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Abstract. Typical association rules consider only items enumerated in
transactions. Such rules are referred to as positive association rules. Neg-
ative association rules also consider the same items, but in addition con-
sider negated items (i.e. absent from transactions). Negative association
rules are useful in market-basket analysis to identify products that con-
flict with each other or products that complement each other. They are
also very convenient for associative classifiers, classifiers that build their
classification model based on association rules. Many other applications
would benefit from negative association rules if it was not for the expen-
sive process to discover them. Indeed, mining for such rules necessitates
the examination of an exponentially large search space. Despite their
usefulness, and while they were referred to in many publications, very
few algorithms to mine them have been proposed to date. In this paper
we propose an algorithm that extends the support-confidence framework
with a sliding correlation coefficient threshold. In addition to finding con-
fident positive rules that have a strong correlation, the algorithm discov-
ers negative association rules with strong negative correlation between
the antecedents and consequents.

1 Introduction

Association rule mining is a data mining task that discovers relationships among
items in a transactional database. Association rules have been extensively stud-
ied in the literature for their usefulness in many application domains such as
recommender systems, diagnosis decisions support, telecommunication, intru-
sion detection, etc. The efficient discovery of such rules has been a major focus
in the data mining research community. From the original apriori algorithm [1]
there have been a remarkable number of variants and improvements of associa-
tion rule mining algorithms [2].

Association rule analysis is the task of discovering association rules that
occur frequently in a given data set. A typical example of association rule mining
application is the market basket analysis. In this process, the behaviour of the
customers is studied when buying different products in a shopping store. The
discovery of interesting patterns in this collection of data can lead to important
marketing and management strategic decisions. For instance, if a customer buys



bread, what is the probability that he/she buys milk as well? Depending on
the probability of such an association, marketing personnel can develop better
planning of the shelf space in the store or can base their discount strategies on
such associations/correlations found in the data.

All the traditional association rule mining algorithms were developed to find
positive associations between items. By positive associations we refer to associ-
ations between items existing in transactions (i.e. items bought). What about
associations of the type: “customers that buy Coke do not buy Pepsi” or “cus-
tomers that buy juice do not buy bottled water”? In addition to the positive as-
sociations, the negative association can provide valuable information, in devising
marketing strategies. Interestingly, very few have focused on negative association
rules due to the difficulty in discovering these rules.

Although some researchers pointed out the importance of negative associ-
ations [3], only few groups of researchers [4], [5], [6] proposed an algorithm to
mine these types of associations. This not only illustrates the novelty of negative
association rules, but also the challenge in discovering them.

1.1 Contributions of This Paper

The main contributions of this work are as follows:

1. We devise a new algorithm to generate both positive and negative association
rules. There are very few papers to discuss and discover negative association
rules. Our algorithm differs from those in the sense that it uses a different
interestingness measure and it generates the association rules from a different
candidate set.

2. To avoid adding new parameters that would make tuning difficult and thus
impractical, we introduce an automatic thresholding on the correlation coef-
ficient. We automatically and progressively slide the threshold to find strong
correlations.

3. We compare our algorithm with other existing algorithms that can generate
negative association rules and discuss their performances.

The remainder of the paper is organized as follows: Section 2 gives an overview
of the basic concepts involved in association rule mining. In Section 3 we intro-
duce our approach for positive and negative rule generation based on correlation
measure. Section 4 presents related work for comparison with our approach. Ex-
perimental results are described in Section 5 along with the performance of our
system compared to known algorithms. We summarize our research and discuss
some future work directions in Section 6.

2 Basic Concepts and Terminology

This section introduces association rules terminology and some related work on
negative association rules.



2.1 Association Rules

Formally, association rules are defined as follows: Let I = {i1, i2, ...in} be a set
of items. Let D be a set of transactions, where each transaction T is a set of
items such that T ⊆ I. Each transaction is associated with a unique identifier
TID. A transaction T is said to contain X, a set of items in I, if X ⊆ T . An
association rule is an implication of the form “X ⇒ Y ”, where X ⊆ I, Y ⊆ I,
and X∩Y = ∅. The rule X ⇒ Y has a support s in the transaction set D if s% of
the transactions in D contain X∪Y . In other words, the support of the rule is the
probability that X and Y hold together among all the possible presented cases.
It is said that the rule X ⇒ Y holds in the transaction set D with confidence
c if c% of transactions in D that contain X also contain Y . In other words, the
confidence of the rule is the conditional probability that the consequent Y is
true under the condition of the antecedent X. The problem of discovering all
association rules from a set of transactions D consists of generating the rules
that have a support and confidence greater than given thresholds. These rules
are called strong rules, and the framework is known as the support-confidence
framework for association rule mining.

2.2 Negative Association Rules

Example 1. Suppose we have an example from the market basket data. In this
example we want to study the purchase of organic versus non-organic vegeta-
bles in a grocery store. Table 1 gives us the data collected from 100 baskets in
the store. In Table 1 “organic” means the basket contains organic vegetables and
“¬ organic” means the basket does not contain organic vegetables. The same ap-
plies for non-organic. On this data, let us find the positive association rules in the
“support-confidence” framework. The association rule “non-organic → organic”
has 20% support and 25% confidence (supp(non-organic ∧ organic)/supp(non-
organic)). The association rule “organic → non-organic” has 20% support and
50% confidence (supp(non-organic ∧ organic)/supp(organic)). The support is
considered fairly high for both rules. Although we may reject the first rule on
the confidence basis, the second rule seems a valid rule and may be considered
in the data analysis. Now, let us compute the statistical correlation between the
non-organic and organic items. A more elaborated discussion on the correlation
measure is given in Section 3.1. The correlation coefficient between these two
items is -0.61. This means that the two items are negatively correlated. This
measure sheds a new light on the data analysis on these specific items. The rule
“organic → non-organic” is misleading. The correlation brings new information
that can help in devising better marketing strategies.

The example above illustrates some weaknesses in the “support-confidence”
framework and the need for the discovery of more interesting rules. The interest-
ingness of an association rule can be defined in terms of the measure associated
with it, as well as in the form an association can be found.

Brin et. al [3] mentioned for the first time in the literature the notion of
negative relationships. Their model is chi-square based. They use the statistical



Table 1. Example 1 data

organic ¬organic
∑

row

non-organic 20 60 80

¬non-organic 20 0 20∑
col

40 60 100

Table 2. 2x2 contingency table

Y ¬Y
∑

row

X f11 f10 f1+

¬X f01 f00 f0+∑
col

f+1 f+0 N

test to verify the independence between two variables. To determine the nature
(positive or negative) of the relationship, a correlation metric was used. In [6]
the authors present a new idea to mine strong negative rules. They combine
positive frequent itemsets with domain knowledge in the form of a taxonomy
to mine negative associations. However, their algorithm is hard to generalize
since it is domain dependant and requires a predefined taxonomy. A similar
approach is described in [7]. Wu et. al [4] derived a new algorithm for generating
both positive and negative association rules. They add on top of the support-
confidence framework another measure called mininterest for a better pruning of
the frequent itemsets generated. In [5] the authors use only negative associations
of the type X → ¬Y to substitute items in market basket analysis.

We define as generalized negative association rule, a rule that contains a
negation of an item (i.e a rule for which its antecedent or its consequent can
be formed by a conjunction of presence or absence of terms). An example for
such association would be as follows: A ∧ ¬B ∧ ¬C ∧ D → E ∧ ¬F . To the
best of our knowledge there is no algorithm that can determine such type of
associations. Deriving such an algorithm is not an easy problem, since it is well
known that the itemset generation in the association rule mining process is
an expensive one. It would be necessary not only to consider all items in a
transaction, but also all possible items absent from the transaction. There could
be a considerable exponential growth in the candidate generation phase. This is
especially true in datasets with highly correlated attributes. That is why it is not
feasible to extend the attribute space by adding the negated attributes and use
the existing association rule algorithms. Although we are currently investigating
this problem, in this paper we generate a subset of the generalized negative
association rules. We refer to them as confined negative association rules. A
confined negative association rule is one of the follows: ¬X → Y , X → ¬Y or
¬X → ¬Y , where the entire antecedent or consequent must be a conjunction of
negated attributes or a conjunction of non-negated attributes.

3 Discovering Positive and Negative Association Rules

The most common framework in the association rules generation is the “support-
confidence” one. Although these two parameters allow the pruning of many
associations that are discovered in data, there are cases when many uninterest-
ing rules may be produced. In this paper we consider another framework that
adds to the support-confidence some measures based on correlation analysis.



Next section introduces the correlation coefficient, which we add to the support-
confidence framework in this work.

3.1 Correlation Coefficient

Correlation coefficient measures the strength of the linear relationship between a
pair of two variables. It is discussed in the context of association patterns in [8].
For two variables X and Y, the correlation coefficient is given by the following
formula:

ρ =
Cov(X, Y )

σXσY
. (1)

In Equation 1, Cov(X, Y ) represents the covariance of the two variables and
σX stands for the standard deviation. The range of values for ρ is between -1
and +1. If the two variables are independent then ρ equals 0. When ρ = +1 the
variables considered are perfectly positive correlated. Similarly, When ρ = −1
the variables considered are perfectly negative correlated. A positive correlation
is evidence of a general tendency that when the value of X increases/decreases so
does the value of Y. A negative correlation occurs when for the increase/decrease
of X value we discover a decrease/increase in the value of Y.

Let X and Y be two binary variables. Table 2 summarizes the information
about X and Y variables in a dataset in a 2x2 contingency table. The cells of
this table represent the possible combinations of X and Y and give the frequency
associated with each combination. N is the size of the dataset considered.

Given the values in the contingency table for binary variables, Pearson in-
troduced the φ correlation coefficient which is given in the equation 2:

φ =
f11f00 − f10f01√
f+0f+1f1+f0+

. (2)

We can transform this equation by replacing f00, f01, f10, f0+ and f+0 as follows:

φ =
f11(N − f10 − f01 − f11)− f10f01√

f+0f+1f1+f0+

(3)

φ =
f11N − f11f10 − f11f01 − f2

11 − f10f01√
f+0f+1f1+f0+

(4)

φ =
f11N − (f11 + f10)(f11 + f01)√

f+0f+1f1+f0+

(5)

φ =
Nf11− f1+ ∗ ff+1√

f1+(N − f1+)f+1(N − f+1)
. (6)

The measure given in Equation 6 is the measure that we use in the association
rule generation.

Cohen [9] discusses about the correlation coefficient and its strength. In his
book, he considers that a correlation of 0.5 is large, 0.3 is moderate, and 0.1
is small. The interpretation of this statement is that anything greater than 0.5
is large, 0.5-0.3 is moderate, 0.3-0.1 is small, and anything smaller than 0.1 is
insubstantial, trivial, or otherwise not worth worrying about as described in [10].



We use these arguments to introduce an automatic progressive thresholding
process. We start by setting our correlation threshold to 0.5. If no strong cor-
related rules are found the threshold slides progressively to 0.4, 0.3 and so on
until some rules are found with moderate correlations. This progressive process
eliminates the need for manually adjusted thresholds. It is well known that the
more parameters a user is given, the more difficult it becomes to tune the system.
Association rule mining is certainly not immune to this phenomenon.

3.2 Our Algorithm

Traditionally, the process of mining for association rules has two phases: first,
mining for frequent itemsets; and second, generating strong association rules
from the discovered frequent itemsets. In our algorithm, we combine the two
phases and generate the relevant rules on-the-fly while analyzing the correla-
tions within each candidate itemset. This avoids evaluating item combinations
redundantly. Indeed, for each generated candidate itemset, we compute all pos-
sible combinations of items to analyze their correlations. At the end, we keep
only those rules generated from item combinations with strong correlation. The
strength of the correlation is indicated by a correlation threshold, either given as
input or by default set to 0.5 (see above for rational). If the correlation between
item combinations X and Y of an itemset XY , where X and Y are itemsets,
is negative, negative association rules are generated when their confidence is
high enough. The produced rules have either the antecedent or the consequent
negated: (¬X → Y and X → ¬Y ), even if the support is not higher than the
support threshold. However, if the correlation is positive, a positive association
rule with the classical support-confidence idea is generated. If the support is not
adequate, a negative association rule that negates both the antecedent and the
consequent is generated when its confidence and support are high.

The algorithm generates all positive and negative association rules that have
a strong correlation. If no rule is found, either positive or negative, the correlation
threshold is automatically lowered to ease the constraint on the strength of the
correlation and the process is redone. Figure 1 gives the detailed pseudo-code
for our algorithm.

Initially both sets of negative and positive association rules are set to empty
(line 1). After generating all the frequent 1-itemsets (line 2) we iterate to generate
all frequent k-itemsets, stored in Fk (line 8). Fk is verified from a set of candidate
Ck computed in line 4. The iteration from line 2 stops when no longer frequent
itemsets are possible. Unlike the join made in the traditional Apriori algorithm,
to generate candidates at level k, instead of joining frequent (k − 1)-itemsets,
we join the frequent itemsets at level k− 1 with the frequent 1-itemsets (line 4).
This is because we want to extend the set of candidate itemsets and have the
possibility to analyze the correlation of more item combinations. The rational
will be explained later. Every candidate itemset generated this way is on one
hand tested for support (line 7), and on the other hand used to analyze possible
correlations even if its support is below the minimum support (loop from line 9 to
22). Correlations for all possible pair combinations for each candidate itemset are



Algorithm Positive and Negative Association Rules Generation
Input TD, minsupp, minconf , and ρmin, respectively Transactional Database,
minimum support, minimum confidence, and correlation threshold.
Output AR: Positive and Negative Association Rules.
Method:
(0) if ρmin is undefined then ρmin = 0.5
(1) positiveAR ← ∅; negativeAR ← ∅ /*positive and negative AR sets*/
(2) scan the database and find the set of frequent 1-itemsets (F1)
(3) for (k = 2, Fk−1 6= ∅, k + +){
(4) Ck= Fk−1 ./ F1
(5) foreach i ∈ Ck {
(6) s=support(TD,i) /*support of item i is computed*/
(7) if s≥ minsupp then
(8) Fk ← Fk ∪ {i} /*item i is added to Fk*/
(9) foreach X,Y (i = X ∪ Y ) {
(10) ρ=correlation(X,Y) /*correlation btw X and Y is computed*/
(11) if ρ ≥ ρmin then
(12) if s≥ minsupp then
(13) if confidence(X → Y ) ≥ minconf then
(14) positiveAR ← positiveAR ∪ {X → Y }
(15) else if confidence(¬X → ¬Y ) ≥ minconf and

supp(¬X¬Y ) ≥ minsupp then
(16) negativeAR ← negativeAR ∪ {¬X → ¬Y }
(17) if ρ ≤ −ρmin then /*ρ < 0 and |ρ| ≥ ρmin */
(18) if confidence(X → ¬Y ) ≥ minconf then
(19) negativeAR ← negativeAR ∪ {X → ¬Y }
(20) if confidence(¬X → Y ) ≥ minconf then
(21) negativeAR ← negativeAR ∪ {¬X → Y }
(22) }
(23) }
(24) }
(25) AR ← positiveAR ∪ negativeAR
(26) if AR = ∅ then {
(27) ρmin = ρmin − 0.1
(28) if ρmin ≥ 0 then go to step (3)
(29) }
(30) return AR

Fig. 1. Discovering positive and negative confined association rules

computed. For an itemset i and a pair combination (X, Y ) such that i = X ∪Y ,
the correlation coefficient is calculated (line 10). If the correlation is positive and
strong enough, a positive association rule of the type X → Y is generated, if the
supp(X ∪Y ) is above the minimum support threshold and the confidence of the
rule is strong. Otherwise, if we still have a positive and strong correlation but
the support is below the minimum support, a negative association rule of the
type ¬X → ¬Y is generated if its confidence is above the minimum confidence
threshold (lines 15-16). On the other hand, if the correlation test gives a strong
negative correlation, association rules of the types X → ¬Y and ¬X → Y
are generated and appended to the set of association rules if their confidence
is adequate. The result is compiled by combining all discovered positive and
negative association rules. Lines 26 onward, illustrate the automatic progressive
thresholding for the correlation coefficient. If no rules are generated at a given
correlation level, the threshold is lowered by 0.1 (line 27) and the process re-
iterated.



4 Related Work in Negative Association Rule Mining

In this section, we discuss two known algorithms that generate negative associa-
tion rules. We compare our approach with them later in the experiments section.

4.1 Negative Association Rule Algorithms

We give a short description of the existing algorithms that can generate positive
and negative association rules. For more details, please refer to [4] and [5].

First, we discuss the algorithm proposed by Wu et. al [4]. They add on top of
the support-confidence framework another measure called mininterest (the argu-
ment is that a rule A → B is of interest only if supp(A∪B)−supp(A)supp(B) ≥
mininterest). The authors consider as itemsets of interest those itemsets (posi-
tive or negative) that exceed minimum support and minimum interest thresholds.
Although, [4] introduces the “mininterest” parameter, the authors do not dis-
cuss how to set it and what would be the impact on the results when changing
this parameter. The approach differs from our algorithm in that in our algo-
rithm we use the correlation coefficient as measure of interestingness, which was
thoroughly studied in the statistics community. In addition, the value of our
parameter is well defined and it is not as sensitive to the dataset as the minin-
terest parameter. In our algorithm (line 9) we compute the correlation coefficient
for every pair X,Y of an item i where i = X ∪ Y . As described earlier, when
such a pair is found correlated an association rule is generated from it. In [4],
they compute the interest for every pair X,Y of the item i where i = X ∪ Y .
However, they extract rules from itemset i only if any expression i = X ∪ Y
exceeds the minimum interest threshold. We claim that by adding this condition
they are loosing some potential interesting association rules. In addition, in our
algorithm the candidate set Ck is generated as a join between Fk−1 and F1.
In [4] the candidate set Ck is generated as a union of two frequent itemsets in
Fi for 1 ≤ i ≤ k − 1. This turns out to be expensive. Since we all make the
assumption that a k-itemset must have all its subsets in Fk−1 we prove in the
next theorem that our join generates the same itemsets as in [4].

Theorem All candidate items c ∈ Ck generated by Fi ./ Fj , 1 ≤ i, j ≤ k− 1
for which ∃t ∈ c such that t ∈ Fk−1, can be discovered by Fk−1 ./ F1 .

Proof Let us suppose ∃c ∈ Ck such that c ∈ Fi ./ Fj , 1 ≤ i, j ≤ k − 1 and
c /∈ Fk−1 ./ F1. Given the condition stated in theorem ∃t ∈ c such that t ∈ Fk−1.
Since c /∈ Fk−1 ./ F1 and t ∈ Fk−1 it follows that c − t /∈ F1. This is false as
c − t is of length one and c ∈ Ck was generated from frequent itemsets. Thus
∀c ∈ Ck, c ∈ Fk−1 ./ F1. Q.E.D

Second, we present the algorithm proposed in [5]. The algorithm is named
by the authors SRM (substitution rule mining). We refer to it in the same way
throughout the paper. The authors develop an algorithm to discover negative
associations of the type X → ¬Y . These association rules can be used to dis-
cover to which items are substitutes for others in market basket analysis. Their



Table 3. TD (a)

TID Items

1 A,C,D

2 B,C

3 C

4 A,B,F

5 A,C,D

6 E

7 B,F

8 B,C,F

9 A,B,E

10 A,D

Table 4. TD (b)

TID Items Equivalent bit vector

1 A,¬B, C, D,¬E,¬F (101100)

2 ¬A, B, C,¬D,¬E,¬F (011000)

3 ¬A,¬B, C,¬D,¬E,¬F (001000)

4 A, B,¬C,¬D,¬E, F (110001)

5 A,¬B, C, D.¬E,¬F (101100)

6 ¬A,¬B,¬C,¬D, E,¬F (000010)

7 ¬A, B,¬C,¬D,¬E, F (010001)

8 ¬A, B, C,¬D,¬E, F (011001)

9 A, B,¬C,¬D, E,¬F (110010)

10 A,¬B,¬C, D,¬E,¬F (100100)

algorithm discovers first what they call concrete items, which are those item-
sets that have a high chi-square value and exceed the expected support. Once
these itemsets are discovered, they compute the correlation coefficient for each
pair of them. From those pairs that are negatively correlated, they extract the
desired rules (of the type X → ¬Y ). This paper, although interesting for the
substitution items application, it is limited in the kind of rules that can discover.

Using the next example, which is an extension of the example presented in
[5], we present some of the differences among the three algorithms.

Example 2. Let us consider a small transactional table with 10 transactions
and 6 items. In Table 3 a small transactional database is given. To illustrate the
challenges in mining negative association rules we create another transactional
database where for each transaction, the complement of each missing item is ap-
pended to it. The new created dataset is shown in Table 4. This new database can
be mined with the existing association rule mining algorithms. However, there
are a few drawbacks of this naive approach. In practice, the data collections
are very large, thus adding all the complemented items to the original database
requires a large storage space. Not only the storage space has to increase consid-
erably, but the execution times as well, in particular when the number of unique
items in the database is very large. In addition, many association rules would be
generated, many of them being of no interest to the applications at hand.

Using a minimum support of 0.2, the following itemsets are discovered using
the three discussed algorithms. For this example the correlation coefficient was
set to 0.5, and the minimum interest to 0.07.

In Table 5 and Table 6, the first column presents the results when our ap-
proach was used. The second column uses the algorithm from[4], while in the
third one the results are obtained using the approach in [5]. In both tables the
positive itemsets are separated by the negative ones by a double horizontal line.
The positive itemsets are in the upper part of the tables. As it can be seen, for
the 2-itemsets all three algorithms find the same positive ones. The differences
occur for the negative itemsets. The itemset DF has a minimum interest of 0.09,
but it has a correlation of only 0.42. That is why it is not found by our approach



Table 5. 2-itemsets

Correlation Interest Concrete

AD AD AD

BF BF BF

BD BD BD

CE CE

DF

Table 6. 3-itemsets

Correlation Interest Concrete

ACD ACD

ABC ABC

ABD ABD

BCD

or by the SRM algorithm [5]. The itemset CE is not found by SRM because their
condition is that the itemset should have higher correlation than the minimum
value. In our approach the condition is to be greater or equal. Since the itemset
CE has a correlation of 0.5 it is discovered by our algorithm, but not by SRM.

In Table 6 there are differences for both, the positive and the negative ones.
The algorithm that uses the minimum interest parameter discovers only the
ABC itemset because it is the only one that has all the pairs X,Y of the item
ABC where ABC = X∪Y above the parameter. Although. all the other itemsets
discovered by the other algorithms have at least two strong pairs they are not
considered of interest. Our approach and SRM generate the same positive 3-
itemset. The itemsets BCD and ABC are not discovered by SRM because none
of its subsets of two items are generated as concrete during the process.

From the itemsets that were shown in Table 5 and Table 6 a set of association
rules can be generated. Here we show, some of the rules that were generated from
the itemsets that were discovered by one algorithm, but not by others. From
itemset CE, the association rule negE → C can be found with support 0.5 and
confidence of 62%. This rule seems to be strong, but it is missed by the SRM
algorithm. From itemset DF, which is discovered only by the minimum interest
algorithm, the association rules negD → F and D → ¬F can be discovered.
However, both rules have support 0.3 and confidence of 42%. These rules could
have been eliminated when the confidence threshold is set to 50%, thus our
approach and SRM do not miss much by not generating them. In addition, our
approach generates the 3-itemset BCD. From this itemset the rule B → ¬C¬D
is discovered and it has support of 0.2 and confidence of 60%.

5 Experimental Results

We conducted our experiments on a real dataset to study the behaviour of the
algorithms compared. We used the Reuters-21578 text collection [11]. Reuters
dataset had 6488 transaction, when only the ten largest categories were kept.

We compare the three algorithms discussed in the sections above. For each
algorithm a set of values for their main interestingness measure was used in the
experiments. Our algorithm and SRM [5] had the correlation coefficient set to
0.5, 0.4 and 0.3. In [4] the authors used the value 0.07 in their examples. We used
this value and two others in its vicinity (0.05, 0.07 and 0.09). Each algorithm
was run to generate a set of association rules. For lack of space the results are



Table 7. Results for Reuters text collection

(a) Results for rules of type X → Y
#rules supp conf PS Q IS J

corr 0.4 235 0.23±0.03 0.79±0.16 0.14±0.02 0.84±0.28 0.78±0.08 0.63±0.12
int 0.07 219 0.23±0.03 0.79±0.18 0.13±0.02 0.85±0.27 0.76±0.09 0.61±0.14

SRM 0.4 297 0.22±0.03 0.76±0.20 0.12±0.03 0.82±0.27 0.73±0.10 0.57±0.15
(b) Results for rules of type X → ¬Y

#rules supp conf PS Q IS J
corr 0.4 6 0.33±0.10 0.99±0.0 0.11±0.01 0.99±0.0 0.72±0.05 0.52±0.08
int 0.07 4 0.25±0.01 0.98±0.02 0.08±0.01 0.70±0.47 0.62±0.03 0.39±0.03

SRM 0.4 6 0.33±0.10 0.99±0.0 0.11±0.01 0.99±0.0 0.72±0.05 0.52±0.08
(c) Results for rules of type ¬X → Y

#rules supp conf PS Q IS J
corr 0.4 6 0.33±0.10 0.49±0.08 0.11±0.01 0.99±0.0 0.72±0.05 0.52±0.08
int 0.07 4 0.34±0.06 0.46±0.09 0.08±0.01 0.70±0.47 0.67±0.06 0.45±0.08

(d) Results for rules of type ¬X → ¬Y
#rules supp conf PS Q IS J

corr 0.4 1474 0.31±0.09 0.41±0.13 0.15±0.02 0.84±0.20 0.80±0.06 0.66±0.10
int 0.07 148 0.49±0.09 0.67±0.13 0.16±0.05 0.81±0.39 0.87±0.08 0.77±0.11

reported only for correlation coefficient 0.4 and minimum interest 0.07. For all
the results, please see [12].

For these association rules a number of measures were computed: support
(supp), confidence (conf), Piatetsky-Shapiro measure (PS), Yule’s Q (Q), co-
sine measure (IS) and the Jaccard measure (J). These measures evaluate the
interestingness of the discovered pattern. For more details on these measures for
frequent patterns see [13]. In [13] a set of measures are compared and discussed.
The measures are clustered with respect to their similarity. We chose to compute
a few measures from different clusters to ensure the diversity of evaluation.

Tables 7 presents the results obtained for the Reuters dataset. We conducted
the experiments with support 20% and confidence 0%. In each table a subset of
the obtained rules are compared. Table 7 (a) compares rules of the type X → Y ,
Table 7 (b) rules of the type X → ¬Y , Table 7 (c) rules of the type ¬X → Y
and Table 7 (d) rules of the type ¬X → ¬Y . In each table the average of
the measurement and the standard deviation are reported. The value in bold
represents the best value for each measure.

Table 7 (a) shows that for positive association rules our approach tends to
generate a more interesting set of rules compared to the other methods.

For rules of type X → ¬Y (Table 7 (b)) our approach and SRM perform
best. They produce the same set of rules for correlation values of 0.4.

Table 7 (c) and Table 7 (d) compare our approach with the one in [4] only,
since SRM algorithm does not generate this kind of rules.

In Table 7 (c) the symmetric rules of the ones in Table 7 (b) are generated,
since the confidence is set to 0% and the correlation and minimum interest are
computed for XY itemset.

However, for the rules of type ¬X → ¬Y (Table 7 (d)) the method in [4]
generates a smaller set of rules, but with higher values for the measures.



6 Conclusions and Future Research Directions

In this paper we introduced a new algorithm to generate both positive and neg-
ative association rules. Our method adds to the support-confidence framework
the correlation coefficient to generate stronger positive and negative rules. We
compared our algorithm with other existing algorithms on a real dataset. We
discussed their performances on a small example for a better illustration of the
algorithms and we presented and analyze experimental results for a text col-
lection. The results prove that our algorithm can discover strong patterns. In
addition, our method generates all types of confined rules, thus allowing to be
used in different applications where all these types of rules could be needed or
just a subset of them.
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