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Abstract. Class imbalance is one of the challenging problems for machine 
learning in many real-world applications. Cost-sensitive learning has attracted 
significant attention in recent years to solve the problem, but it is difficult to de-
termine the precise misclassification costs in practice. There are also other fac-
tors that influence the performance of the classification including the input fea-
ture subset and the intrinsic parameters of the classifier. This paper presents an 
effective wrapper framework incorporating the evaluation measure (AUC and 
G-mean) into the objective function of cost sensitive SVM directly to improve 
the performance of classification by simultaneously optimizing the best pair of 
feature subset, intrinsic parameters and misclassification cost parameters. Expe-
rimental  results  on  various standard  benchmark datasets and real-world data 
with different ratios of imbalance show  that  the  proposed  method  is  effec-
tive  in  comparison with commonly used sampling techniques. 

1 Introduction 

Recently, the class imbalance problem has been recognized as a crucial problem in 
machine learning and data mining [1]. This problem occurs when the training data is 
not evenly distributed among classes. This problem is also especially critical in many 
real applications, such as credit card fraud detection when fraudulent cases are rare or 
medical diagnoses where normal cases are the majority. In these cases, standard clas-
sifiers generally perform poorly. Classifiers usually tend to be overwhelmed by the 
majority class and ignore the minority class examples. Most classifiers assume an 
even distribution of examples among classes and assume an equal misclassification 
cost. Moreover, classifiers are typically designed to maximize accuracy, which is not 
a good metric to evaluate effectiveness in the case of imbalanced training data. There-
fore, we need to improve traditional algorithms so as to handle imbalanced data and 
choose other metrics to measure performance instead of accuracy. We focus our study 
on imbalanced datasets with binary classes. 

 Much work has been done in addressing the class imbalance problem. These me-
thods can be grouped in two categories: the data perspective and the algorithm pers-
pective [2]. The methods with the data perspective re-balance the class distribution by 
re-sampling the data space either randomly or deterministically. The main disadvan-



tage of re-sampling techniques are that they may cause loss of important information 
or the model overfitting, since that they change the original data distribution.    

A cost-sensitive classifier tries to learn more characteristics of samples with the 
minority class by setting a high cost to the misclassification of a minority class sam-
ple. It does not modify the data distribution. Weiss [3] left the questions “why 
doesn’t the cost-sensitive learning algorithm perform better given the known draw-
backs with sampling; and are there ways to improve the effectiveness of cost-sensitive 
learning algorithms.” We need to improve the effectiveness of cost sensitive learning 
algorithms by optimizing factors which influence the performance of cost sensitive 
learning. 

There are two challenges with respect to the training of cost sensitive classifier.   
The misclassification costs play a crucial role in the construction of a cost sensitive 
learning model for achieving expected classification results. However, in many con-
texts of imbalanced dataset, the misclassification costs cannot be determined. Beside 
the cost, the feature set and intrinsic parameters of some sophisticated classifiers also 
influence the classification performance. Moreover, these factors influence each oth-
er. This is the first challenge. The other is the gap between the measure of evaluation 
and the objective of training on the imbalanced data [4]. Indeed, for evaluating the 
performance of a cost-sensitive classifier on a skewed data set, the overall accuracy is 
irrelevant. It is common to employ other evaluation measures to monitor the balanced 
classification ability, such as G-mean [5] and AUC [6]. However, these cost-sensitive 
classifiers measured by imbalanced evaluation are not trained and updated with the 
objective of the imbalanced evaluation. To achieve good prediction performance, 
learning algorithms should train classifiers by optimizing the concerned performance 
measures [7].   

 In order to solve the challenges above, we design a novel framework for training a 
cost sensitive classifier driven by the imbalanced evaluation criteria. The training 
scheme can bridge the gap between the training and the evaluating of cost sensitive 
learning, and it can learn the optimal factors associated with the cost sensitive clas-
sifier automatically. The significance of the scheme has two questions to fix: how to 
optimize these factors simultaneously; and using what evaluation criteria for guiding 
their optimization. These two issues are our key steps for improving the cost sensitive 
learning in the context of the class imbalance problem without cost information.  Our 
main contributions in this paper are centered around the questions above. 
The contributions of this work can be listed as follows: 

1) Optimizing the factors (ratio misclassification cost, feature set and intrinsic pa-
rameters of classifier) simultaneously for improving the performance of cost-sensitive 
SVM.  

2) Imbalanced data classification is commonly evaluated by measures such as G-
mean and AUC instead of accuracy. However, for many classifiers, the learning 
process is still largely driven by error based objective functions. We use the measure 
directly to train the classifier and discover the optimal parameter, ratio cost and fea-
ture subset based on different evaluation functions like the G-mean or AUC. Different 
metrics can reflect different aspect performance of classifiers. 



2  Related Works 

The common methods to solve data imbalance are data re-sampling perspective and 
algorithm perspective. Re-sampling methods are attractive under most imbalanced 
circumstances. This is because re-sampling adjusts only the original training dataset, 
instead of modifying the learning algorithm; therefore it provides a convenient and 
effective way to deal with imbalanced learning problems using standard classifiers by 
balancing the instances of the classes. Weiss and Provost observed that the naturally 
occurring distribution is not always optimal [8]. Therefore, one needs to modify the 
original data distribution. The idea of sampling is to purposefully manipulate the class 
distributions by under-sampling and over-sampling. 

The methods with the algorithm perspective adapt existing common classifier 
learning algorithms to bias towards the small class, such as cost-sensitive learning. 
Cost-sensitive learning is one of the most important topics in machine learning and 
data mining, and attracted significant attention in recent years. Cost-sensitive learning 
methods consider the costs associated with misclassifying examples. The objective of 
cost-sensitive methods is to minimize the expected cost of misclassifications without 
changing the class distribution [9]. A closely related idea to cost-sensitive learners is 
shifting the bias of a machine to favor the minority class so as to obtain better recog-
nition ability by adjusting the costs associated with misclassification rather than to 
seek the minimum of total misclassification cost [4, 10-12]. In the construction of cost 
sensitive learning, the parameter of misclassification cost plays an indispensable role.  

There is another issue in the class imbalance problem. The importance of feature 
selection to class imbalance problems, in particular, was realized and has attracted 
increasing attention from machine learning and data mining communities. Wrappers 
and embedded methods are feature subset selection methods that consider feature 
interaction in the selection process. Some authors have conducted studies on using 
feature selection to combat the class imbalance problem [13, 14]. Zheng and Srihari 
[14] suggest that existing measures used for feature selection are not appropriate for 
imbalanced datasets. The wrapper feature selection seems a good approach. 

3 Cost-Sensitive SVM 

Support Vector Machines (SVM), which has strong mathematical foundations based 
on statistical learning theory, has been successfully adopted in various classification 
applications. SVM maximizes a margin in a hyperplane separating classes. However, 
it is overwhelmed by the majority class instances in the case of imbalanced datasets 
because the objective of regular SVM is to maximize the accuracy. In order to provide 
different costs associated with the two different kinds of errors, cost-sensitive SVM 
(CS-SVM) [15] is a good solution. CS-SVM is formulated as follows: 
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where the C+ is the higher misclassification cost of the positive class, which is the 
primary interest, while C— is the lower misclassification cost of the negative class. 
Using the different error cost for the positive and negative classes, the hyperplane 
could be pushed away from the positive instances. In this paper, we fix C— = C and C+ 

= C×Crf, where C and Crf  are respectively the regularization parameter and the ratio 
misclassification cost factor. In the construction of cost sensitive SVM, the misclassi-
fication cost parameter plays an indispensable role. For the cost information, Vero-
poulos et al. have not suggested any guidelines for deciding what the relative ratios of 
the positive to negative cost factors should be. 

In general, the Radial Basis Function (RBF kernel) is a reasonable first choice for 
the classification of the nonlinear datasets, as it has fewer parameters (γ).  

4 Optimized cost sensitive SVM by measure of imbalanced data 

SVM tries to minimize the regularized hinge loss; it is driven by an error based objec-
tive function. However, the overall accuracy is not an appropriate evaluation measure 
for imbalanced data classification. As  a  result,  there  is  an inevitable  gap  between  
the evaluation measure  by  which  the  classifier  is  to  be evaluated  and  the objec-
tive function based on which the classifier is trained. The classifier for imbalanced 
data learning should be driven by more appropriate measures. We inject the appropri-
ate measures into the objective function of the classifier in the training with PSO. The 
common evaluation for imbalanced data classification is G-mean and AUC. However,  
for  many  classifiers,  the  learning  process  is  still  driven  by error  based  objective  
functions.  In this paper we explicitly treat the measure itself as the objective function 
when training the cost sensitive learning.  We designed a measure oriented training 
framework for dealing with imbalanced data classification issues. Chalwa et al. [6] 
propose a wrapper paradigm that discovers the amount of re-sampling for a dataset 
based on optimizing evaluation functions like the f-measure, and AUC. To date, there 
is no research about training the cost sensitive classifier with measure based objective 
functions. This is one important issue that hinders the performance of cost-sensitive 
learning. 

Another important issue of applying the cost-sensitive learning algorithm to the 
imbalanced data is that the cost matrix is often unavailable for a problem domain. The 
misclassification cost, especially the ratio misclassification cost, plays a crucial role in 
the construction of a cost sensitive approach; the knowledge of misclassification costs 
is required for achieving expected classification result. However, the values of costs 
are commonly given by domain experts. They remain unknown in many domains 
where it is in fact difficult to specify the precise cost ratio information. It is not exact 
to set the cost ratio to the inverse of the imbalance ratio (the number of majority in-
stances divided by the number of minority instances); especially it is not accurate for 
some classifier such as SVM. Some cost sensitive learning use a heuristic approach to 
search the optimal cost matrix, such as Genetic Algorithm [10] or grid search to find 
the optimal cost setup [12]. 



Apart from the ratio misclassification cost information, feature subset selection and 
the intrinsic parameters of the classifier have a significant bearing on the perfor-
mance. Both factors are not only important for imbalanced data classification, but also 
for any classification. Feature selection is the technique of selecting a subset of dis-
criminative features for building robust learning models by removing most irrelevant 
and redundant features from the data. Optimal feature selection can concurrently 
achieve good accuracy and dimensionality reduction. Unfortunately, the imbalanced 
data distributions are often accompanied by high dimensionality in real-world datasets 
such as text classification, bioinformatics, and computer aided detection. It is impor-
tant to select features that can capture the high skew in the class distribution [1]. 
Moreover, proper intrinsic parameter setting of classifiers, such as regularization cost 
parameter and the kernel function parameter for SVM, can improve the classification 
performance.  It is necessary to use the grid search to optimize the regulation parame-
ter and kernel parameters. Moreover, these three factors influence each other. There-
fore, obtaining the optimal ratio misclassification cost, feature subset and intrinsic 
parameters must occur simultaneously. 

Based on the reasons above, our specific goal is to devise a strategy to automatical-
ly determine the optimal factors during training of the cost sensitive classifier oriented 
by the imbalanced evaluation criteria (G-mean and AUC). 

In this paper, for the multivariable optimization, especially the hybrid multivaria-
ble, the best methods are swarm intelligence techniques. We choose the particle 
swarm optimization as our optimization method because it is mature and easy to im-
plement. Particle swarm optimization (PSO) is a population-based global stochastic 
search method [16]. PSO optimizes an objective function by a population-based 
search. The population consists of potential solutions, named particles. These particles 
are randomly initialized and move across the multi-dimensional search space to find 
the best position according to an optimization function. During optimization, each 
particle adjusts its trajectory through the problem space based on the information 
about its previous best performance (personal best, pbest) and the best previous per-
formance of its neighbors (global best, gbest). Eventually, all particles will gather 
around the point with the highest objective value.  
The position of individual particles is updated as follows: 
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With v, the velocity calculated as follows:    
                   1
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Where vi
t indicates velocity of particle i at iteration t; w  indicates the inertia factor; 

C1 and C2 indicate the cognition and social learning rates, which determine the rela-
tive influence of the social and cognition components. r1 and r2 are uniformly distri-
buted random numbers between 0 and 1, xi

t is current position of particle i at iteration 
t, pbesti

t indicates best of particle i at iteration t, gbestt indicates the best of the group.   
Evaluation measures play a crucial role in both assessing the classification perfor-

mance and guiding the classifier modeling. The purpose of cost-sensitive learning is 
usually to build a model with total minimum misclassification costs. However, it 
should be based on the known cost matrix condition. The purpose of our cost sensitive 



learning is to get a best AUC or G-mean evaluation metric. We train the cost sensitive 
learning using performance measures as the objective functions directly. Through 
training the cost sensitive classifier with measure based objective functions, we can 
discover the best factors in terms of the different evaluation. The evaluation metrics 
value is taken as the fitness function to adjust the position of a particle. These two 
different evaluations reflect different aspect of the classifier. AUC affects the ranking 
ability and G-mean involves the accuracies of both classes at the same time. 

For binary class classification, the cost parameter is only one parameter, which 
means the relative cost information, ratio misclassification cost factor Crf. Since the 
RBF kernel is selected for the cost sensitive SVM, γ and C are the parameters to be 
optimized. We need to combine the discrete and continuous values in the solution 
representation since the costs and parameters we intend to optimize are continuous 
while the feature subset is discrete. Each feature is represented by a 1 or 0 for whether 
it is selected or not. The major difference between the discrete PSO [17] and the orig-
inal version is that the velocities of the particles are rather defined in terms of proba-
bilities that a bit will change to one. Using this definition a velocity must be restricted 
within the range [0, 1], to which all continuous values of velocity are mapped by a 
sigmoid function: 
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Equation 4 is used to update the velocity vector of the particle while the new posi-
tion of the particle is obtained using Equation 5. 
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Where ri is a uniform random number in the range [0,1] . 
Algorithm 1:  MOCSSVM (optimized cost sensitive SVM by imbalanced data measure)  

Input: Training set D; termination condition T; population size SN; metric E; NumFolds =5 
Randomly initialize particle population positions and velocities (including cost matrix, intrinsic parameters, 
and feature subset) 
repeat 

 foreach particle i 
       Construct the Di with the feature selected by the particle i  
       for k=1 to NumFolds 

Separate Di randomly into Trtk
i  (80%) for training and Trvk

i   (20%) for validation  
Train CS-SVM with cost matrix and intrinsic parameters optimized by the particle i on the Trtk

i 
Evaluate the cost sensitive classifier on the Trvk

i  , and obtain the value Mk
i based on E 

end for 
Mi=average(Mk

i);Assign the fitness of particle i  with Mi  
if   fitness (pbesti) <= fitness (xi)  
     then pbesti = xi  
end if 

end foreach 
set gbest as best pbest 

  foreach particle i 
   update velocityi and positioni  with Eq. 2 and 3. 

end foreach 
until termination condition  
output optimal parameters, cost ratio and feature subset of gbest  



The solution (i.e. particle) includes three parts: the ratio misclassification cost, the 
intrinsic parameters of classifier, and the feature subsets. Figure 1 illustrates the 
mixed solution representation in the PSO. 

Ratio cost Intrinsic parameters Feature subset 
Crf C γ f1 f2 … fn-1 fn 

                 Fig. 1 Solution representation 
The detailed algorithm MOCSSVM to optimize cost sensitive SVM by imbalanced 

data measure is shown in Algorithm 1. It is a wrapper framework for empirically dis-
covering the potential misclassification cost ratio, feature subset, and intrinsic para-
meters for CSL oriented by the imbalanced evaluation criteria (G-mean and AUC).  

5 Experimental study 

5.1 Dataset Description 
To evaluate the classification performance of our proposed method in different 
classification tasks, and to compare with other methods specifically devised for imba-
lanced data, we tried several datasets from the UCI database. We used all available 
datasets from the combined sets used in [4]. This also ensures that we did not choose 
only the datasets on which our method performs better. The minority class label (+) is 
indicated in Table 1. The datasets chosen have diversity in the number of attributes 
and imbalance ratio. Moreover, the datasets used have both continuous and categori-
cal attributes. All the experiments are conducted by 10-fold cross-validation. 

Table 1. The data sets used for experimentation  
The dataset name is appended with the label of the minority class (+) 

Dataset  (+) Instances Features Class balance 

Hepatitis (1) 155 19 1:4 
Glass (7) 214 9 1:6 
Segment (1) 2310 19 1:6 
Anneal (5) 898 38 1:12 
Soybean (12) 683 35 1:15 
Sick (2) 3772 29 1:15 
Car (3) 1728 6 1:24 
Letter (26) 20000 16 1:26 
Hypothyroid(3) 3772 29 1:39 
Abalone (19) 4177 8 1:130 

5.2 Experiment I 
In this experiment, the comparison is conducted between our method and the interme-
diate method or basic method, such as basic SVM with and without the feature selec-
tion, cost sensitive SVM, cost sensitive SVM with grid search and our method 
MOCSSVM with/without the feature selection. For the basic SVM with feature selec-
tion, it is a common wrapper feature selection method with evaluation by classifica-
tion performance. As for CSSVM, the misclassification cost ratio is searched itera-
tively to maximize the measure score within a range of cost value. CSSVM uses a 
grid search for optimization. We also need to treat this misclassification cost ratio as a 
hyperparameter, and locally optimize this parameter. However, it is not feasible to use 



a triple circulation for optimizing the best parameters, so we optimize the best para-
meter pair(C and γ) firstly, then locally optimize the cost ratio parameter based on the 
best parameter pair(C and γ). All SVM models in this experiment use the same kernel, 
RBF, and for basic SVM and CSSVM, the intrinsic parameters are fixed with default 
values (C=1 and γ =1).  

For the PSO setting of our method MOCSSVM, the initial parameter values of it in 
our proposed method were set according to the conclusion drawn in [18]. The para-
meters were used: C1=2.8, C2=1.3, w=0.5. To empirically provide good performance 
while at the same time keeping the time complexity tractable, the particle number was 
set dynamically according to the amount of the variables optimized (=1.5×|variables 
to be optimized|), and the termination condition could be a certain number of itera-
tions (500 cycles) or other convergence condition (no changes any more within 2× 
|variables to be optimized| cycles). Besides these parameters in PSO, the other para-
meters are the upper and lower of limit parameter of model to be optimized.  For 
Grid-CSSVM and MOCSSVM, the ranges for C and γ are based on a grid search for 
SVM parameters as recommended in [19]. The range of C is (2-5, 215), and the range 
of γ is (2-15, 23). The range of ratio misclassification cost factor Cr was empirically set 
between 1 and 10×ImbaRatio (ratio between the instance amounts of two classes). 

In this experiment, we assess the overall quality of classifiers with only the AUC 
evaluation metric. From the result in Table 2, we found that simultaneously optimiz-
ing the feature subset, parameter and cost ratio generally help the base classifiers 
learned on the different data sets, regardless of feature selecting or not. 

Table 2. Experimental results between all the methods based on the SVM 
Dataset Basic SVM CS-SVM Grid-CSSVM MOCSSVM 

without FS FS without FS without FS without FS FS 
Hepatitis  0.632 0.714 0.707 0.801 0.861 0.855 
Glass  0.952 0.957 0.953 0.955 0.994 1 
Segment  1 1 1 1 1 1 
Anneal  0.876 0.925 0.957 1 1 1 
Soybean  1 1 1 1 1 1 
Sick  0.728 0.761 0.788 0.848 0.908 0.975 
Car 0.990 0.987 0.990 0.999 1 1 
Letter  0.898 0.895 0.909 0.983 0.980 0.999 
Hypothyrid 0.830 0.855 0.887 0.945 0.973 0.988 
Abalone 0.638 0.712 0.722 0.839 0.867 0.893 
Average 0.854 0.881 0.892 0.937 0.957 0.971 

Under the condition where the feature selection is not carried out, we found that 
the simultaneous optimization for all the factors using PSO outperforms the optimiza-
tion using grid search, which optimizes the intrinsic parameters first, then searches the 
optimal misclassification cost parameter based on the best intrinsic parameters. It 
lacks many potential parameter pairs not searched in the parameter space. Hence, it 
shows that the parameters need to be search at the same time. Moreover, in 
MOCSSVM, the use of feature selection was found to improve the AUC for each 
dataset except the Hepatitis dataset. 

Although, we take some dynamic strategies for improving the efficiency of the 
PSO algorithm, the average running iterations for PSO-based approach is slightly 



inferior to that of the grid search algorithm. However, it significantly improves the 
classification accuracy and obtains fewer input features for the classifiers. Therefore, 
we can draw the conclusion that by simultaneously optimizing the intrinsic, misclassi-
fication cost parameter and feature selection with the imbalanced evaluation measure 
guiding improves the classification performance of the cost sensitive SVM on differ-
ent datasets. 

5.3 Experiment II 
The comparison is conducted between our method and the other state-of-the-art imba-
lanced data classifiers, such as the random under-sampling (RUS), SMOTE [20], 
SMOTEBoost [21], and SMOTE combined with asymmetric cost classifier [5]. For 
the under-sampling algorithm, the SMOTE and SMOTEBoost, the re-sampling rate is 
unknown. In our experiments, in order to compare equally, no matter under-sampling 
or over-sampling method, we also use the evaluation measure as the optimization 
objective of the re-sampling method to search the optimal re-sampling level. The 
increment step and the decrement step are both set at 10%. This is a greedy search, 
which process repeats, greedily, until no performance gains are observed. The optimal 
re-sampling rate is decided in an iterative fashion according to the evaluation metrics. 
Thus, in each fold, the training set is separated into training subset and validating 
subset for searching the appropriate rate parameters. The evaluation metrics are also 
used with the G-mean and AUC. For the CS-SVM with SMOTE, for each re-
sampling rate searched, the optimal misclassification cost ratio is determined by 
searching under the evaluation measure guiding under the current over-sampling level 
of SMOTE.  

As shown in bold in Table 3, our MOCSSVM outperforms all the other approach-
es on the great majority of datasets. It did not get the best result only on the Glass 
dataset. From the results, we can see that the random under-sampling has the worst 
performance. This is because it is possible to remove certain significant examples and 
under-sampling the majority class causes larger angles between the ideal and learned 
hyperplane, and also reduces the total number of training instances which also contri-
butes to increasing angles [5]. Both the SMOTE and SMOTEBoost improve the clas-
sification on the imbalanced data. The over-sampling algorithm that tries to improve 
on it inevitably sacrifices some specificity in order to improve the sensitivity; but the 
degree of sensitivity improved is larger than the lost specificity. However, they have a 
potential disadvantage of distorting the class distribution. SMOTE combined with a 
different cost classifier is better than only SMOTE over-sampling, and it is the me-
thod that shares most of the second best results. In the majority of cases, the G-mean 
value from the G-mean wrapper is higher than the one of the AUC wrapper, but in 
some cases, the G-mean value from the AUC wrapper is higher, such as Hepatitis and 
Abalone datasets for MOCSSVM and Glass. Even for MOCSSVM, the average G-
mean from AUC optimization is better than the one from G-mean optimization. From 
this, we believe that by using AUC as the wrapper evaluation function we get better 
performances, which is the similar conclusion as in [6]. We believe that employing 
the AUC evaluation measure as optimization objective could lead to more generalized 
performances. Similarly, the two evaluation metrics wrapper optimizations for the 



same classifier result in different misclassification cost, feature subset and intrinsic 
parameters, since they optimize different properties of the classifier. 

The feature selection is as important as the re-sampling in the imbalanced data 
classification, especially with high dimensional datasets. However, feature selection is 
often ignored. Our method does feature selection in the wrapper paradigm, hence 
improves the classification performance on the datasets which have higher dimensio-
nality, such as Anneal, Sick and Hypothyroid.  

We use the MOCSSVM method as a baseline and compare the other methods 
against it. Although all methods are optimized under the evaluation measure oriented, 
we can clearly see that MOCSSVM is almost always equal to, or better than other 
methods. What is most important is that our method does not change the data distribu-
tion, while the re-sampling may make the generalization not as good as the training, 
since that the data distribution are different between the training set and test set.   

Table 3. Experimental comparison between MOCSSVM method and other imbalanced data methods 
Dataset   RUS SMOTE SMOTE 

Boost 
SMOTE-
CSSVM 

MOCSSVM 

wrapper 
metric 

wrapper 
 metric 

wrapper 
metric 

wrapper 
metric 

wrapper 
metric 

AUC GM AUC GM AUC GM AUC GM AUC GM 
Hepatitis  AUC 0.663 0.528 0.754 0.721 0.788 0.759 0.813 0.783 0.855 0.823 

GM 0.598 0.487 0.672 0.667 0.558 0.592 0.628 0.729 0.805 0.801 
Fea. 19 7 8 

Glass AUC 0.955 0.948 0.988 0.986 0.981 0.978 0.992 0.975 1 0.995 
GM 0.817 0.803 0.844 0.858 0.874 0.862 0.965 0.988 0.986 0.971 
Fea. 9 5 4 

Segment  AUC 1 1 1 1 1 1 1 1 1 1 
GM 0.993 1 1 1 1 1 1 1 0.998 1 
Fea. 19 10 11 

Anneal  AUC 0.882 0.866 0.912 0.876 0.891 0.889 0.957 0.934 1 1 
GM 0.616 0.535 0.758 0.821 0.761 0.784 0.819 0.835 0.999 1 
Fea. 38 14 12 

Soybean  AUC 1 0.992 1 1 1 1 1 1 1 1 
GM 0.876 0.953 0.947 0.965 0.992 0.997 1 0.997 1 1 
Fea. 35 12 12 

Sick  AUC 0.784 0.742 0.822 0.799 0.841 0.824 0.931 0.874 0.975 0.954 
GM 0.206 0.141 0.452 0.528 0.508 0.512 0.811 0.825 0.893 0.915 
Fea. 29 9 7 

Car  AUC 1 1 1 1 1 1 1 1 1 1 
GM 0.964 0.964 0.962 0.958 0.979 0.981 0.995 0.998 0.996 0.998 
Fea. 6 4 4 

Letter  AUC 0.907 0.896 0.966 0.956 0.987 0.965 0.988 0.980 0.999 0.995 
GM 0.925 0.933 0.947 0.954 0.934 0.922 0.965 0.961 0.983 0.985 
Fea. 16 12 10 

Hypothyroid AUC 0.876 0.843 0.971 0.915 0.967 0.955 0.973 0.971 0.988 0.989 
GM 0.482 0.612 0.853 0.894 0.876 0.903 0.876 0.901 0.964 0.968 
Fea. 29 9 14 

Abalone  AUC 0.781 0.613 0.822 0.754 0.799 0.780 0.846 0.812 0.893 0.855 
GM 0.618 0.687 0.712 0.814 0.645 0.744 0.698 0.817 0.853 0.785 
Fea. 8 4 5 

Average AUC 0.885 0.843 0.924 0.900 0.925 0.915 0.950 0.933 0.971 0.961 
GM 0.710 0.711 0.815 0.814 0.813 0.830 0.876 0.910 0.948 0.943 

win/tie/lose AUC 0/3/7 0/2/8 0/3/7 0/3/7 0/3/7 0/3/7 0/3/7 0/3/7 base 1/4/5 
GM 0/0/1

 
0/1/9 0/1/9 0/1/9 0/1/9 0/1/9 0/2/8 1/2/7 3/1/6 base 



Many papers conclude that there is no consistent clear winner between the sam-
pling approaches and the cost-sensitive technique. However, the conclusions were 
based on the default condition without sufficient search in the parameters space. In 
this paper, we have empirically shown that under the evaluation measure guiding, the 
performances of cost sensitive SVM with cost, feature subset and intrinsic parameter 
optimized are better than the re-sampling methods with sampling level optimized. 

5.4 Experiment III 
Computer aided detection provides a computer output in order to assist radiologists in 
the diagnosis of Lung Cancer on medical images. It can be divided into initial nodule 
identification step and false-positive reduction step. The purpose of false-positive 
reduction is to remove false positives (FPs) as much as possible while retaining a 
relatively high sensitivity. It is a typical class imbalance issue since the two classes 
are typically skewed and have unequal misclassification costs. Our database consists 
of 98 thin section CT scans with 106 solid nodules, obtained from Guangzhou hospit-
al in China. We obtained the appropriate candidate nodule samples objectively using a 
candidate nodule detection algorithm, which identifies 95 true nodules as positive 
class and 592 non-nodules as negative class from the total CT scans; the class 
imbalance ratio is 1:6. The imbalance level is not extremely high, but the mis-
classification costs of each class are very different. The imbalance level is de-
pendent on reliability and accuracy of the initial detection process. Our feature 
extraction process generated 43 features from multiple views. Using these features, 
we construct the input space for our classifiers. Our method outperforms the other 
common approach (Table 4). It means that our method can be applied on the nodule 
or other lesion detection. The measure optimization used is the AUC metric. 

Table 4 Experiment result of candidate nodule classification 
metric SVM CSSVM RUS SMOTE SMOTE-

Boost 
SMOTE-
CSSVM 

MO 
CSSVM 

AUC 0.681 0.785 0.603 0.948 0.948 0.956 0.969 
GM 0.208 0.662 0.590 0.826 0.818 0.867 0.937 

6 Conclusion 

Learning with class imbalance is a challenging task. We propose a wrapper paradigm 
oriented by the evaluation measure of imbalanced dataset as objective function with 
respect to misclassification cost, feature subset and intrinsic parameters of SVM. Our 
measure oriented framework could wrap around an existing cost-sensitive classifier. 
The proposed method has been validated on some benchmark imbalanced data and 
real application. The experimental results presented in this study have demonstrated 
that the proposed framework provides a very competitive solution to other existing 
state-of-the-arts methods, in optimization of G-mean and AUC for combating imba-
lanced classification problems. These results confirm the advantages of our approach, 
showing the promising perspective and new understanding of cost sensitive learning. 
In the future research, we will extend the framework to the imbalanced multiclass 
data classification. 



Reference 

1. Chawla, N.V., Japkowicz, N.& Kolcz, A. (2004): Editorial: special issue on learning from 
imbalanced data sets. SIGKDD Explorations Special Issue on Learning from Imbalanced 
Datasets 6 (1):1-6. 

2. Kotsiantis, S., Kanellopoulos, D. & Pintelas, P. (2006): Handling imbalanced datasets: A 
review.  GESTS International Transactions on Computer Science and Engineering:25-36. 

3. Weiss G., McCarthy K., Zabar B. (2007): Cost-sensitive learning vs. sampling: Which is 
Best for Handling Unbalanced Classes with Unequal Error Costs? IEEE ICDM, pp. 35–41. 

4. Yuan, B. & Liu, W.H. (2011): A Measure Oriented Training Scheme for Imbalanced Clas-
sification Problems. Pacific-Asia Conference on Knowledge Discovery and Data Mining 
Workshop on Biologically Inspired Techniques for Data Mining. pp:293–303. 

5. Akbani, R., Kwek, S. & Japkowicz, N. (2004): Applying support vector machines to imba-
lanced datasets. European conference on machine learning.  

6. Chawla, N.V., Cieslak, D.A., Hall, L.O. & Joshi, A. (2008): Automatically countering im-
balance and its empirical relationship to cost. Utility-Based Data Mining: A Special issue 
of the International Journal Data Mining and Knowledge Discovery. 

7. Li, N., Tsang, I., Zhou, Z. (2012): Efficient Optimization of Performance Measures by 
Classifier Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence.  
Volume: PP , Issue: 99, Page(s): 1. 

8. Weiss, G. & Provost, F. (2003): Learning when training data are costly: the effect of class 
distribution on tree induction, J Artif Intel Res 19:315–354. 

9. Zhou, Z.H. & Liu, X.Y. (2006): Training Cost-Sensitive Neural Networks with Methods 
Addressing the Class Imbalance Problem. IEEE Transactions on Knowledge and Data En-
gineering, 18(1): 63-77. 

10. Sun, Y., Kamel, M.S. & Wang, Y. (2006): Boosting for Learning Multiple Classes with 
Imbalanced Class Distribution. Proc. Int’l Conf. Data Mining:592-602 

11. Wang, B.X. & Japkowicz, N. (2008): Boosting support vector machines for imbalanced 
data sets, Journal of Knowledge and information Systems 4994, 38–47. 

12. Thai-Nghe N. (2010): Cost-Sensitive Learning Methods for Imbalanced Data, Intl. Joint 
Conf. on Neural Networks. 

13. Forman, G. (2003): An Extensive Empirical Study of Feature Selection Metrics for Text 
Classification.  J. Machine Learning Research, vol. 3, pp. 1289-1305. 

14. Zheng, Z., Wu, X. & Srihari, R. (2004): Feature selection for text categorization on imba-
lanced data. SIGKDD Explorations, 6(1):80-89. 

15. Veropoulos, K., Campbell, C. & Cristianini, N. (1999): Controlling the sensitivity of sup-
port vector machines. International Joint Conference on AI, 55–60. 

16. Kennedy, J., Eberhart, R.C. (1995): Particle swarm optimization, IEEE Int. Conf. Neural 
Networks, pp.1942–1948.  

17. Khanesar, M.A., Teshnehlab, M. & Shoorehdeli, M.A. (2007): A novel binary particle 
swarm optimization. In Control & Automation. Mediterranean Conference on, pp. 1–6 

18. Carlisle, A. & Dozier, G. (2001): An Off-The-Shelf PSO. PSO Workshop. pp. 1–6.  
19. Hsu, C.W, Chang, C.C. & Lin, C.J. (2003): A Practical Guide to Support vector Classifica-

tion, National Taiwan University Technical Report. 
20. Chawla, N.V., Bowyer, K.W., Hall, L.O. & Kegelmeyer, W.P. (2002): SMOTE: Synthetic 

minority over-sampling technique. J Artif Intell Res 16:321–357. 
21. Chawla N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W. (2003): SMOTEBoost: Improving 

Prediction of the Minority Class in Boosting. European Conf. Principles and Practice of 
Knowledge Discovery in Databases, pp. 107-119. 


	Introduction
	Related Works
	Cost-Sensitive SVM
	Optimized cost sensitive SVM by measure of imbalanced data
	Experimental study
	5.1 Dataset Description
	5.2 Experiment I
	5.3 Experiment II
	5.4 Experiment III

	Conclusion
	Reference

