

According to the Webster dictionary:

- a number of similar things growing together or of things or persons collected or grouped closely together: BUNCH.
- two or more consecutive consonants or vowels in a segment of speech.
- a group of buildings and esp. houses built close together on a sizable tract in order to preserve open spaces larger than the individual yard for common recreation.
- an aggregation of stars, galaxies, or super galaxies that appear close together in the sky and seem to have common properties (as distance).
 - \clubsuit A cluster is a closely-packed group (of people or things).

Pacific-Asia Conference on Knowledge Discovery and Data Mining

Osmar R. Zaïane & Andrew Foss

Taipei, May 6th 2002

5

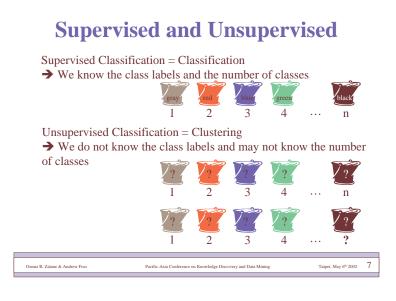
Osmar R. Zaïane & Andrew Foss

in at is Clustering in Data Mining:

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called **clusters**.

- Helps users understand the natural grouping or structure in a data set.
- <u>Cluster</u>: a collection of data objects that are "similar" to one another and thus can be treated collectively as one group.
- Clustering: <u>unsupervised classification</u>: no predefined classes.

6



Requirements of Clustering in Data Mining

- Scalability
- Dealing with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- Handles high dimensionality
- Interpretability and usability

Osmar R. Zaïane & Andrew Foss

More Applications

Pacific-Asia Conference on Knowledge Discovery and Data Mining

Taipei, May 6th 2002

9

- WWW:
 - · Document classification
 - Cluster Weblog data to discover groups of similar access patterns
- Outlier detection
 - Detecting credit card fraud, etc.

What Is Good Clustering?

- A good clustering method will produce high quality clusters in which:
 - the **intra-class** (that is, intra-cluster) similarity is high.
 - the inter-class similarity is low.

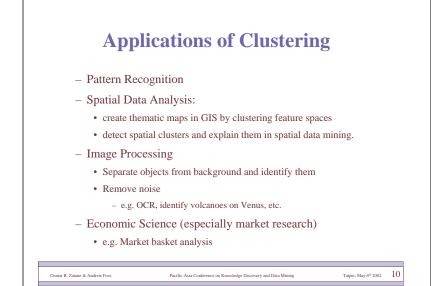
nar R. Zaïane & Andrew Fos

- The **quality** of a clustering result also depends on both the similarity measure used by the method and its implementation.
- The **quality** of a clustering method is also measured by its ability to discover some or all of the **hidden** patterns.
- The quality of a clustering result also depends on the definition and representation of cluster chosen.

Pacific-Asia Conference on Knowledge Discovery and Data Mi

Taipei, May 6th 2002

8



Further Examples of Applications

- <u>Marketing:</u> Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs.
- Land use: Identification of areas of similar land use in an earth observation database.
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost.
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location.
- Earthquake studies: Observed earthquake epicenters should be clustered along continent faults.

Osmar R. Zaïane & Andrew Foss

Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May $\theta^{\rm th}\,2002$

Osmar R. Zaïane & Andrew Foss

11

Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May 6th 2002

12

Data Clustering Outline

Taipei, May 6th 2002

13

15

Taipei, May 6th 2002

- What is cluster analysis and what do we use it for?
- What are the important issues?
- Are there different approaches to data clustering?
- What are the other major clustering issues?

Types of Data

• Numerical

- Generally can be represented in a Euclidean Space.
- Distance can be easily computed as a numerical difference.
- Categorical

Osmar R. Zaïane & Andrew Foss

- A metric space may not be definable for this.
- Distance has to defined in terms of similarity.

Pacific-Asia Conference on Knowledge Discovery and Data Mi

Sequence Aware Similarity

Result 2/4

Result 3/4

• Optionally weight different levels.

• Compare the two sequences

- Seq 1 : 1234

– Score 1100

- Seq 2 : 124

• Can add spaces

- Seq 1:1234

- Seq 2 : 12_4

– Score 1101

Osmar R. Zaïane & Andrew Fos

Taipei, May 6th 2002

14

16

18

Taipei, May 6th 2002

Handling Categorical Data: Similarity Measures

Pacific-Asia Conference on Knowledge Discovery and Data Mining

- Jaccard and Dice (functionally equivalent)
 - Jaccard $\begin{vmatrix} X \cap Y \\ X \cup Y \end{vmatrix}$ Dice $\frac{2|X \cap Y|}{|X|+|Y|}$
- Overlap

nar R. Zaïane & Andrew Fos

Osmar R. Zaïane & Andrew Fos

- $\frac{|X \cap Y|}{\min(|X|,|Y|)}$
- Cosine $|X \cap Y|$
- Other methods consider the sequence order.

Sequence Aware Similarity

Pacific-Asia Conference on Knowledge Discovery and Data Minin

- Can compute a value for a group of sequences using Dynamic Programming.
- Applications
 - Protein/DNA sequence alignment
 - Web log analysis
 - etc.

Osmar R. Zaïane & Andrew Foss

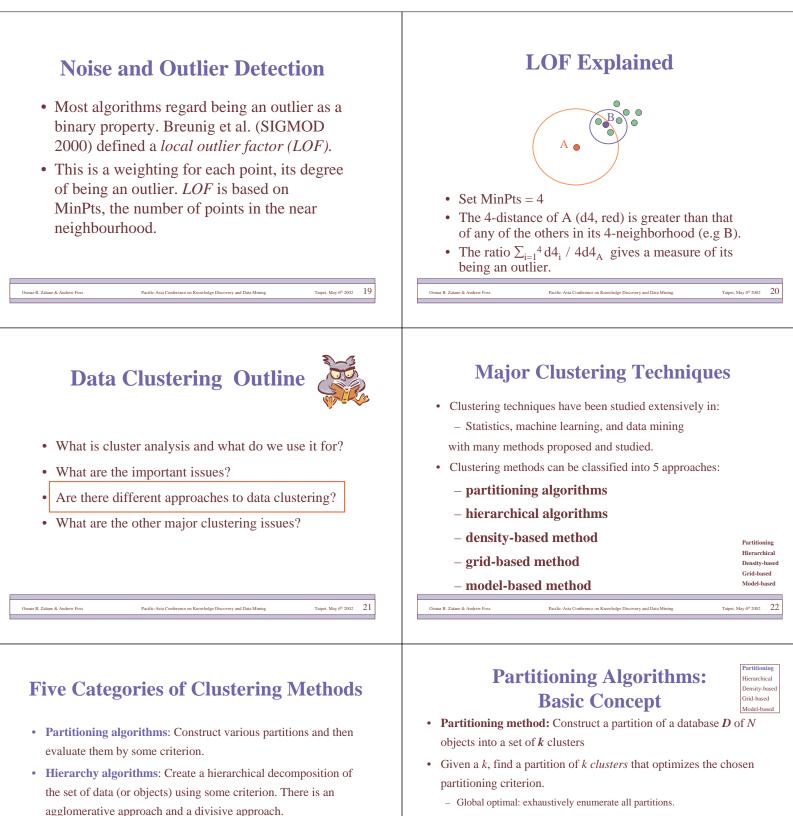
Noise and Outlier Detection

Pacific-Asia Conference on Knowledge Discovery and Data Mini

- Any clustering method, such as TURN*, AUTOCLUS and DBSCAN, that can differentiate remote points from internal ones or define very small unexpected clusters, can be used to find outliers.
- Algorithms that require the input of *k* are generally unsuitable.

Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May 6th 2002 17

Osmar R. Zaïane & Andrew Foss Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May 6th 2002



- **Density-based**: based on connectivity and density functions.
- Grid-based: based on a multiple-level granularity structure.
- **Model-based**: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other.

Osmar R. Zaïane & Andrew Fos

Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May 6th 2002

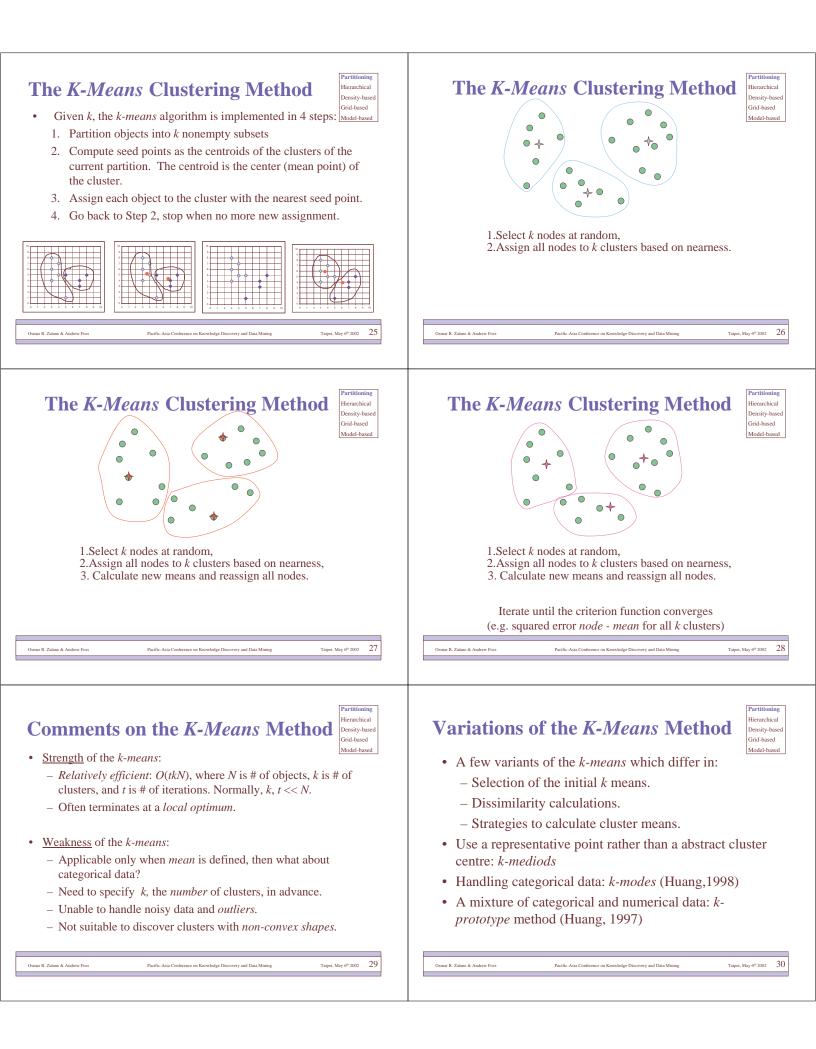
23

Osmar R. Zaïane & Andrew Foss

- Heuristic methods: k-means and k-medoids algorithms.
- <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster.
- <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw '87):
 Each cluster is represented by one of the objects in the cluster.

Pacific-Asia Conference on Knowledge Discovery and Data Minin

Taipei, May 6th 2002 24



The K-Medoids Clustering Method

Hierarchical Density-based Grid-based Model-based

- · Find representative objects, called medoids, in clusters
 - To achieve this goal, only the definition of distance from any two objects is needed.
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering.
 - PAM works effectively for small data sets, but does not scale well for large data sets.

Pacific-Asia Conference on Knowledge Discovery and Data Minin

- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling. •
- Focusing + spatial data structure (Ester et al., 1995).

PAM (Partitioning Around Medoids)

- PAM (Kaufman and Rousseeuw, 1987), built in S+.
- Use real object to represent the cluster.
 - 1. Select *k* representative objects arbitrarily.
 - 2. For each pair of non-selected object h and selected object *i*, calculate the total swapping cost TC_{ih} .
 - If $TC_{ih} < 0$, *i* is replaced by *h*.
 - 3. Then assign each non-selected object to the most similar representative object.

Pacific-Asia Conference on Knowledge Discovery and Data Min

Repeat steps 2-3 until there is no change. 4.

> $O(k(N-k)^2)$ Taipei, May 6th 2002

Hierarchical

Density-base

Grid-based

Model-based

Hierarchical CLARA (Clustering Large Applications)

Grid-based Model-based

33

Partition

Hierarchical

Density-based

35

Grid-based Model-based

Taipei, May 6th 2002

31

mar R. Zaïane & Andrew Foss

Osmar R. Zaïane & Andrew Fos

- CLARA (Kaufmann and Rousseeuw in 1990)
- Built in statistical analysis packages, such as S+.
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output.
- Strength of CLARA:

Osmar R. Zaïane & Andrew Fos

- deal with larger data sets than PAM.
- Weakness of CLARA:
 - Efficiency depends on the sample size.
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased. $O(kS^2 + k(n-k))$

Pacific-Asia Conference on Knowledge Discovery and Data Mining

Osmar R. Zaïane & Andrew Fos

Taipei, May 6th 2002

CLARANS Clustering **Examples**

From http://db.cs.sfu.ca/GeoMiner/survey/html/node9.html

CLARANS ("Randomized" CLARA)

32

- CLARANS (A Clustering Algorithm based on Randomized Search) by Ng and Han in 1994.
- CLARANS draws sample of neighbours dynamically.
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of kmedoids.
- If the local optimum is found, CLARANS starts with new randomly selected node in search for a new local optimum.
- It is more efficient and scalable than both PAM and CLARA.
- · Focusing techniques and spatial access structures may further improve its performance (Ester et al.'95).

Pacific-Asia Conference on Knowledge Discovery and Data Mini

The K-Modes Clustering Method

Partitionia Hierarchical Density-based Grid-based Model-bas

36

Taipei, May 6th 2002

34

- · K-means for categorical data.
- Uses a simple matching dissimilarity measure defined as the total mismatches of the corresponding attribute of 2 objects.
- Defines a mode of a set of objects $X = \{x_1, x_2, \dots, x_N\}$ as a vector $Q = [q_1, q_2, \dots, q_m]$ that minimises

$D(X, Q) = \sum_{i=1}^{N} d(x_i, Q)$

where $d(x_i, Q)$ is the disimilarity between x_i and Q.

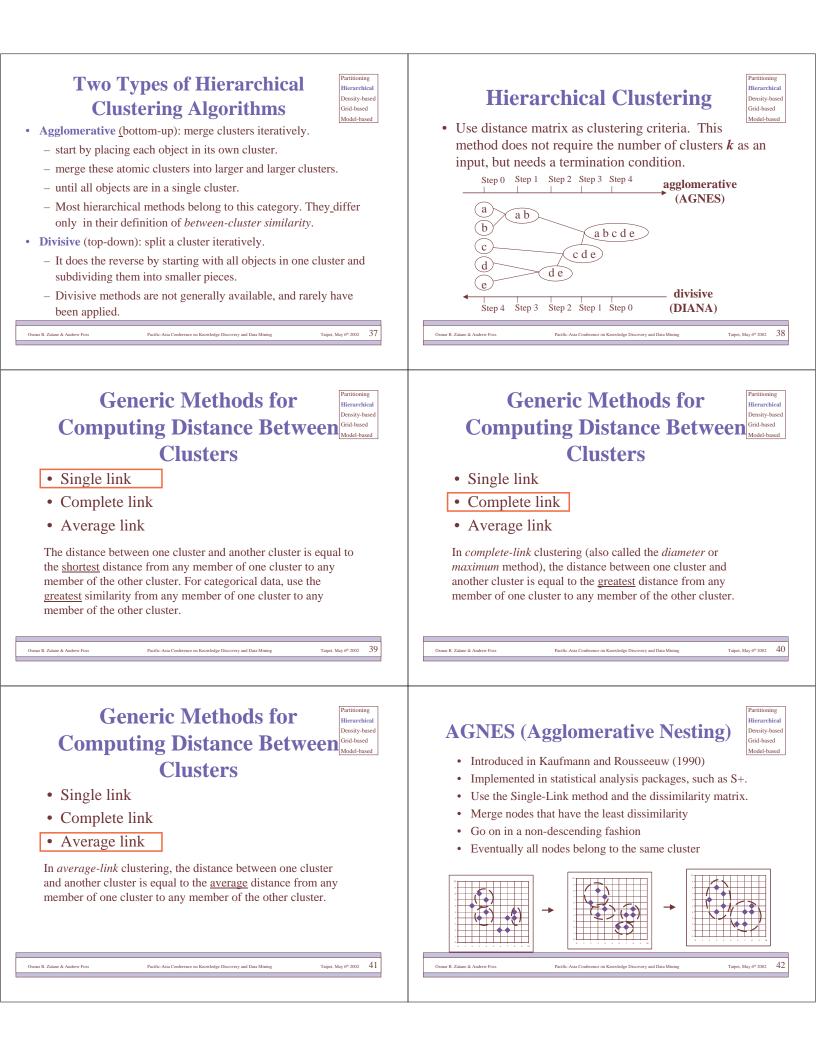
k-modes also favours 'spherical' clusters.

smar	R.	Zaïane	&	Andrew	Foss

Taipei, May 6th 2002 Pacific-Asia Conference on Knowledge Discovery and Data Mining

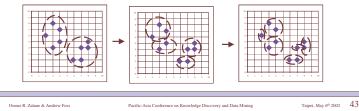
Osmar R. Zaïane & Andrew Foss Pacific-Asia Conference on Knowledge Discovery and Data Min

Taipei, May 6th 2002



DIANA (Divisive Analysis)

- Hierarchical Density-based Grid-based Model-based
- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, such as S+.
- Inverse order of AGNES.
- Eventually each node forms a cluster on its own.



More on Hierarchical Clustering

- Major weakness of agglomerative clustering methods:
 - <u>do not scale</u> well: time complexity of at least $O(n^2)$, where *n* is the number of total objects
 - can never undo what was done previously.

ar R. Zaïane & Andrew Fos

- Integration of hierarchical clustering with distance-based method:
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters.
 - <u>CURE (1998)</u>: selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction.
 - <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling.

Pacific-Asia Conference on Knowledge Discovery and Data Mining

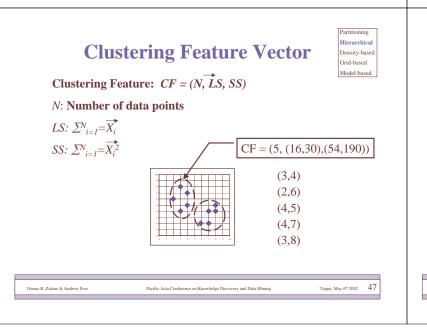
Taipei, May 6th 2002 45

Hierarchica

Density-based

Grid-based

Model-based



PCA Partitioning

- Partitioning Hierarchical Density-based Grid-based Model-based
- Proposed by Moore et al. 1997
 - Cut the distribution with a hyperplane at the arithmetic mean normal to the principal direction (direction of maximum variance).
 - Repeat as often as desired.

Osmar R. Zaïane & Andrew Foss

Osmar R. Zaïane & Andrew Fos

Osmar R. Zaïane & Andrew Foss

 Uses a scatter value, measuring the average distance from the nodes in a cluster to the mean, to determine next cluster to split.

Pacific-Asia Conference on Knowledge Discovery and Data Minin

BIRCH (1996)

Partitioning Hierarchical Density-based Grid-based Model-based

46

48

Taipei, May 6th 2002

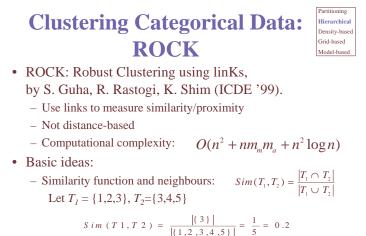
Taipei, May 6th 2002

Taipei, May 6th 2002

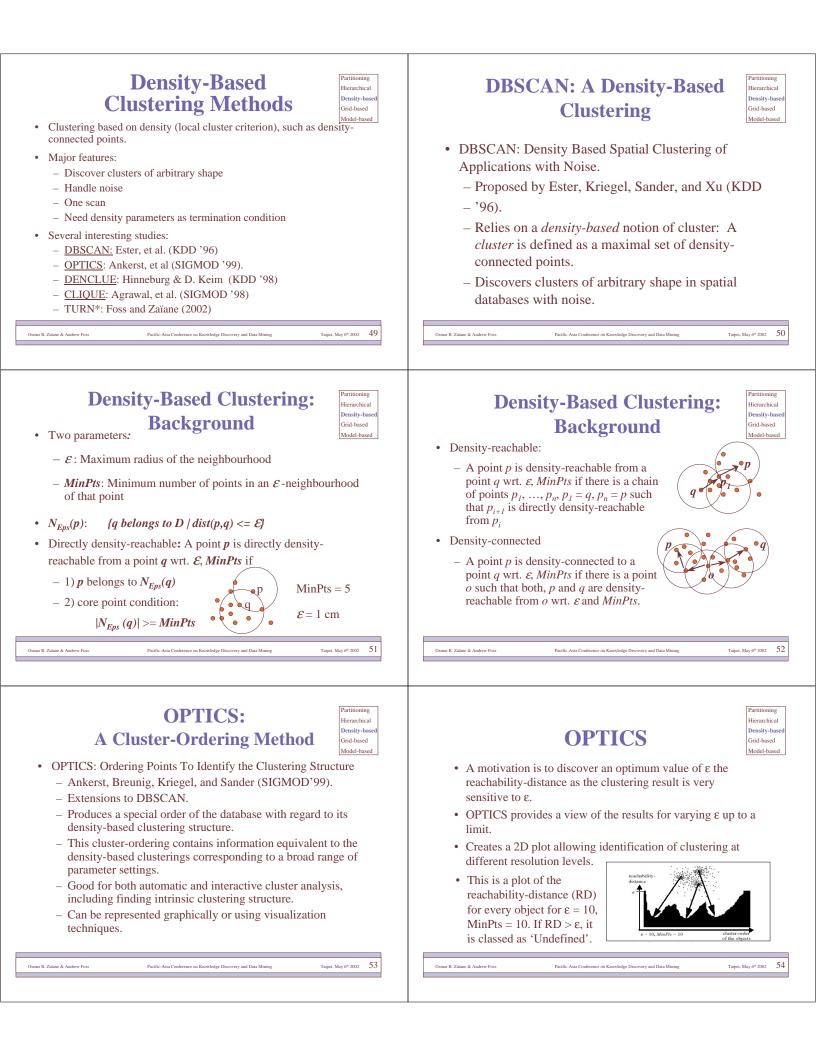
44

- BIRCH: Balanced Iterative Reducing and Clustering using Model-Hierarchies, by Zhang, Ramakrishnan, Livny (SIGMOD '96).
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering:
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree.
- *Scales linearly*: finds a good clustering with a single scan and improves the quality with a few additional scans.
- *Weakness:* handles only numeric data, and sensitive to the order of the data record.

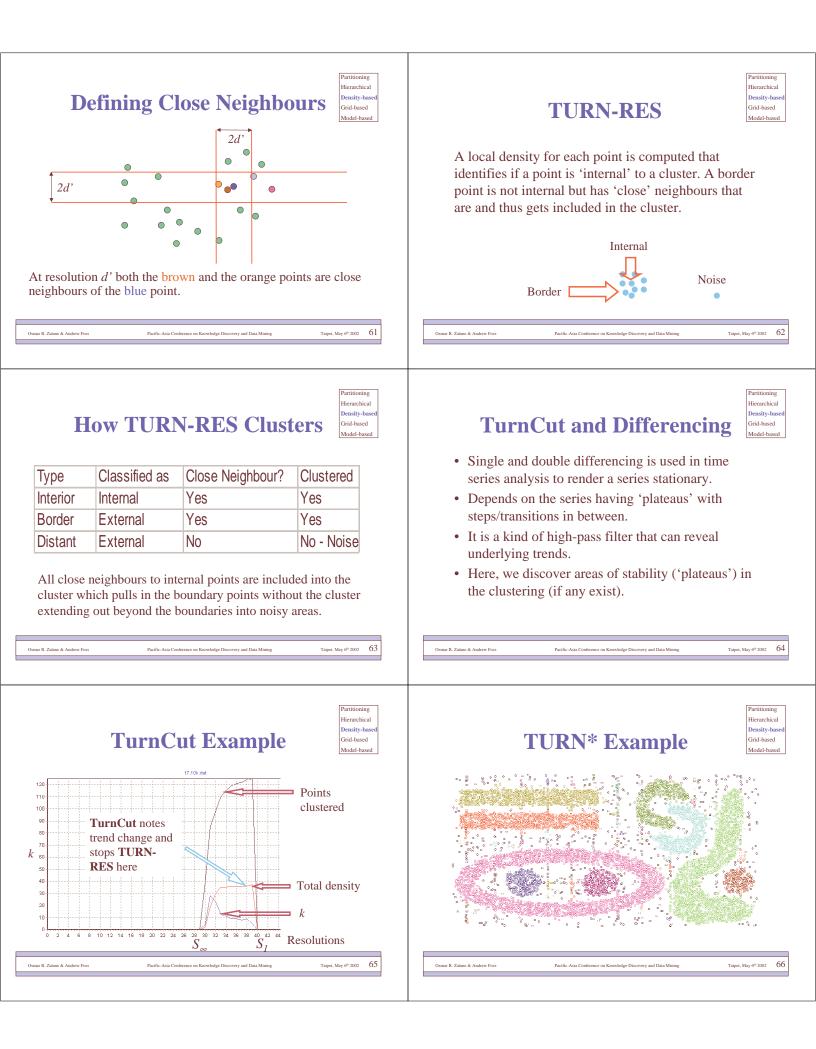
Pacific-Asia Conference on Knowledge Discovery and Data Minin

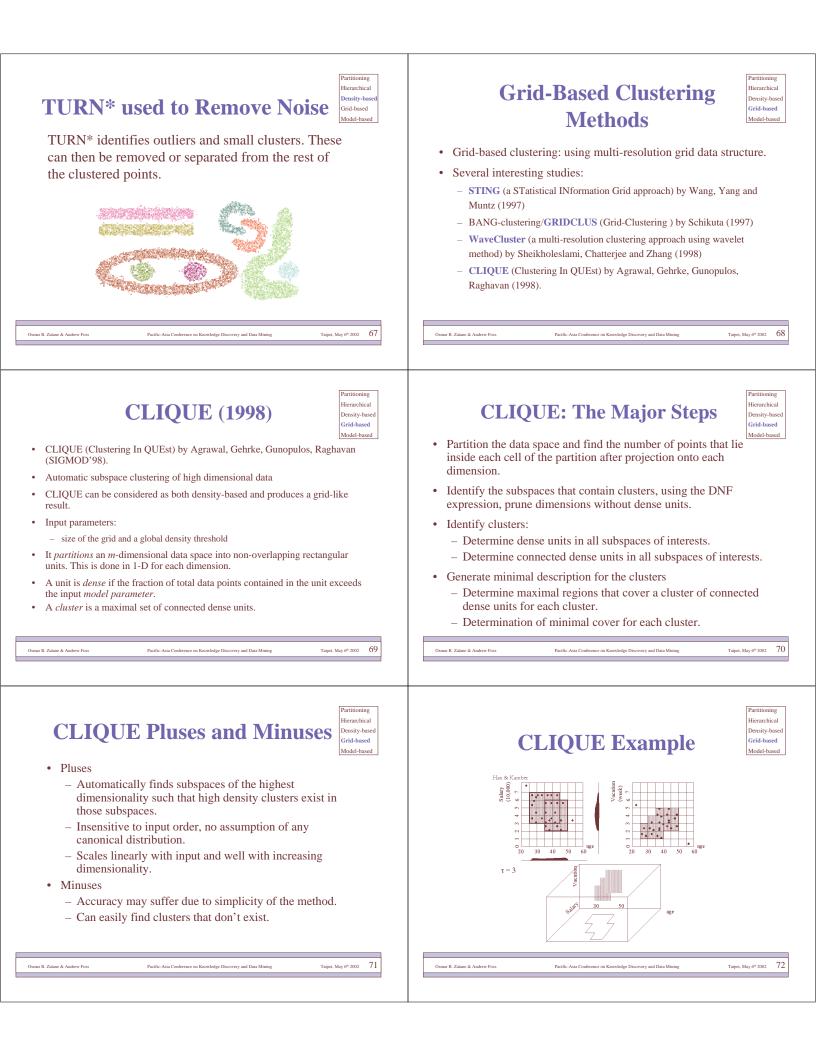


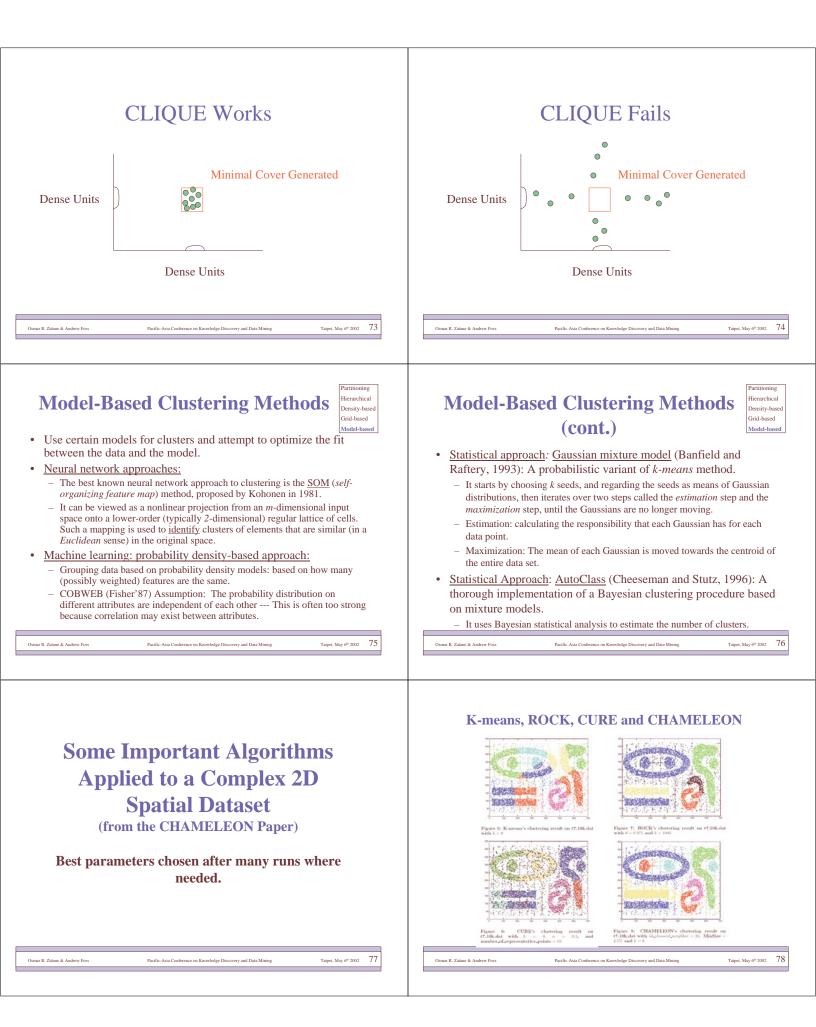
Pacific-Asia Conference on Knowledge Discovery and Data Mining

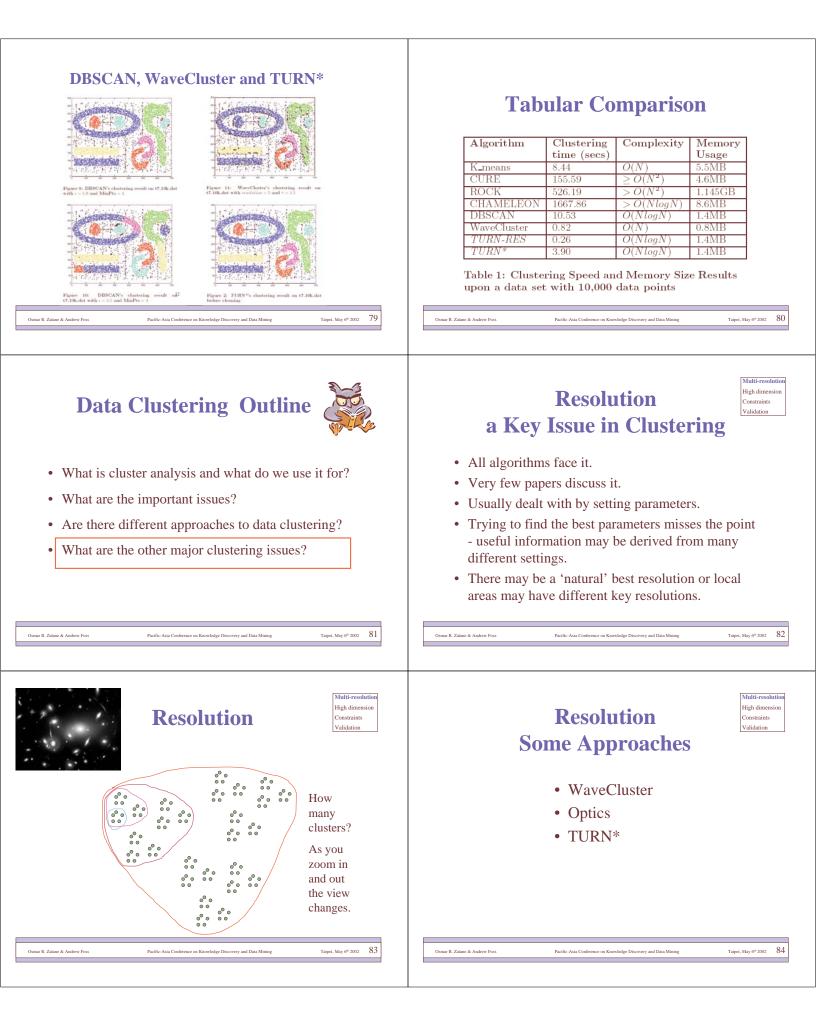


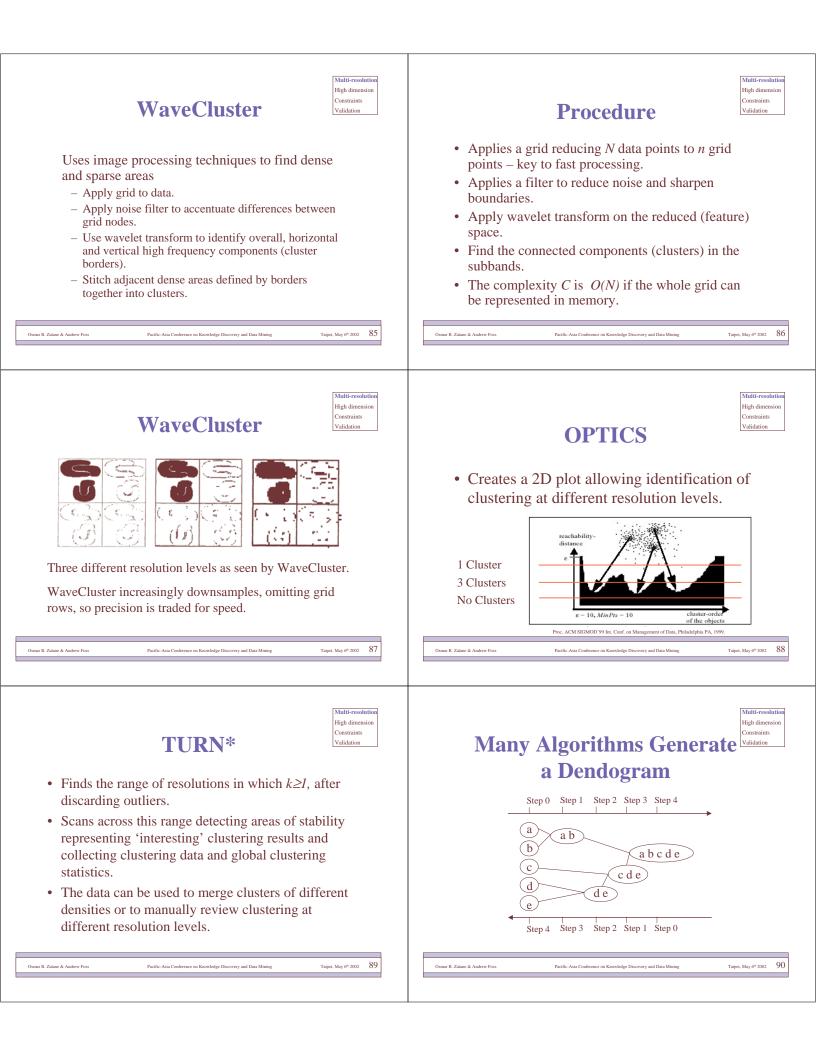
Hierarchical Hierarchical **TURN*** Component **TURN*** Density-bas Density-bas Grid-based Grid-based Model-based **Algorithms** (Foss and Zaiane, 2002) Model-ba • TURN* wrapper algorithm finds the starting • TURN* contains several sub-algorithms. resolution and calls the other algorithms as needed • TURN-RES computes a clustering of spatial data at as it scans over the range for which $k \ge l$. a given resolution based on a definition of 'close' • TURN-RES generates both a clustering result and neighbours: $d_i - d_i \le 1.0$ for two points *i*, *j* and a certain global statistics, especially a total density local density t, based on a point's distances to its the sum of the point local densities over all points nearest axial neighbours: $t_i = \sum_{d=0}^{D} f(d_d)$ for clustered, excluding outliers. dimensions D. • TurnCut finds the areas of interest in this graph • This density based approach is fast, identifies using double differencing on the change values. clusters of arbitrary shape and isolates noise. Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May 6th 2002 55 mar R. Zaïane & Andrew Fos Pacific-Asia Conference on Knowledge Discovery and Data Mi Taipei, May 6th 2002 56 Osmar R. Zaïane & Andrew Fos Hierarchical Hierarchical Density-bas Density-ba **Defining Neighbours TURN*** Grid-based Grid-based Model-based Model-based A clustering result will be found over a certain 2d• range of resolutions. Outside of that there is either one cluster (S_1) or every point is classified as noise $(S_{\infty}).$ **1**2d • TURN* first searches for S_{∞} and then scans \bigcirc towards S_1 using TURN-RES to cluster until a clustering optimum is reported by TurnCut assessing the global cluster features collected at each resolution by TURN-RES. A resolution is defined by a distance d along each dimensional • First TURN-RES is explained.... axis. At this resolution the brown and pink points are nearest neighbours of the blue point along the vertical dimensional axis. 57 58 Osmar R. Zaïane & Andrew Fos Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May 6th 2002 Osmar R. Zaïane & Andrew Fos Pacific-Asia Conference on Knowledge Discovery and Data Min Taipei, May 6th 2002 Partitionin Hierarchical Hierarchical **Defining Neighbours** Density-base **Defining Close Neighbours** Density-bas Grid-based Grid-based Model-based Model-base 2d2d \sim 2d'**1**2d 0 \bigcirc 0 C At coarser resolution d' the silver point now replaces the pink as At resolution *d* the brown is a close neighbour of the blue point the right nearest neighbour of the blue point along the vertical but the pink point is not close: dist > d along the vertical dimensional axis. dimensional axis. 59 60 Taipei, May 6th 2002 Osmar R. Zaïane & Andrew Fos Taipei, May 6th 2002 Osmar R. Zaïane & Andrew Fos Pacific-Asia Conference on Knowledge Discovery and Data Mining Pacific-Asia Conference on Knowledge Discovery and Data Min

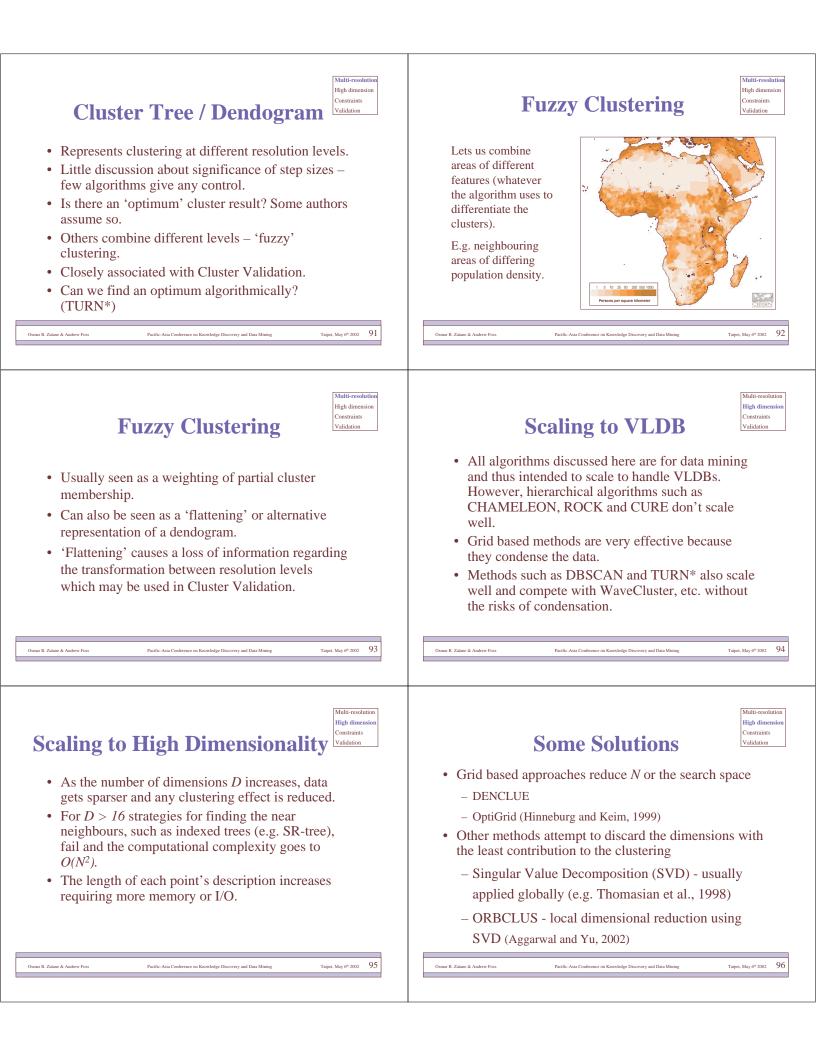


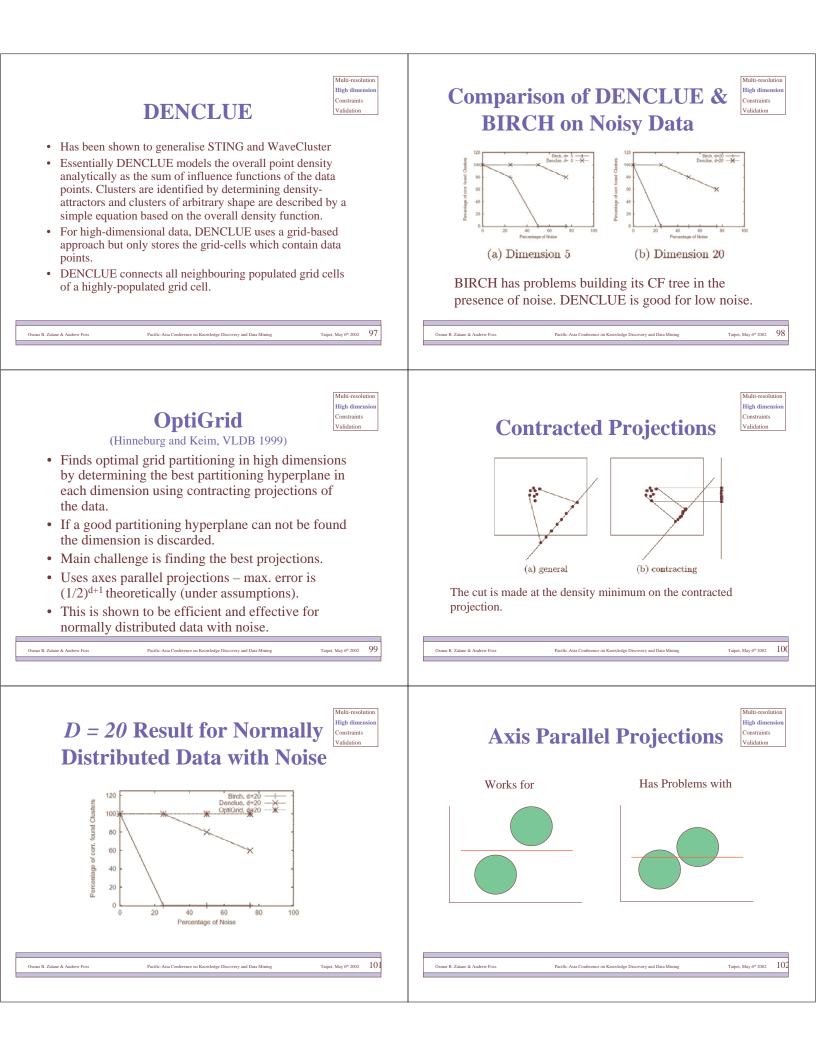


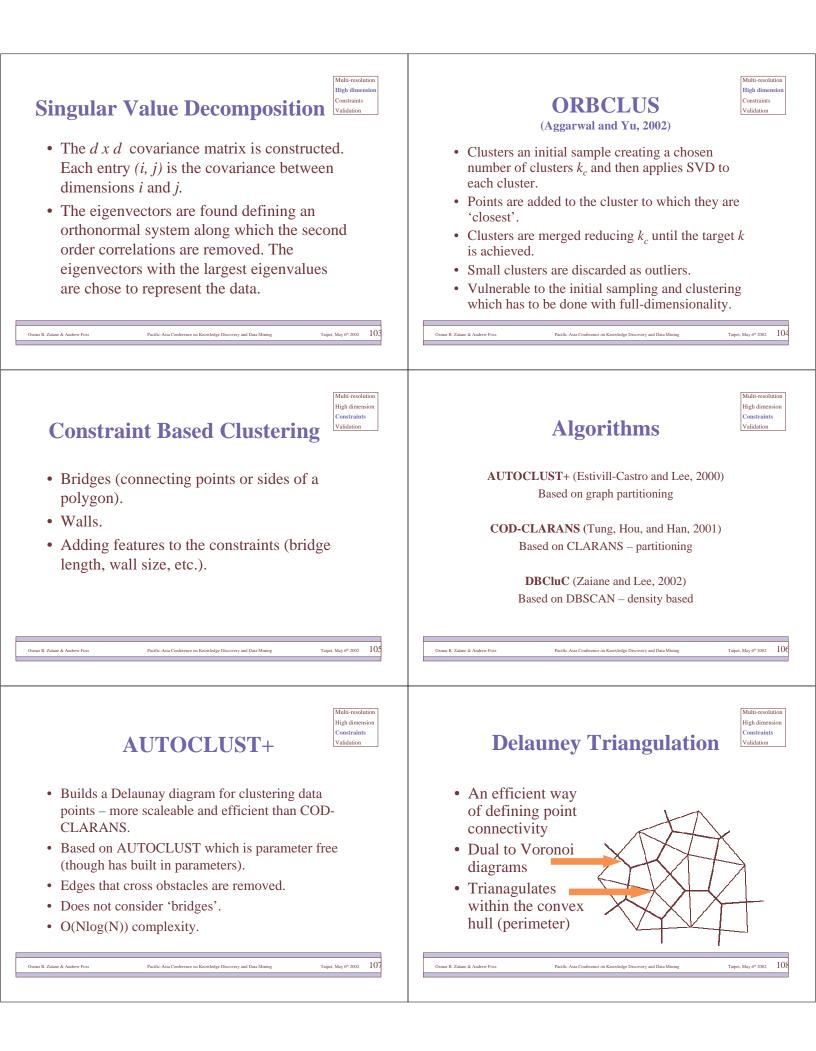


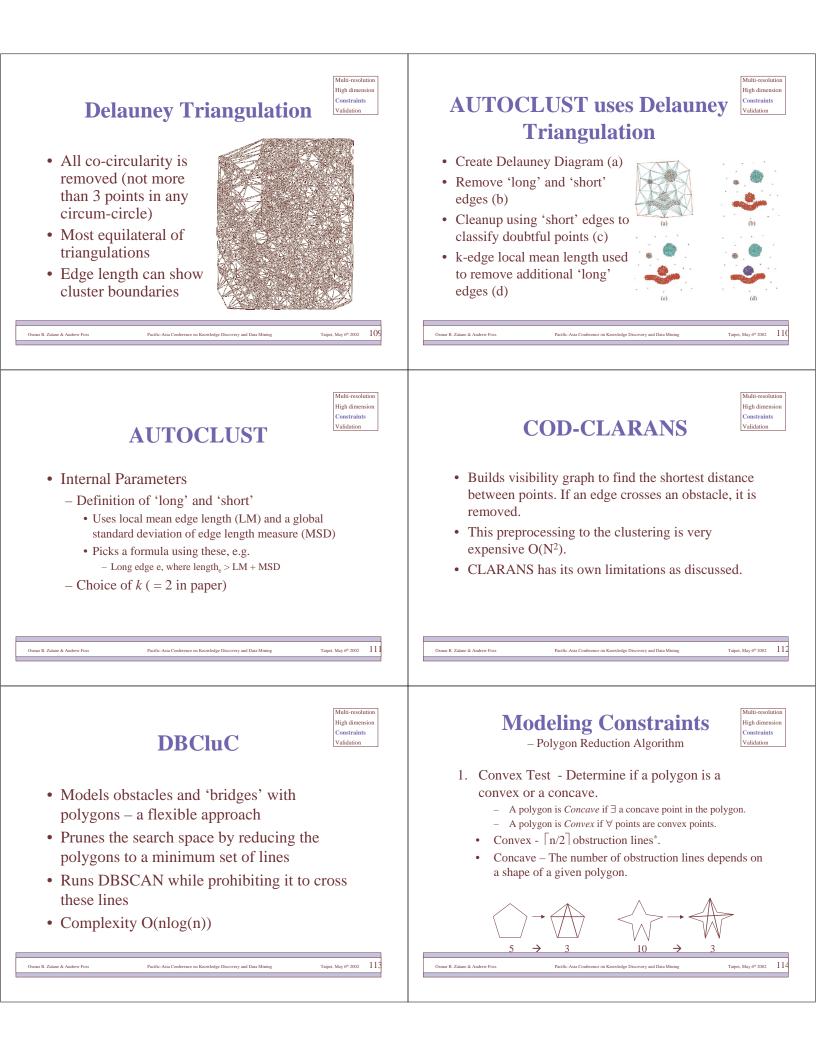


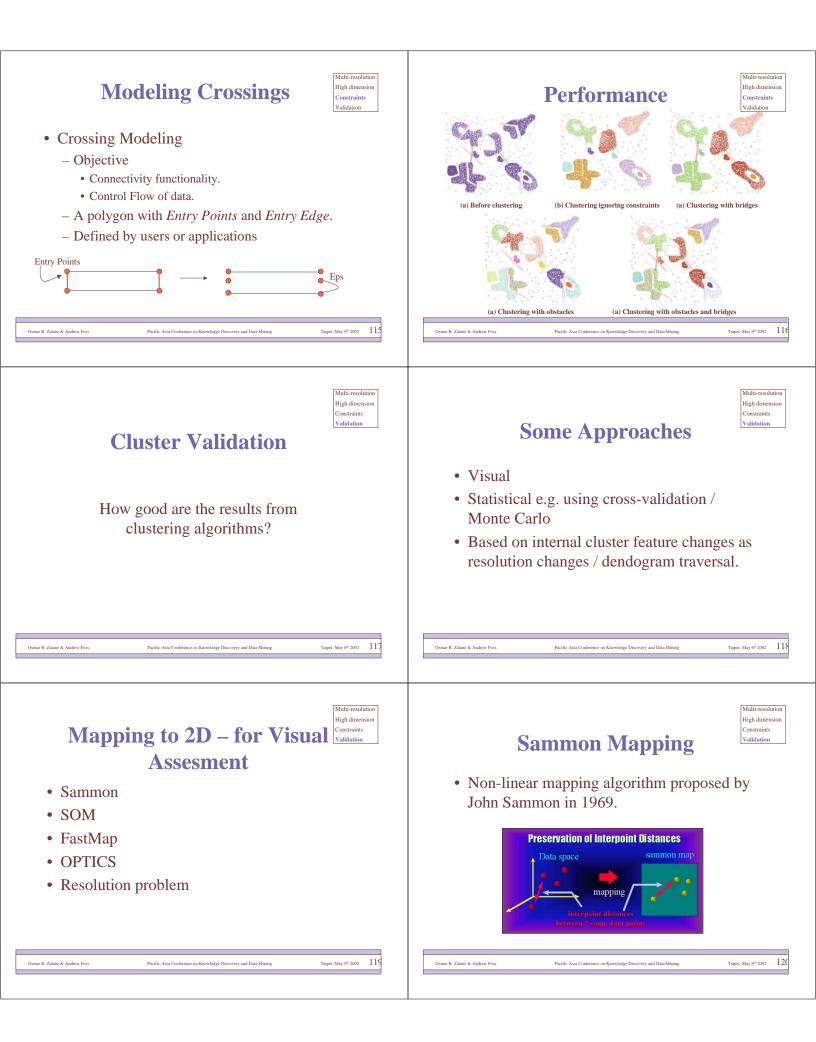


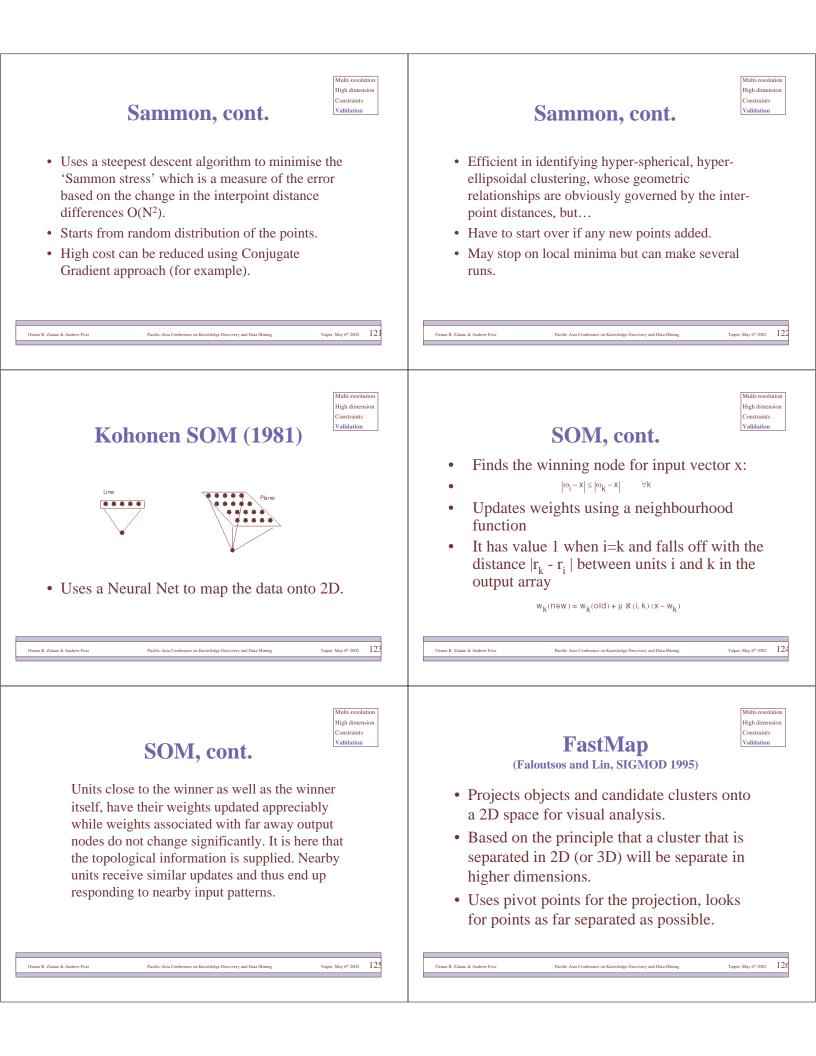


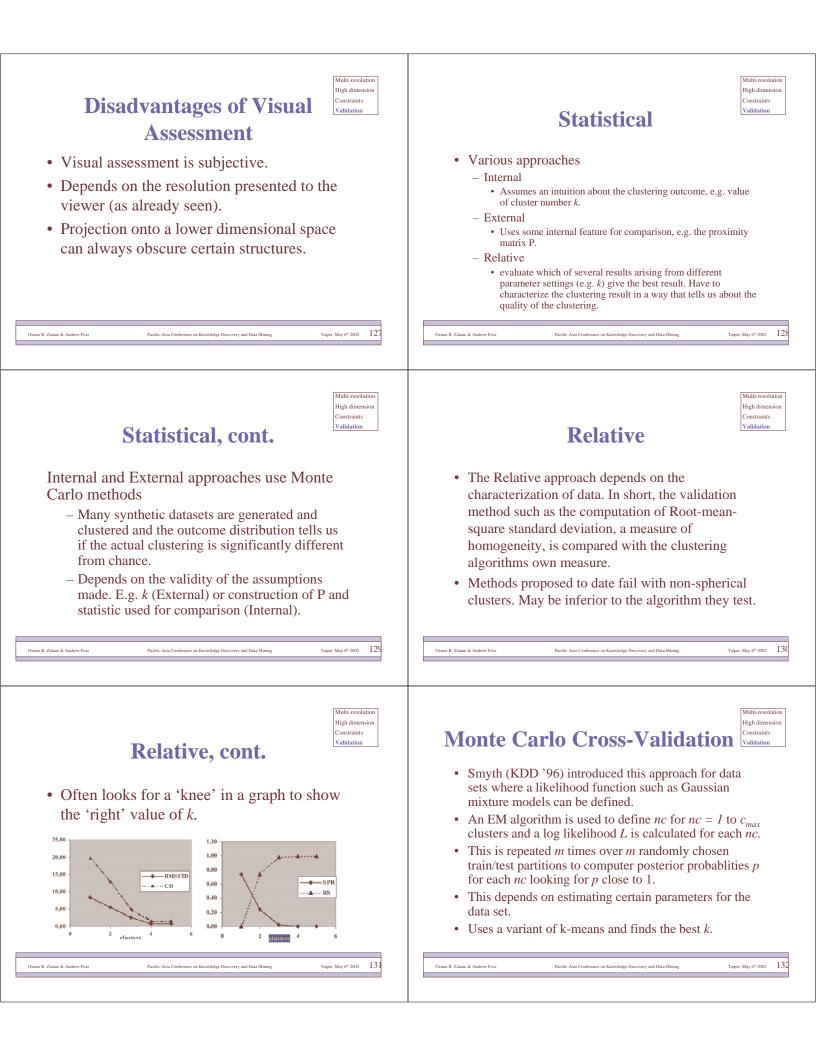












 Problems and Challenges Considerable progress has been made in scalable clustering methods: Partitioning: k-means, k-medoids, CLARANS Hierarchical: BIRCH, CURE Density-based: DBSCAN, CLIQUE, OPTICS, TURN* Grid-based: STING, WaveCluster. Model-based: Autoclass, Denclue, Cobweb. Current clustering techniques may not address all the requirements adequately (and concurrently). Large number of dimensions and large number of data items. Strict clusters vs. overlapping clusters. Clustering with constraints. Cluster validation. 	<list-item><list-item><list-item><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></list-item></list-item></list-item>
<page-header><page-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></page-header></page-header>	 Mart R. Züme A Andrew Teos 2019 A Schlar Conference on Knowledge Discovery and Data Mining Mart P. Züme A Marter Schlar Schl
Osmar R, Zahne & Andrew Foss Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipel, May 69 2002 135	Osmar R. Zaline & Andrew Foss Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, May 69 2002 136