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Abstract. The overwhelming amount of textual documents available
nowadays highlights the need for information organization and discovery.
Effectively organizing documents into a hierarchy of topics and subtopics
makes it easier for users to browse the documents. This paper borrows
community mining from social network analysis to generate a hierarchy
of topically coherent document clusters. It focuses on giving the doc-
ument clusters descriptive labels. We propose to use betweenness cen-
trality measure in networks of co-occurring terms to label the clusters.
We also incorporate keyphrase extraction and automatic titling in clus-
ter labeling. The results show that the cluster labeling method utilizing
KEA to extract keyphrases from the documents generates the best labels
overall comparing to other methods and baselines.
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1 Introduction

In this information-explosion era, the retrieval and representation of information
is vital for people′s information needs. For textual documents, two main types of
information needs are: (1) finding a specific piece of information and (2) browsing
the topics and structure of a given document collection [6].

Search engines are effective information retrieval tools for finding specific in-
formation. Most search engines return a long list of ranked results to users in re-
sponse to a query. This presentation works well when the query is non-ambiguous
and straight-forward. However, about 16% of user queries are estimated to be
Ambiguous Queries, that is to say, they have multiple meanings [10]. For ex-
ample, the query “jaguar” could mean “jaguar the car”, “jaguar the animal” or
“jaguar Mac OS” etc. There are even more queries that are Broad Queries that
have multiple aspects [10]. In these situations, documents on different aspects
of the query, and even irrelevant documents are mixed together. Even an ex-
perienced user would waste time and energy in sifting through the long list of
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results to locate the ones that they need. The second kind of information need
is to browse a document collection without a well-defined goal of searching [6].
A user may just want to browse the structure and topics of a certain document
collection [5]. For example, a reader may want to know what topics a blog web
site covers to see whether it is of interest; an executive may want to monitor the
company emails to have an overview of the subjects discussed. For this need, the
long list of documents is not effective either.

One of the solutions to the above problems is document clustering and label-
ing. This procedure aims at clustering a document collection into smaller groups
where each group is on a different topic. It can be done recursively until the
topics are specific enough. This will generate a hierarchy of document clusters
with labels. This representation allows users to effectively zoom in and locate
the documents of interest. It has been proved to facilitate the searching and
browsing process [1]. This paper borrows Community Mining from Social Net-
work Analysis to discover different topical coherent document groups and gives
each document cluster descriptive labels. Our experiments have shown that our
method have strong disambiguation ability and the labeling method utilizing a
keyphrase extraction tool KEA gives overall good labels for document clusters.

2 Related Work

2.1 Attempts in improving the ranked list

Three major methods to help users to focus on the partition of documents that
they may be interested in are: query refinement recommendation, pre-retrieval
classification and post-retrieval clustering.

Popular search engines such as Google, Yahoo! and Bing give query refine-
ment recommendations in the form of “Related Searches” besides the search
results. Shortcomings of this method are: 1. it utilizes user query logs which
may not be available on all document collections; 2. the recommendations do
not have a hierarchical structure; 3. it does not group similar topics; and 4.
query senses that are not as popular are left out. Classification can also bring
documents into order. It classifies each document into one of the pre-defined
classes. The categories are well-defined and distinctive in an ontology. However,
due to its manual nature, such an ontology covers only a limited number of topics
and it is expensive to build and maintain [23].

Another way to solve this problem is by document clustering and labeling,
also known as Automatic Taxonomy Generation (ATG) [23]. Researchers have
used document clustering to re-organize and represent retrieved documents and
observed superior results than ranked lists [5, 23]. Document clustering attempts
to group documents of the same topic together. The clusters are then labeled
with labels that indicate their topics. A user can browse the clusters and se-
lect the topic of interest and be led to relevant documents. ATG can generate
the taxonomy fully automatically with no external knowledge. Some commercial
systems that use ATG to represent web search results are yippy.com and car-
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rotsearch.com. In this paper, we focus on using ATG to generate a hierarchy of
topics to improve the presentation of a ranked list of documents.

2.2 A review of ATG approaches

In this section we briefly review three major ATG categories including document-
based, word-based, and co-clustering based methods.

Document-based ATGmethods represent each document as an N-dimensional
vector of features with the Vector Space Model (VSM). A feature is a wordphrase
called a term and the value can be the document frequency. Conventional clus-
tering methods can be used to cluster documents[23]. Some examples are Scat-
ter/Gather [5], STC (Suffix Tree Clustering) [26], and SnakeT [8]. These methods
use snippets that are short parts of the documents to cut down running time
but snippets do not contain all the information and it is hard to get good labels
from them. Our method can work on full texts with reasonable running time.

Word-based ATG methods such as the subsumption algorithm [20], DisCover
[14] and J-Walker that uses a concept ontology WordNet [4] aim at organizing
words by theasural relationships [12]. They first generate a concept hierarchy
where each concept is a single feature, and then assign documents to the con-
cepts. Labels generated by these methods may not be meaningful by general
users and one feature is not enough to conclude the topics in the clusters.

Co-clustering based ATG methods select terms from the documents as key-
words, cluster the keywords, and at the same time generate document clusters.
FCoDoK [13] and FSKWIC [9] represent keywords as M-dimensional vectors and
group keywords with similar document distribution together. Dhillon developed
an co-clustering ATG algorithms based on bipartite graph partitioning [7]. Chen
et al. proposed a method that builds a keyword graph based on the document
co-occurrences of the keywords [2]. They use the K Nearest Neighbor (KNN)
algorithm to find keyword clusters and then form document clusters by their
similarity with each keyword cluster but they do not have statistical analysis on
cluster labeling. Scaiella et al. use a Wikipedia annotator TAGME to find the
Wikipedia page titles associated with each document snippet [21]. In their key-
word graph, a node is a Wikipedia page title (topic), the edge weights are the
topic-to-topic similarities computed based on the Wikipedia linked-structure.
Then they bi-section the keyword graph into clusters. This method only works
on snippets and TAGME can introduce errors to the graph.

3 Methodology

The basic idea of our approach is to reformulate the document clustering problem
into a topical community mining problem. Rather than clustering the documents,
we extract keywords from them to build a graph indicating the sentence co-
occurrences of the keywords. We do community mining on this graph to get
communities of highly co-occurring keywords. Then, we map the documents back
to the keyword communities to form document clusters. Our approach belongs to
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the category of co-clustering. Our method maintains the important information
while avoiding problems caused by the high-dimensionality in document-based
ATG methods. By choosing labels from a group of keywords we are able to
describe a cluster with multiple aspects while word-based ATG methods only
generate one feature for each cluster.

The process of our approach is shown in Fig 1. The user sends a query to
a search engine and sees a taxonomy of the query senses and subtopics along
with the documents. Our method applies to any document collection with mixed
topics besides search results. We discuss the major phases below.

Fig. 1. General procedure of our approach

3.1 Phase I: Keyword Extraction

We first extract keywords from each document. This step is usually time-consuming
and can be done off-line along with crawling. We choose Noun Phrases as key-
words because they are grammatically consistent and meaningful to users [18].
We first do Part of Speech (POS) Tagging to tag each single word from the
document with its part-of-speech, then we lemmatize all the words to reduce
the inflectional forms. The next step is pruning where we convert the first word
in a sentence to lower case, and remove stop words and words that contain
non-alphabetic characters. Finally, we extract Noun Phrases based on a lexical
heuristic (Adjective).*(Noun).+. We consider a word or phrase with zero or more
Adjectives with one or more Nouns following them as a Noun Phrase [15].
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3.2 Phase II: Keyword Graph Generation

We use the keyword pair lists corresponding to the documents to generate a
keyword graph. A node in this graph is a keyword. An edge is formed when two
nodes have co-occurred in at least one sentence. The edge weight is the sentence
co-occurrences. The key assumption in forming edges using co-occurrences is
that words describing the same topic are often used together. Co-occurrences
have been shown to carry useful correlation information and be able to identify
different topical groups [2]. We select nodes based on Document Frequency (DF)
to reduce noise. Only keywords with DF higher than a threshold tdf remain
nodes in the keyword graph. Moreover, terms that are exactly the same, or are
contained in the query are removed from the nodes set.

3.3 Phase III: Community Mining

We do community mining on the keyword graph to detect different topical com-
munities. Community mining is the grouping of nodes such that nodes in the
same community are more connected with each other than with nodes outside
the community. We use the Fast Modularity clustering algorithm (O(nlog2n))
which is based on one of the most well-known community mining metrics: Modu-
larity Q [3]. Modularity Q measures the quality of a graph partitioning. The Fast
Modularity algorithm greedily optimizes the modularity score in the graph parti-
tioning in an agglomerative manner [3]. This algorithm automatically detects the
number of communities and generates compact taxonomies. It has an advantage
over existing commercial systems such as carrotsearch.com and Yippy, and also
some most recent works since these methods partition the document collection
to about 10 clusters which is not always the real number of topics [2][21]. While
many state-of-the-art search result clustering algorithms are flat, our method
applies the Fast Modularity algorithm recursively in a top-down manner until
certain conditions are reached. We use a Modularity threshold tQ to determine
the need to further split the communities.We further refine the communities by
deleting noisy communities and merging similar communities.

3.4 Phase IV: Mapping Documents to Keyword Communities

In this phase we assign the documents to the keyword communities to gener-
ate document clusters as illustrated in Fig 2 on some examples from the query
“jaguar”. A dashed line represents the connection between a document and a
keyword. The solid lines are the edges in the keyword graph. For each document
on the left, we calculate its overall TFIDF score in each of the keyword commu-
nities and assign it to the keyword communities accordingly. Given a document
d and a keyword community c, d′s overall TFIDF score in c is the sum of the
TFIDF scores of all the keywords that are both in d and in c. We assign d to the
community that has the highest overall TFIDF score s. Besides, since a docu-
ment may have multiple topics, we assign d to another community c′ as well if
its overall TFIDF score in c′ is higher than 0.9 ∗ s.
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Fig. 2. Illustration of Phase IV

3.5 Phase V: Cluster Labeling

We treat document cluster labeling as a ranking problem of the keywords in each
community. The most common cluster labeling method is to use the most fre-
quent or central phrases in a document cluster as labels [17]. In our experiments
we use the Degree Centrality labeling method as a baseline BL1. We use the
“Frequent and Predict Words” method that detects terms that are more likely
to appear in a cluster than in other clusters as labels as another baseline BL2
[19]. We come up with four labeling methods (LM1, LM2, LM3, LM4) that select
labels based on the keyword cluster, the document cluster, and the connection
between the co-clusters.

LM1 finds important terms from the keyword communities as labels based on
the betweenness centrality that reflects a node′s influence on the communications
between other nodes in the community. Betweenness centrality measures the
number of shortest paths between other nodes that goes through a certain node.
The intuition of using betweenness centrality for labeling is that sometimes terms
of the same topic may not directly co-occur in a sentence and may be connected
by terms that play a vital role in connecting terms.

We also try to select labels based on the document clusters. Keyphrases and
titles both introduce the topics of the documents. We propose to incorporate
a famous and effective keyphrase extraction algorithm KEA (LM2) [24] and an
automatic titling method (LM3) [16] to identify important terms from the docu-
ments. We use an updated KEA tool3 to extract keyphrases from the documents.
LM3 extracts title words from each document by an automatic titling method.
We take the Noun Phrases (NP) from the first two sentences and the titles from
the documents as title words. The terms are ranked by the number of documents
where they serve as important terms. The top 20 are cluster labels.

3 http://www.nzdl.org/Kea/description.html
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The last labeling method, LM4, looks at the connections between a key-
word community and its corresponding document community (the dashes lines
in Fig 2). It ranks the terms by the sum of their TF-IDF scores in each document
cluster. The top 20 forms a label list.

After getting the label lists, we do post-processing based on lemmas, abbre-
viations, synonyms and hypernyms to make them more readable. The top five
labels in the post-processed list is the final label list for each cluster.

4 Experiments and Discussions

4.1 Data collection and pre-processing

We constructed our data sets using Google. For each query, we searched for some
of its senses in Google and gathered the top results. We merged these pages
together as the document collection under the query. We experimented with a
multitude of queries with ambiguous meanings. For illustration purposes, we
show some examples here. A list of queries, their query senses and the subtopics
along with the size of the document collections is shown in Table 1. For example,
the tiger data set is merged by the search results of tiger aircraft , tiger woods,
tiger animal , and tiger hash. For the query sense jaguar car in the jaguar data
set, we selected two subtopics: jaguar car history and jaguar car dealer. We feed
them to Google search engine and merged their results as the documents of the
query sense jaguar car.

Table 1. List of queries, query senses, subtopics of query senses (shown in parentheses)
with the number of documents

Query Query Senses and subtopics Document Set Size

jaguar animal (animal facts, animal rescue), car (car history, car
dealer), Mac OS, guitar

180

penguin Pittsburgh hockey team, publisher, kids club, algorithm 150

avp Volleyball, antivirus software, Avon, movie, airport 150

tiger Aircraft, Woods, animal, hash 120

michael jordan basketball player (career, quotes), Berkeley researcher 90

4.2 Evaluation Metrics

We compare our results with the ground truth gained from Google to evaluate the
clustering performance. We adapt two evaluation metrics: ARI [25] and Cluster
Contamination (CC) [6]. ARI measures how close the clusters generated by our
system (P) matches the the ground truth (R). CC measures the purity of the
clusters. The clustering is good if it has a high ARI and a low CC. We conducted
a user survey with 11 volunteers to obtain the labeling ground truth. The label
with most votes is the ground truth label S of a document cluster. Given S and
its parent label P , a system label L is a correct label if L is identical with S, S P ,
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or P S [22]. Four evaluation metrics are used, namely match@N, P@N, MRR@N
and MTRR@N [14, 22]. N is the number of labels presented to the users. Good
labels have high metric scores and small N.

4.3 Experimental results

In our experiments, we set tdf = 0.04, and tQ = 0.3 (details are omitted due
to lack of space). We evaluate the top levels and the lower level clusters in the
taxonomy separately. The top levels contain clusters that are directly under the
root. They reflect the disambiguation ability of our method. The lower levels
show how well our method discovers different aspects (subtopics) of the same
topic. While all the levels are important in the browsing process, the top levels
carry more responsibility because they are the ones that users see first.

Document Clustering Performances We compare our method with an ef-
fective variation of K-Means [11] to examine the document clustering quality.
We use the number of clusters found by our method as the parameter k, the
keywords extracted by our method as the features and the TFIDF scores as
the feature values for K-means. The clustering performance on the top levels
is listed in Table 2. Our method gets higher ARI score on all queries and less
contamination on all but one queries than K-Means. We found that K-Means
tend to generate one big and highly contaminated cluster with several small and
pure clusters. Our method does not generate highly polluted clusters thus is
more desirable for browsing. Besides, K-Means requires the number of clusters k
in advance whereas our method automatically detects k. Overall, our clustering
method outperforms K-Means on the top levels. Table 3 shows the clustering
performance on the lower levels. Our method has higher ARI scores on 2 out of
3 query senses but it generates more contaminated clusters on lower levels. It is
maybe due to the fact that there is no clear separation between the vocabularies
used by different subtopics of the same topic.

Table 2. ARI and average CC score of our method and K-means on the top levels

Query ARI score average CC score
our method K-Means our method K-means

jaguar 0.968 0.521 0.053 0.169

penguin 0.842 0.319 0.152 0.352

avp 0.802 0.615 0.239 0.178

tiger 0.771 0.325 0.193 0.261

michael jordan 1 0.022 0 0.439

Cluster Labeling Performances The cluster labeling performances on the
four evaluation metrics of our four methods and two baselines on the top levels
are presented in Fig 3 with N ranging from 1 to 5. We can see that LM2 which
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Fig. 3. Average match@N, P@N, MRR@N and MTRR@N on the top level over all
queries of different labeling methods

Fig. 4. Average match@N, P@N, MRR@N and MTRR@N on lower levels over all
queries of different labeling methods
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Table 3. ARI and average CC score of our method and K-means on lower levels

Query sense subtopics ARI score CC score
our method K-Means our method K-means

jaguar/animal facts, rescue 0.428 0.321 0.288 0.261

jaguar/car history, dealer 0.122 -0.0003 0.512 0.400

Michael Jordan/basketball player career, quotes 0.107 0.328 0.658 0.550

is the labeling method utilizing KEA achieves the highest average score over all
queries on all the metrics. In Table 4 we show the top 5 labels picked by LM2
for each query sense. Beside each label is the number of users who chose it as
the cluster label in the user survey. We also show the ground truth labels, each
with the number of users who have picked it. The labeling performances on the
lower levels are shown in Fig 4. We can see that BL1, which is the worst method
on the top levels, is among the best methods on the lower levels. LM2 which is
the best on the top levels is the second best on the lower levels. Overall, LM2
is the best labeling method both on the top and the lower levels. Note that the
metric scores on the lower levels are less than those of the top levels. In our user
survey we have found that even for humans it is harder to agree on the labels
of the lower levels than of the top levels. One reason is that the subtopics are
difficult to differentiate. Another reason might be that similar terms are used
when covering subtopics.

5 Conclusions and Future Work

In this work we use a co-clustering ATG method based on the co-occurrences of
frequent keywords to generate a taxonomy for a document collection that per-
forms well in disambiguating topics but not as well in separating subtopics of
the same topic. We propose four different labeling methods and found that the
labeling method utilizing KEA generates the best overall cluster labels. Future
works include ways to improve the performance on the lower levels. One possibil-
ity is to explore other ways to build the keyword graph so that it is sensitive to
different subtopics. Another future work is to combine different labeling methods
to improve the labeling performance by reflecting the strength of each method.
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