

2
=

∑

x∈Nj
r(i, x) +

∑

x∈Ni
r(x, j)

2
(3)

where Ni is the neighbourhood of node i, including i itself and all nodes that connect to

i. The similarity between node i and j is defined as the average of R(i → j), representing

the relationship from i to j’s neighbourhood, and R(j → i), representing relationship

from j to i’s neighbourhood. R(i → j) is defined as the sum of relation scores r between

i and all nodes in j’s neighbourhood, similarly for R(j → i) with respect to j and i’s

neighbourhood. Next, in order to quantify the relation r(i, j) between node i and j, we

compare the probability of the event that i and j are connected in the original graph

G to a random model, where we only keep the same node number n and node degrees

k1, ..., kn and leave the rest random. In such a random model, it is obvious that the

probability of a node i having a connection to any other node is P (i) = ki

n−1 . Here we

assume G is undirected so that the events of i connecting to j and j connecting to i

are equivalent, thus the probability of i and j being connected is the maximum of P (i)

and P (j):

P (i ↔ j) = max(P (i → j), P (j → i)) = max(P (i), P (j)) =
max(ki, kj)

n − 1
(4)

Now we define the relation score r(i, j) between node i and j:

r(i, j) = Aij −
max(ki, kj)

n − 1
(5)

where Aij = 1 if nodes i and j are connected in G, 0 otherwise. Here we omit directed

graphs since that is a straightforward extension. The proposed metric R, r and the

random model are justified in the next section.
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Metric
Metric Requirements

All Pairs Similarity & Dissimilarity Asymmetry Hub & Outlier
Q All Yes No Only Hub
S Connected No No Both
R All Yes Yes Both

Table 1 Comparing Community Mining Metrics

4.1.1 Analyzing the R measure

We evaluate our R metric using the requirements listed in Section 3. First, R as-

sesses similarity for both connected and disconnected pairs of nodes. Two nodes are

measured by the relation between them and their neighbourhoods. Second, while the

relation score r between each pair will be positive for connected pairs and negative for

disconnected ones, R in Equation 3 considers all pairs within the local neighbourhood

so that the R score represents an overall similarity, therefore R(i, j) can be positive

even if r(i, j) is not. Similarly, R(i, j) can be negative even if r(i, j) is not. Third,

the R metric is divided into two parts: R(i → j) and R(j → i), each of which repre-

sents the similarity between one node and the other’s neighbourhood. The asymmetric

characteristic of social networks is thus considered. Finally, the influence from hubs

or outliers to other nodes are minimized. Hubs have big degrees which lead to large
max(ki,kj)

n−1 and small r scores. Outliers have small neighbourhoods so R is small since

there are few pairs to contribute in the sum. Therefore, as shown in Table 1, the R

metric satisfies all requirements for a good community mining measure.

We now justify the formula for the relation score r and the random model presented

in Section 4.1. Recall that the intuition behind the r score is to compare the probability

of the event E, that two nodes i and j are connected, in the original graph structure

with the probability of the same event in a random model, which has the same node

number and degrees. Only if the probability of having these two nodes connected in

the random model is low, does the fact that they are indeed connected show us strong

relationship. Since the probability of E in the original graph is simply 1 or 0 given

the network structure, we only need to answer the following question: In an undirected

graph G with n nodes, degrees k1, ..., kn and the rest random, what is the probability of

event E? In this model, it is obvious that the probability of the event A: i connecting

to j, equals to ki

n−1 and the probability of the event B, j connecting to i, equals to
kj

n−1 . However, either A or B confirms E, therefore we set P (E) = max(P (A),P (B)).

In other words, with respect to i, the probability of selecting j as one of i’s neighbours

is ki

n−1 . We cannot achieve a higher score unless kj > ki, thus the probability of the

fact that two nodes are connected is decided by the node with the higher degree. Note

that P (E) 6= P (A) ∗ P (B) since the two events A and B are dependent on each other.

4.2 Ordering Nodes to Visualize Networks

Now we can generate network visualizations by ordering nodes based on their relation

scores. Given the relationship function we defined above, for a node ni, we create a list

of nodes li ordered by their relation to ni from high to low. (Note that we can limit

candidate nodes to those which have R > 0, i.e., they are connected to or share at

least one neighbour with ni.) We define the kth value in this list to be lik. Here, our
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approach takes one input parameter s. However, as we will show in Section 5, s does

not strongly affect the output. In practice, we usually generate several visualizations

with s ranging from 2 to 8 and let the user make a choice based on their observations.

For a node ni, we define its community score Cs to be the sth value in its node list li,

i.e., Cs(ni) = lis, and Cs(ni) = 0 if there are less than s nodes in the list. Then we

define the reachability of node j with respect to i as

reachs(i, j) =

{

R(i, j) if Cs(ni) > R(i, j)

Cs(ni) otherwise

Intuitively, the parameter s represents the expected number of nodes that one node is

similar with in order to be a member of any community. Cs is the lowest relation score

between node i and its similar neighbours in one community. Then the reachability

score from node i to j (reachs(i, j)) is the relation score between node i and j if j

is not among the top s nodes of li and is the community score of i otherwise. Thus,

reachs(i, j) measures the community relationship between i and j. It is their direct

distance score if i and j are far away from each other, and equals to the community

radius of i if j is close enough. Therefore, a decreasing order of the reachability scores

(RS) indicates a node list for i, starting from i’s most related neighbours to the least

ones.

Algorithm 1 The ONDOCS Algorithm: Network Visualization

Input: A social network G with n nodes and m edges, a start node nstart and possible s
values s0, s1, s2....
Output: A list of nodes L with their Reachability Scores RS for each s.
1. Sort a node list li for each node ni, ordered by their relation score to ni, from high to
low.
2. For each s :
Initialize a max-heap h, insert nstart in h with RS = 0.
Select the sth largest element in li for each node ni as its community score Cs(ni).
While (there is still nodes in heap h) :

Pop the node α in h with largest value ε.
Store α in Ls with RSα = ε.
For all nodes x in lα:

If x /∈ h, insert x into h with reachs(α, x).
If x ∈ h, update its value if reachs(α, x) is larger.

Update max-heap h.
3. Return list Ls with RS values for each s value.

We present our algorithm to generate node lists ordered by their reachability scores

in Algorithm 1. More specifically, our algorithm creates an ordering of network nodes,

additionally storing a reachability score RS(i) for each node i. It starts at a given node

nstart and inserts nstart into a max-heap structure h, which is maintained to store

the reachability of candidate nodes. At each step, the node j, which has the highest

reachability score in h, is chosen to be the next node in order and the popped score is

stored as RS(j). All nodes that are in j’s neighbourhood are then inserted into h with

their reachability according to j if they are not yet in h. The value in h is updated if

the node is already in h and its new score is higher. Then h is updated to maintain its

max-heap property. Therefore, the top node of heap h has the highest RS value to one

of the nodes that have already been included in the list L, i.e., the RS score for each
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node in the list represents its highest reachability from any of the prior nodes in the

sequence. The algorithm stops after all nodes in the network are visited.

The computational complexity of ONDOCS is O(n log n) for dense graphs and O(n)

for sparse ones. The list generation and sort step takes O(c log cn) where constant c is

the average number of similar nodes for each node. Note that based on our relationship

function, one node can only be similar to another if they are connected or share one

or more neighbours. In step 2, there are n insertions to the heap h and updating h

for each insertion takes O(log n) time for dense graphs and O(1) for sparse networks.

Thus, the actual running time of our algorithm on experimental networks is O(n) as

shown in Section 5.

In summary, given a network with a list of s values, Algorithm 1 produces a sequence

of nodes with their reachability scores for each s value, which can be visualized as a 2-D

graph by tools such as GNUPlot [28]. The visualizations show interesting community

information such that nodes in the same communities are consecutive in the list with

high RS scores while the RS score apparently drops between two groups of community

nodes (See Figure 3). The goal of visual data mining is to help user acquire accurate

parameters by observing this phenomenon, which is presented in the next section. (A

detailed example of how to choose the parameters is given in Section 5.2 and Figure 3

after explaining the experiments.)

4.3 Detecting Overlapping Community Structure: Communities, Hubs and Outliers

We have generated lists of nodes given specific s values, where we found that the order-

ing of the corresponding RS values has interesting community properties. For example,

if we start from one node i, we will first visit other nodes in i’s community in sequence.

This is because the reachability score from i to these nodes are higher than nodes

outside i’s community. Therefore, each community can be seen as a group of consec-

utive nodes with high RS scores. In a 2D visualization, these groups are represented

as curves in a “mountain” shape or peak. A noticeable drop of subsequent RS scores

after a “mountain” indicates that this community has ended, which is represented as a

curve in a “valley” shape or trough. The “valley” between two “mountains” represents

a set of hubs, which belong to several communities. For instance, if we start from nodes

in community α, the fact that hubs have neighbours from different communities makes

RS scores of hubs lower than that of those single-community nodes in α but still higher

than nodes in communities other than α. Therefore, after all single-community nodes

in α are visited, hubs are next to follow before nodes in other communities, which form

the “valley” between “mountains.”

As we have discussed in the introduction, there is no global community definition,

thus communities in specific networks need to be defined by parameters given by the

user. For this purpose, our visual data mining approach generates visualizations with

different s values first. After the user selects the suitable one based on their observation,

they need to further provide two parameters to define the communities in this network,

Community Threshold (CT) and Outlier Threshold (OT). While such parameters are

usually hard to obtain for previous methods, parameter selection for our approach be-

comes easy since we provides a visualization of the network structure with “mountains”

representing strongly related communities, and “valleys” representing hub nodes that

connect to both communities. Outliers are usually found at the end of the list, since

their RS scores to any other nodes in the network are low. Examples of choosing pa-
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rameters for real networks are presented in Section 5. Note that we do not require k,

the number of communities to discover, as a parameter. The number of communities

is a byproduct of the mining process given the parameters OT and CT which are de-

termined by the user after exploiting our visualization output. The visualization of the

network helps the user understand the structure first and then decide about reasonable

thresholds for communities and outliers, i.e not the numbers per se but has a similar

effect.

Given the two parameters CT and OT , our algorithm works as the following:

from the first node in the sequence as the starting community, we scan all nodes

along the list. One node ni is merged into the current community if RS(ni) ≥ CT . If

CT > RS(ni) > OT , ni is classified as a hub. If OT ≥ RS(ni), it is an outlier. Since

the first node of a community in the list has a low RS score, e.g., the starting node has

RS = 0, we refine the outlier and hub nodes by moving any node ni into corresponding

communities if we have RS(ni+1) ≥ CT . (Also see Algorithm 2) The complexity of

Algorithm 2 is θ(n).

Algorithm 2 The ONDOCS Algorithm: Overlapping Community Structure Detection

Input: A list L of nodes n0, n1, ... and their RS scores, the Community Threshold CT and
the Outlier Threshold OT .
Output: A list of communities c0, c1, ..., hubs h0, h1, ... and outliers o0, o1, ....
1. Create a community c, set k = 0.
2. for each ni ∈ L do

If RS(ni) ≥ CT , classify ni as a community node.
else if CT > RS(ni) > OT , classify ni as a hub.
else classify ni as an outlier.

end if

If i is not classified as a community node but RS(ni+1) ≥ CT
classify i as a community node.

end if

If ni is a community node, insert ni into c.
else (ni is a hub or an outlier)
If |c|! = 0, save c as a community ck for output

reset c for the next community, increase index k by 1
end if

end if

end for

3. Return communities c0, c1, ..., hubs h0, h1, ... and outliers o0, o1, ....

To represent that hubs can belong to k communities, for each hub node i, we use

a vector of “belonging factors” v = (f(i,1), f(i,2) ... f(i,k)) where each coefficient f(i,k)

measures the strength of the relationship between node i and community k. For every

community Ck, we can quantify the Overall Relationship between i and Ck as

OR(i,k) =

{∑

x∈Ck
R(i, x) if

∑

x∈Ck
R(i, x) > 0

0 otherwise

We then normalize the vector to get the coefficients so that we have
∑k

x=1 f(i,x) = 1.

Therefore, one node can belong to many communities at the same time, weighted

by the relationship value in the range [0, 1] and the sum of belonging coefficients to

communities is the same for all nodes in the network, except outliers.

In summary, the community mining process is aided by visual data mining in

our approach. Instead of asking the user to arbitrarily provide vital parameters, we
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Datasets Vertices Edges
Runtime / s

CONGO [6]
CF [5] ONDOCS

h = 3 h= 2
football [4] 180 787 8 2 1 < 1

protein protein [5] 2640 6600 114 11 3 11
blogs [6] 3982 6803 41 8 4 12
PGP [30] 10680 24316 772 104 >20000 62

word association [5] 7207 31784 15922 230 102 161
blogs2 [6] 30557 82301 15148 380 319 269

cond-mat [31] 27519 116181 > 20000 1486 490 544

Table 2 Comparing Running Time of CONGO, CF and ONDOCS on Real World Networks
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Fig. 2 ONDOCS Algorithm Running Time

generate visualizations of the network in question so that the user is able to observe

the structure and relations between communities before they give parameters. After

appropriate parameters are determined, hubs and outliers are extracted together with

communities. Note that another advantage of our approach is that while parameters

are easy to be altered, the impact on the change of discovered communities can be

clearly perceived by observing the visualization.

5 Experiment Results

Here we evaluate the ONDOCS approach using both synthetic and real world datasets.

The performance of ONDOCS is compared with CFinder [5] and CONGO [6], which

are shown to be two of the most efficient algorithms for finding overlapping community

structure [6]. The comparison is measured by the well known F-measure score and

Adjusted Rand Index (ARI) [29]. All experiments were conducted on a PC with a 3.0

GHz Xeon processor and 4GB of RAM.

5.1 ONDOCS Scalability

To evaluate the scalability of our algorithm, we generated ten random graphs of ver-

tices ranging from 10,000 to 500,000 and the number of edges ranging from 20,000

to 1,000,000. The edges are randomly distributed in the network. Figure 2 shows the
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performance of our algorithm on those networks. It clearly shows that, although the

running time of ONDOCS is O(n log n) in the worst case, our approach actually runs

very close to linear time with respect to the number of vertices and edges.

To further evaluate the efficiency of the algorithm, we apply three algorithms on

several real-world networks. Table 2 shows the source of each network, its statistics, and

the execution times for CONGO to compute the entire dendrogram, CFinder (v1.21)

to generate solutions for 3 ≤ k ≤ 8 and ONDOCS to create dataset visualizations

for 2 ≤ s ≤ 8. From the table, we can see that ONDOCS works well overall, while

CONGO’s running time increases dramatically with respect to h and CF’s clique de-

tection becomes slow on some particular networks. (Note that it may seem to be unfair

to compare since ONDOCS merely generates visualizations but not communities yet.

However, the intent of run time comparison is to demonstrate that our approach is no

more time consuming than previous methods but on the contrary in most cases faster.

Additionally, the complexity of extracting communities after parameter setting, i.e,

selecting CT and OT, is negligible compared to the visualization generation.) Unfor-

tunately, we do not have ground truth to validate the accuracy of our results for these

datasets, thus we turn to several real world datasets with ground truth to evaluate the

accuracy of our approach.

5.2 ONDOCS Accuracy

The first dataset we examine is the schedule for 787 games of 2006 National Collegiate

Athletic Association (NCAA) Football Bowl Subdivision (also known as Division 1-A)

[4]. In the NCAA network, there are 115 universities divided into 11 conferences. In

addition, there are four independent schools at this level, namely Navy, Army, Notre

Dame and Temple, as well as 61 schools from lower divisions. Each school in the division

plays more often with schools in the same conference than schools outside. Independent

schools do not belong to any conference and play with teams in different conferences,

while lower division teams play only very few games. In our network vocabulary, this

network contains 180 vertices (115 nodes as 11 communities, 4 hubs and 61 outliers),

connected by 787 edges.

First, the ONDOCS approach generates several visualizations with different s values

for the user to choose. We show all visualizations for 2 ≤ s ≤ 8 in Figure 3. As we can

see, most images are very similar to each other. The only one that shows a different

structure is the visualization for s = 8. Recall that the parameter s represents the

expected number of nodes that one node is similar with in order to be considered as

a community member. When s is raised to a large value, some communities might

disappear if their size is smaller than s. In this case, ONDOCS visualizations only

show the structure of communities whose size is greater or equal to s. The larger the

s value is, the smoother the curves are and the fewer “spikes” we have. Nevertheless,

we have seven visualizations that clearly represent the network structure, where there

are 11 communities, a few hubs and a set of outliers.

The parameter selection is solely based on users’ visual interpretation of the vi-

sualized network. First we choose the visualization with s = 2, where the community

structure is shown in most detail since pair relations are mostly measured as direct

distance. In Figure 4, we note that nodes in sequence from 120 to 180 are barely re-

lated to the rest and can be considered as outliers, therefore we set OT = 2. Note that

OT can also be set as 2.5, or any other close number. Different OT value will not give
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Fig. 3 Community Visualizations of the football network with different S value
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Data Setting
Algorithms

CONGO (h=2) CF (k=4)
ONDOCS (s=2)

(CT = 4.5, OT = 2)
115 Nodes Cluster 11∗ 11 11

in Hub 92 6 0
11 Clusters ARI 0.047 0.945 1.00

Plus 4 Hubs
Cluster 11∗ 12 11
Hub 100 8 3

Hub F-measure 0.038 0.167 0.857

Cluster 11∗ 12 11
Plus 4 Hubs Hub 96 8 3

and Hub F-measure 0.04 0.167 0.857
61 Outliers Outlier 0 61 61

Outlier F-measure 0 1.00 1.00

Table 3 Comparing Algorithm Accuracy of CONGO, CF and ONDOCS on the Football
Dataset. (∗The right cluster number is provided as a parameter for the CONGO algorithm.)
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Fig. 4 Selecting CT and OT for ONDOCS

CT
OT = 2

OT
CT = 4.5

Cluster Hub H-FM Outlier O-FM Cluster Hub H-FM Outlier O-FM
4.0 9 3 0.857 61 1.0 1.0 11 16 0.30 48 0.880
4.5 11 3 0.857 61 1.0 1.5 11 4 0.75 60 0.991
5.0 11 3 0.857 61 1.0 2.0 11 3 0.857 61 1.0
5.5 11 6 0.8 61 1.0 2.5 11 3 0.857 61 1.0
6.0 12 7 0.77 61 1.0 3.0 11 3 0.857 61 1.0

Table 4 Comparing ONDOCS Accuracy with Different CT and OT. (H-FM means F-measure
for Hubs and O-FM means F-measure for Outliers.x)
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completely different results and the impact can be perceived directly from the visual-

ization. Furthermore, we see a community usually ends with a RS score between 3 and

5, thus we set CT = 4.5 so that all communities are separated. The range of possible

thresholds are shown in the figure. Table 4 shows results of varying CT and OT in the

range. As can be noticed, it is quite easy for one to select parameters given the network

visualization, and the results are stable enough for a large range of parameters.

To evaluate how algorithms detect overlapping community structure, we provide the

data to our algorithms in three different ways. At first, we give only 115 community

nodes and connections between them, then we measure the accuracy of discovered

communities by the ARI score based on the ground truth, which is the conference

assignment. Then we add the 4 hubs and their connections into the network. Although

these hubs clearly belong to multiple communities, we do not have exact ground truth

for overlapping community structure, i.e., which communities these hubs should go.

However, we do have ground truth for which nodes are hubs (outliers) and which are

not. Therefore, we measure the accuracy of the output hubs and outliers by the F-

measure score, which is defined as the harmonic mean of precision and recall. Finally

we give the complete network with communities, hubs and outliers. Table 3 shows the

experiment results for the three algorithms. As we can see, the CONGO algorithm

always detects overlaps, even for the first network where there are only community

nodes. Additionally, it requires the cluster number as the input parameter, which is

usually unavailable for real world networks, and it still fails to find any outliers. The

CF algorithm gives its best result when k = 4, where it detects all outliers and finds

12 clusters, which is very close to the truth. However, CF also finds hubs when there

is no overlap and the accuracy of its overlap detection is low with only a 0.167 F-

measure score. Our ONDOCS algorithm works the best overall. It finds all outliers and

only detects hubs when there is indeed some overlap between communities. The hub

detection accuracy is not perfect, however, when we look into the data, we find out

that the only missing hub team (Temple) plays half of its games (6 out of 12) with

teams from the Mid-American conference, which explains why it is classified into that

community. Note that the result of our algorithm depends on two parameters (CT

and OT ), however, we believe that appropriate values are easy to find based on direct

observation on network visualizations.

In ONDOCS, the node sequence might change if we choose different node nstart

to start with. For previous experiments, we choose a community node to start the

process. In Figure 5, visualizations that start from hub nodes and outlier nodes are

shown. However, as we can see, a community, represented by a “mountain” curve, is

found first. It is because our algorithm intends to visit the closest nodes in the sequence,

which have higher RS scores, before nodes that are far away. Thus, no matter where

the start node is, the closest community is found first, followed by other communities

ordered by their RS values. Hubs are found as “valley” between communities.

We also apply our algorithm on other real world networks, including the Political

Book network [32], the Mexican Politician network [33], the Dolphin network [3] and

the Les Miserables network [34]. Although we do not have exact overlapping truth for

these networks, approximate community structure information is provided by previous

research. In the Political Books dataset, nodes represent political books sold by Ama-

zon.com and edges represent frequent co-purchasing of books by the same buyers, as

indicated by the “customers who bought this book also bought these items” feature

on Amazon. Nodes are manually labeled as “Liberal,” “Neutral,” or “Conservative”

by Mark Newman [35]; In the Mexican Politicians dataset, edges indicate social re-
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(c) Start from Outlier Node “Maine”
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(d) Start from Outlier Node “Furman”

Fig. 5 ONDOCS Visualizations with different starting nodes

lations between people and nodes represent politicians, who are classified based on

their background as “Citizen” or “Military”. The Dolphin Network gives the commu-

nity structure of a group of bottle-nose dolphins. The network can be approximately

divided into four main groups [3]. Finally, the Les Miserables network represents the

coappearance network of characters in the novel Les Miserables. Note that for these

datasets, we only have indefinite community information instead of perfect ground

truth, which is the common case for overlapping community detection and evaluation.

We show visualizations for these datasets generated by ONDOCS in Figure 6. One can

see that the images correctly depict the approximate community information we have.

Accurate CT and OT values should be easy to determine based on these figures. Also

note that if the reachability plots are not clear for some datasets, the users may have

problems selecting parameters. This could be the case when a large number of real

communities exist, where the plot would present a jagged graph with many close peaks

for a vague community structure. This is a limitation of the visualization and may

be addressed by increasing the screen real-estate or a progressive hierarchical method,

which selects parameters for each level of the community hierarchy. However, it is

nevertheless reasonable to believe that other approaches with no visual data mining
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(d) Les Miserables Network

Fig. 6 Community Visualizations for Various Networks by ONDOCS

support, when faced with a large number of existing communities, would provide less

information and do even worse in the mining process.

5.3 Comparing Metrics within ONDOCS

We have reviewed previous community mining metrics (Q and S) and proposed our

relational metric R. We then evaluated them from a theoretical perspective. Here we

apply these three metrics to measure the similarity between two nodes in our ONDOCS

system and compare the images generated for several real world datasets respectively

in order to further evaluate the effectiveness of the metrics.

The visualizations for four different datasets based on metrics Q, S and R are

shown in Figure 7(a) to 7(l) respectively (s is set to 2 for all metrics). We see that

the plots using the R metric accurately depict the network structure since they match

the vague community information that we have for those datasets. On the other hand,

visualizations using the S metric are ambiguous and the community structure is hard

to read. Also note that the R visualizations provide a much wider range for the user

to observe accurate CT and OT values to detect the right number of communities
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(c) Political Book by R
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(e) Mexican Politics by S
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(g) Dolphin Network by
Q
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(h) Dolphin Network by
S
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(j) Les Miserables by Q
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(k) Les Miserables by S
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Fig. 7 Comparing Metric Q, S and R with ONDOCS Visualizations
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than the S visualizations. Finally, visualizations based on the Q metric do not show

any community structure. The reason is that Q does not consider local structure thus

similarity scores of all node pairs are smaller than and close to 1 after node ordering,

which makes the plots into a nearly-horizontal line.

6 Conclusions

In this paper, we first propose a general definition of communities in social networks

and a list of requirements for a good similarity metric to detect those communities.

We analyze existing metrics based on those criteria and then propose a new similarity

metric R which satisfies all of those requirements. A visual data mining approach for

overlapping community detection in networks is then proposed based on metric R.

The method first generates lists of nodes, ordered by their reachability scores. Network

visualizations are then provided to help the user determine important parameters.

Finally, overlapping community structure, i.e., communities, hubs and outliers, are

extracted based on these parameters. Experiment results show that our approach not

only scales well for large networks, but also achieves a high accuracy for real world

networks. Unlike previous approaches, our method only detects overlap when overlap

exists. Moreover, appropriate parameters are easy to obtain by means of visual data

mining. The effectiveness of R over previous metrics are also confirmed by comparing

ONDOCS visualizations.
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