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Abstract. We present a discriminative method to classify data that have inter-
dependencies in 2-D lattice. Although both Markov Random Fields (MRFs) and
Conditional Random Fields (CRFs) are well-known methods for modeling such
dependencies, they are often ineffective and inefficient, respectively. This is be-
cause many of the simplifying assumptions that underlie the MRF’s efficiency
compromise its accuracy. As CRFs are discriminative, they are typically more ac-
curate than the generative MRFs. This also means their learning process is more
expensive. This paper addresses this situation by defining and using “Decoupled
Conditional Random Fields (DCRFs)”, a variant of CRFs whose learning pro-
cess is more efficient as it decouples the tasks of learning potentials. Although
our model is only guaranteed to approximate a CRF, our empirical results on
synthetic/real datasets show that DCRF is essentially as accurate as other CRF
variants, but is many times faster to train.

1 Introduction

Much of data mining deals with ways to learn classifiers from data samples. While
many standard learning systems (e.g., SVM, Logistic Regression, Naı̈ve Bayes, Deci-
sion Trees, etc.) are designed to deal with independent and identically distributed data,
this paper deals with interdependent data — viz., classifying regions in a 2-D lattice.
In particular, we consider the task of detecting and delimiting tumors in Magnetic Res-
onance (MR) images of a patient’s brain, which involves labeling each pixel as either
tumor or non-tumor. Since most tumors are contiguous regions, we expect the labels
of spatially adjacent pixels to belong to the same class, assuming they have sufficiently
similar features.

Many effective region classifiers incorporate spatial constraints to encode the fact
that the labels of neighboring pixels are typically correlated. In particular, there are
a number of “random field” approaches for such tasks, including generative models
like Markov Random Field (MRF) [13, 9], as well as discriminative models, includ-
ing Conditional Random Field (CRF) [11] and its variants — Discriminative Random
Field (DRF) [10], Associative Markov Nets (AMN) [19] , and our recent Support Vec-
tor Random Field (SVRF) [12]. As an MRF assumes conditional independence among
observations given class labels, their learning procedures tend to be faster than the dis-
criminative models (variants of CRFs); however, this assumption means they are typ-
ically not as accurate. The more accurate models, unfortunately, can be prohibitively
slow to train, which may not be tolerable to a data mining task. We therefore propose
a novel variant to our discriminative random fields model to make them more efficient
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to train: we develop a “decoupled” learner, DCRF that reduces the expense of learning
the random fields. We found that, as expected, the resulting DCRF is much faster to
train than other CRF variants. Moreover, we were pleasantly surprised to find that this
improvement in speed did not cost a degradation in accuracy!

Section 2 presents a quick overview of related systems. It motivates our approach by
noting that these related systems – especially the ones that produce accurate labelings –
can be very slow to train. Section 3 introduces our novel “Decoupled Conditional Ran-
dom Field” (DCRF) approach, and provides algorithms for both learning the parameters
and for inference (i.e., classification — here segmentation). Section 4 demonstrates the
accuracy and efficiency of our model by presenting experimental results over various
domains, including the challenging real-world problem of segmenting brain tumor from
MRI scans.

2 Related Work

There are now many systems for learning the spatial correlations; this paper focuses on
ones based on random fields.

An Markov Random Field (MRF) is a generative approach that models the joint
probability distributions over a set of instances x = 〈xi 〉 (where each xi corresponds
to a vector of values describing the ith pixel) and their associated class labels y = 〈 yi 〉.
As with other random fields, a MRF provides a form for computing P (y |x ), based on
both properties of each instance (i.e., “pixel”) as well as features of their “neighbors”
(i.e., “properties and perhaps labels of adjacent pixels”), towards returning the most
likely y∗(x) = argmaxy P (y |x ) .

In the MRF framework, the posterior over the n joint labels y given the observations
x is P (y |x ) ∝ P (y )P (x |y ) = P (y )

∏n
i P (xi | yi ). Estimating the likelihood

is computationally tractable as it is factored as P (x |y ) =
∏

i P (xi | yi ). As this
factorization is only a crude approximation to reality, this approach will typically pro-
duce inferior labels. The prior P (y ) can explicitly incorporate dependencies among
the labels. Considering the equivalence between MRF and Gibbs Distributions [1], the
posterior is formulated as

P (y |x ) =
1

Z(x)
exp

[∑

c∈C

Vc(yc) +
∑

i∈S

log(P ( xi | yi ))

]
, (1)

where C is a set of cliques defined in 2-D lattice.Vc(y) is a clique potential function
of labels for clique c ∈ C, S is the set of nodes (i.e., pixels), and the “partition func-
tion” Z(x) =

∑
y′ exp

[∑
c∈C Vc(y′c) +

∑
i∈S log(P (xi | y′i ))

]
is used to normalize

the resulting values. Notice Vc(yc) depends only on the labels {yi}, but not on the in-
formation about the pixels {xi}. Therefore, a MRF prefers a set of labels y∗ where
neighbors have the same value [1, 13], independent of properties of these pixels. Also,
as the partition function Z(x) involves summing over all |L|n possible labelings (as-
suming there are |L| labels for each pixel), it is very expensive to compute the exact
value of the partition function.

A discriminative model, Conditional Random Field (CRF) [11], attempts to over-
come the disadvantages of a MRF — notably its conditional independence assumption



3

and the absence of observation information in the second potential — by directly mod-
eling the posterior distribution P (y |x ) as

P (y |x ) =
1

Z(x)
exp


∑

i∈S


Φw(yi,x) +

∑

j∈Ni

Ψν(yi, yj ,x)





 (2)

which directly computes a posterior distribution without modeling the prior P (y ). The
notation is essentially the same as in Equation 1: Z(x) is the partition function, S is
the set of pixels in an image, x = 〈xi 〉 is the set of descriptions of those pixels, and
y = 〈 yi 〉 is the set of labels. Here Ni is the set of neighbors of node xi — in 2D, the
pixel at location (a, b) has 4 neighbors, at (a − 1, b), (a + 1, b), (a, b − 1) and (a, b +
1) [1, 9]. For notation, “Φw(yi,x)” is called the “Association” potential, which deals
with a single instance. While its value can depend on all of x, it typically relies only
on xi. The “Ψν(yi, yj ,x)” term is called the “Local-Consistency” (or “Interaction”)
potential in variants of CRF such as SVRFs and DRFs; it is typically used to prefer
labeling that assign the same class labels to neighboring pixels. (We can view Ψν(·) as
a data dependent smoothing function; this differs from a MRF, which instead use only
a “data independent” term.) Here, w and ν refer to the parameters associated with these
potential functions.

Note that a CRF and its variants — DRFs and SVRFs— typically produce better ac-
curacy than their generative alternative MRF. However, their good performance comes
at a cost: the learning process is significantly more expensive. For example, the learning
task in DRF and SVRF involves estimating the parameters w and ν that maximize the
(log)likelihood of the given data sample, and both systems use a regularization term to
avoid overfitting. The log-likelihood is formulated as

〈 ŵ, ν̂ 〉 =

argmax
w,ν

{ M∑

k=1

S∑

i=1

Φw(yi,x) +
∑

j∈Ni

Ψν(y(k)
i , y

(k)
j ,x(k))− log(Z(k)(x))

}
− νT ν

2τ

(3)

Although a SVRF can significantly improve the accuracy of a DRF, especially when
features may be correlated, the study [12] has shown that selecting the appropriate τ in
a SVRF and a DRF is a non-trivial task, which makes the learning procedures more
challenging and costly. Associative Markov Nets (AMN) [19], which discriminatively
train Markov nets, exploit the spatial correlations by adopting the maximum-margin
principle of maximizing the margin between target labels and the best runner-up label
assignments. Hence, this process employs the same ideas underlying SVMs. (Note that
our SVRF differs by actually performing the same basic computations that an SVM
performs.) A Boosted Random Field (BRF) [21] combines the set of iid classifiers that
correspond to Association potentials. Each potential in a BRF is trained on a specific
class to quantify the likelihood of a class on a pixel. Hence, BRF does not explicitly
consider the spatial correlation.
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We see there are problems in training each of the systems mentioned in this section:
some are inaccurate (as they use inappropriate models), while others require too much
computation time.

3 The DCRF System

This section presents the foundations to formalize our Decoupled Conditional Random
Field, DCRFs of random fields. We first motivate our approach of decoupling the train-
ing of the two potentials, then discuss inference — i.e., how to use the resulting system
to classify pixels in an image.

First, if we ignore the dependencies among the labels of the pixels (i.e., assume that
they are independent and identically distributed), we would use only the “Association”
potential, which attempts to maximize

PA(y |x ) ∝ exp

(∑

i∈S

Φ(yi,x)

)
(4)

Many existing classifiers (e.g., Naı̈ve Bayes, Logistic Regressions, SVM, etc.) are (per-
haps implicitly) attempting to optimize Equation 4.

Alternatively, a discriminative model that only considers spatial coherence would
attempt to optimize

PLC(y |x ) ∝ exp

(∑

i∈S

Ψ(yi, yNi ,x)

)
(5)

where yNi are the labels of i’s neighbors.
Equation 4 and 5 provide different frameworks for approximating the posterior

probability distributions P (y |x ). Each is only partial, in that the first (second) does
not properly incorporate spatial coherence (resp., the local observations).

Notice typical CRF models involve the sum of these equations — written in log
space as ∑

i∈S

Φ(yi,x) +
∑

i∈S

Ψ(yi, yNi ,x) (6)

(Compare to Equation 2. Note that the neighborhood is considered in Ψ(·) explicitly.)
We now observe that each classifier form in Equation 6 follows MAP formulations

for the joint probability over labels: that is, we can approximate the global optimal
joint class labels by maximizing the local posterior probability distribution using the
principles of pseudo-likelihood and Iterative Conditional Modes (ICM)1 [3] — i.e.,
P (y |x ) =

∏
i∈S P ( yi | yNi ,x ). Thus, for each pixel i, the log of ensemblized poste-

rior distribution P ( yi | yNi ,x ) given its neighbors yNi is:

Φw(yi,x) +
∑

j∈Ni

Ψν(yi, yj ,x) (7)

1 Pseudo-likelihood and ICM are only guaranteed to achieve local maxima, the discussion of the
global optimality issues is beyond the scope of this paper.
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N.b., as we will only be seeking the argmax, we do not need to consider the normalizing
“− log(zi)” term that shown in Equation 3, as it will be constant here.

Equation 7 shows that we can approximate a CRF model using a decoupled system,
corresponding to the simple sum of two different potentials, which are learned sepa-
rately. (This differs from standard ensemble methods [5], as we are directly combining
potentials rather than classifiers.) However, there is one remaining question: how to
deal with the relative scaling issues when combining of the two potentials. This will be
discussed in the following sections. We will also see that, as expected, it is much faster
to learn these individual summands individually, before combining them. Our empirical
evidence shows that, surprisingly, the resulting DCRF system can be as accurate!

Association-only Potential The association potential provides a local posterior for
each pixel: PA( yi |xi ). Our “decoupling” principle allows us to select a function that
quantifies the conditional probability for a given observed instance. We incorporate a
maximal margin approach where the two classes of pixels are classified based on a
hyperplane that maximizing the distances between the two classes.

As suggested above, we will consider a potential based on SVMs; note this method
inherits the SVM’s relative insensitivity to class imbalance, and its ability to typically
outperform other discriminative classifiers such as GLMs, especially in cases where the
classes overlap [18], which is common case in imaging applications.

We select the hyperplane by solving the following optimization problem (over the t
instances):

max
w,b,γ

γ

subject to yi(wT xi + b) ≥ γ, i = 1, · · · , t ; ‖w‖2 = 1 (8)

where γ is a margin, b is a bias term, and the vector w is normal to a hyperplane that
we are seeking, which separates the positive from the negative examples. Using its dual
formulation with dual variables αi, we solve this optimization problem using Quadratic
Programming (QP) over the αis, to produce f(x) =

∑t
i=1 αi yi xT

i x + b then
use the decision function sign ( f(x) ) to classify the test instance x. Note this learning
process requires only polynomial time. Our implementation actually uses Sequential
Minimal Optimization (SMO) [15], which is an efficient implementation.

Notice that f(x) computes the distance to the hyperplane from the instance x. We
can use this to compute (something like) a posterior probability function [16, 14]:2

Φw(yi,x) =
1

1 + exp(AA × yi(wT xi) + BA)
(9)

using the parameters AA and BA that optimize the fit of the training data to a sigmoid
function [16, 12].

2 Of course, we augment the instance xi by including a constant 1, and hence the w include a
“constant” term as well.
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Local-Consistency-only Potential We use our “local-consistency-only” potential to
model the “neighborhood coherence” between pixels. Its goal is to encourage “similar”
instances within the specified each neighborhood to have the same labels. Although we
can use the associated potential as a stand-alone decision function, its function here is
mainly to smooth regions (and hence remove errors) produced by the Association-only
potential.

For similar instances in a neighborhood to have similar (in our discrete case, “iden-
tical”) class labels, we introduce a max-margin based potential, which tries to make the
labels of a testing instance the same as the labels of its neighbors. This potential learns
a pairwise max-margin model that quantifies the likelihood that two pixels will have the
same class labels, given their descriptions:

Ψν(yi, yj ,x) = I(yi, yj)× [νT 〈ψ(xi, xj) 〉] (10)

where I(yi, yj) returns +1 if yi = yj , and −1 otherwise. (We define ψ(xi, xj) below.)
Equation 10 reduces the pairwise discriminative learning problem to the binary class
problem, over similar versus dissimilar classes. That is, we apply QP to the training set

Snew = { (ψ(xr, xj), I(yr, yj)) | j ∈ Nr }
over all instances r with neighbors j ∈ Nr, to find the optimal parameter ν.

Note that each pair of pixels is projected by ψ(·) onto a similarity feature space. For
instance, we could use ψ(xi, xj) = xT

i xj that produces a scalar: the cosine measure of
the similarity. Note this attains its largest value as the two vectors match one another.
Due to “localized” neighborhood system we consider for Local-consistency potential,
the increment only grows linearly with the number of pixels. Notice that feature-wise
space depends on ψ(·).

As we will need to combine this potential with the Association-only one, we need to
produce values within a “comparable” range. We therefore convert Equation 10 to the
posterior probability scale, using the same transformation used to produce Equation 9.

Ψ(yi, yj ,x) =
1

1 + exp (ALC × I(yi, yj)(νT 〈ψ(xi, xj) 〉) + BLC)
(11)

where again ALC and BLC are set to optimize the fit to a sigmoid, which produces a
probability distribution as in Association-only potential

3.1 Inference

Our goal in producing this DCRF system is then to find relevant regions within im-
ages — e.g., tumor regions within MR images of a brain. This involves inferring a
binary label (tumor versus non-tumor) for each individual pixel. As noted above, this
corresponds to computing the most likely vector y∗ = argmaxy P (y |x ) given the ev-
idence vector x, based on the (possibly unnormalized) potential functions. In our case,
we will use the potential functions in Equation 7, which is the sum of the Association-
only PA( · ) (Equation 4) and Local-Consistency-Only PLC( · ) (Equation 5) potentials.
While this exact computation can be expensive, there are several existing approxima-
tion algorithms for CRF, including Iterative Conditional Modes (ICM) [3], Graph-Cuts
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(GC) [2], and Loopy Belief Propagation (LBP) [7]. DCRF uses ICM since it converges
quickly and has been shown empirically to produce accurate results [12, 1].3 Also,
while ICM may converge to local optima for the joint distribution problem, it works
sufficiently well by iteratively propagating the belief for each pixel to its neighboring
pixels:

y∗i = argmax
yi∈{+1,−1}

P ( yi | yNi
,x ) = argmax

yi∈{+1, −1}
Φ(yi,x) +

∑

j∈Ni

Ψ(yi, yj ,x) (12)

Of course, we could add the normalization factor zi in Equation 12, which con-
strains outputs to follow probability axioms. However, the constant factor is irrelevant,
since our inference approach seeks only the most likely value.

3.2 Complexity

Our DCRF model uses Quadratic Programming to learn the parameters, within SMO.
Assuming each image has S pixels, and each pixel has E neighbors then learning the
Association-only potential requires O(S2) steps per image, and Local-Consistency-
only potential requires O( (S × E)2 ) per image. Note that in our paper, we used E
is 4.

Inference (here, classifying the regions in a test image) requires O( S + (S × E) )
per iteration. Empirically, we found that ICM converged after 5 iterations, on average.

4 Experiments

We implemented the Decoupled CRF described above, DCRF, and compared it with
other random field techniques on both synthetic and real-world tasks. As many imaging
tasks are very imbalanced (in that the “positive” class includes only a small percentage
of the pixels), the standard evaluation criteria of “accuracy” is problematic. We there-
fore use the Jaccard score — J = TP

TP+FP+FN — to measure its performance, using
true positives (TP), false positives (FP), and false negatives (FN).

Synthetic image sets The primary goal in using the synthetic data sets is to see how
the various algorithms segment objects in the presence of noise. We therefore evaluated
these techniques over 15 synthetic image sets, each with its own shape, whose inten-
sities were each independently corrupted by noise generated from N (0, 1). Here each
image is of size 64-by-64 (4096 pixels). Note that some of image sets are significantly
imbalanced, while others are balanced.

Figure 1 shows some of the experiment results. All Jaccard scores and elapsed learn-
ing times that appear are averaged over 3-fold cross-validation. Each row in Figure 1

3 While GC and LBP are often considered be the best inference methods, even if the graph
structure has loops, we used ICM for the reasons shown above. Note this issue is orthogonal
to the goal of this paper, which is to compare the training time and accuracy of our DCRF to
other CRF-related models.
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Test Image Target LR DRF SVM SVRF DCRF

Fig. 1. Results from synthetic image sets. Rows 1 to 5 from the top down correspond respectively
to datasets 7, 3, 10, and 11 in Fig. 2
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Fig. 2. Average Jaccard scores on 15 synthetic data sets

presents one example, showing (from left to right), the test images, the true labels, and
outputs from Logistic Regression (LR), DRF, SVM, SVRF, and DCRF. We see that,
overall, SVRF and DCRF are most accurate. Especially when the test images are im-
balanced (the first row in Fig. 1), LR (third column) and DRF (fourth column) produce
degraded outputs caused by the poor parameter estimations from the imbalanced data.

The second row illustrates the sensitivity of the regularization term τ in the SVRF
frameworks. Although the correct value for this parameter can produce good segmen-
tation results, in general it is not trivial to find such “good” values. While we can use
cross-validation method to estimate this parameter, others [12, 10] have shown that this
does not guarantee acceptable performance. Also, note that SVM-based approaches ap-
pear robust to the class imbalance, as empirically shown in [12].

Figure 2 shows that DCRF and SVRF are the two best performers overall, at this
segmentation task, dealing with both the balanced and imbalanced data: Each was sig-
nificantly better than the others at the p < 1.14E-12 level based on a paired example
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Table 1. Average elapsed learning time (seconds)

DRF SVRF DCRF
Synthetic 1581.3 714.5 21.2

Brain Tumor 1392.4 1209.4 82.3

t-test; moreover, DCRF performs better than SVRF at the p < 0.0037 level. Note that
SVRF can sometimes produce better results than DCRF — see data sets 3, 9, and 12
in Figure 2. Here, we assume that SVRF found good estimates for τ . Data sets 6, 7, 9,
12, and 14 show that good estimation of the regularization in DRF performs better than
SVM.

The first row of Table 1 reports the average learning time for DRF, SVRF and DCRF
over these 15 cases. Notice first that our DCRF requires significantly less time than the
other two approaches — 30 times faster than SVRF (and so p < 1.165E-17) and over 70
times faster than DRF. This is because there are fast ways to solve DCRF’s underlying
QPs which we attribute to the observation that the SVRF learner regards the Associa-
tion potential as a constant while learning the Local consistency potential, but a DRF
attempts to optimize both potentials simultaneously. (Note this is more than compen-
sates for the fact that DRF’s Logistic Regression learning, by itself, would be faster than
SVRF’s QP.) Finally, recall that DCRF does not compute the partition function during
the training.

Real-world problems We next applied these various learners to the task of segmenting
brain tumors from MR images. Tumor segmentation is challenging for many reasons,
including the differences between the brains of different individuals, and the fact that
the same intensity values can be a tumor in one part of the image, but normal tissue in
another [6, 8]. Automatic tumor segmentation would be very useful, as it would enable
radiation oncologists to effectively locate the tumor, with sufficient precision that they
can use this to perform diagnosis and to plan treatments.

Our experimental data sets consists of 13 volumes taken from 7 patients, each hav-
ing either a grade 2 astrocytoma, an anaplastic astrocytoma, or a glioblastoma multi-
form. We focused only on the axial MRI slices — there were around 21 such slices
per patient-visit. For each slice, there are three complete images, corresponding to three
standard modalities, called “t1”, “t2” and “t1c” [8]. These represent challenging cases
since the tumor area is typically heterogeneous.

We used the multi-scale feature set based on [17], which contains traditional image-
based features in addition to three types of ‘alignment-based’ features: spatial proba-
bilities for each of the 3 normal tissue types (white matter, gray matter, CSF), spatial
expected intensity maps, and a characterization of left-to-right symmetry; each mea-
sured at multiple scales. As with many of the related works on brain tumor segmenta-
tion (such as [6, 22]), our training is a patient-specific scenario, where training data for
the classifier is obtained from the patient to be segmented. Note that pixels to be tested
are from a brain slice that is different from the slice containing the training pixels.

In our experiment, we evaluated the following 7 classifiers on the 13 different time
points from the 7 patients brain volumes. Maximum Likelihood (ML ≡ degenerate
MRF), Logistic Regression (LR ≡ degenerate DRF), SVM (degenerate SVRF), MRF,
DRF, SVRF and DCRF. For each of the Random Field methods, we initialized inference



10 Table 2. Jaccard Percentage Scores for Enhancing Tumor and Edema Tumor Areas.

Enhancing Tumor Area Edema Area
Studies ML MRF LR DRF SVM SVRF DCRF ML MRF LR DRF SVM SVRF DCRF

1-1 23.1 24.6 44.4 46.1 50.7 52.8 53.2 21.9 21.6 35.7 36.7 58.0 58.2 58.0
2-1 0.0 0.0 61.3 61.5 87.4 87.7 87.1 33.3 34.2 59.2 61.4 89.4 89.2 89.3
3-1 69.2 69.7 61.8 61.8 83.0 84.8 86.8 34.4 34.4 75.5 77.2 81.7 82.2 81.9
3-2 40.1 40.3 84.8 84.6 85.7 85.8 85.8 47.6 48.1 73.6 74.1 80.3 81.1 80.5
4-1 26.9 27.3 49.1 50.4 78.8 81.7 82.6 28.3 29.1 38.6 41.2 54.0 55.4 54.6
4-2 58.9 59.7 68.3 70.2 76.7 77.9 79.2 43.2 46.8 45.3 46.7 54.7 57.7 54.9
4-3 49.2 50.2 71.3 71.6 88.2 88.1 88.8 35.4 35.4 69.9 70.6 69.2 69.1 69.1
4-4 65.6 68.2 87.5 87.1 87.0 87.1 86.9 44.1 43.7 78.6 79.0 77.7 77.3 79.5
5-1 67.0 67.5 52.2 51.4 82.8 84.3 84.1 47.8 48.6 63.6 65.7 74.8 76.9 74.6
6-1 37.4 37.6 76.4 76.2 79.2 80.4 80.0 40.3 40.1 79.3 79.7 82.2 83.7 82.9
7-1 63.2 63.0 75.5 76.7 81.0 81.4 81.1 74.9 77.7 91.2 92.4 94.8 94.9 94.9
7-2 37.7 39.3 75.9 75.8 86.5 87.3 86.8 39.2 40.4 80.9 82.7 83.1 82.8 83.1
7-3 45.3 45.6 81.8 81.5 87.7 87.6 87.8 54.1 53.9 79.3 80.7 84.6 84.5 85.6

Average 44.9 45.6 63.6 68.8 81.1 82.1 82.3 41.9 42.6 62.2 68.3 75.7 76.4 76.1

with the corresponding degenerate classifier (i.e., Maximum Likelihood, Logistic Re-
gression, or SVM). To provide a fair comparison between SVM-based models (SVRF
and DCRF) and the other models, we only used the linear kernel.

The first task was the relatively easy one of segmenting the “enhancing” tumor ar-
eas — the region that appears hyper-intense after injecting a contrast agent. The second
task was segmenting the entire edema area associated with the tumor; this is signifi-
cantly more challenging due to the high degree of similarity between the intensities of
edema areas and normal cerebrospinal fluid in the various modalities. The final task
was segmenting the gross tumor area as defined by the radiologist. This can be a subset
of the edema but a superset of the enhancing area, and is inherently a very challenging
task even for human experts, given the modalities examined.

Tables 2 and 3 present the classification results for the three tasks. Over all three
tasks, we see that the best results were typically obtained by either DCRF and SVRF,
which were comparable to each other, and statistically better than the rest: The differ-
ences between SVRF and the next best, SVM, across the three tasks was significant at
the p < 0.000002 level based on a paired example t-test, but the same t-test between
SVRF and DCRF across the tasks indicates no difference — i.e., here p = 0.37. How-
ever, Table 1 (second row) shows that our method requires significantly less training
time — by a factor of 14! (p < 2.285E-34) Although SVM performed very well visu-
ally on the three tasks, just as we saw on the synthetic data results, this performance
can not always be guaranteed. In Table 2, the results from the second patient “2-1”
produced an interesting observation; significant overlap between Gaussians in the high
dimensional feature space leads ML and subsequently MRF to misclassify the entire
area as non-tumor. This example shows that inappropriate modeling of P (x |y ) can
generate extremely poor performance. Although the segmentation tasks for edema and
gross tumor areas are very hard, the best discriminative approaches (i.e., SVRF and
DCRF) still produce segmentations that are typically very similar to the manual seg-
mentations, for all 3 tasks.
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Table 3. Jaccard scores for Gross Tumor Areas.

Gross Tumor Area
Studies ML MRF LR DRF SVM SVRF DCRF

1-1 19.3 19.5 39.4 40.9 40.7 40.5 41.1
2-1 35.4 35.7 65.1 66.1 78.2 76.9 78.0
3-1 44.4 46.1 72.9 73.4 77.9 78.7 78.2
3-2 51.2 51.3 76.3 76.2 78.1 78.8 80.2
4-1 37.4 38.7 39.4 40.1 41.4 41.2 42.1
4-2 38.0 40.2 39.7 39.4 62.1 64.9 62.1
4-3 66.0 68.5 73.3 73.5 64.4 64.5 64.1
4-4 46.7 45.8 83.8 83.5 86.0 87.0 86.2
5-1 50.1 50.9 65.3 68.3 82.8 84.8 83.4
6-1 46.6 47.6 79.6 79.4 87.6 88.2 87.8
7-1 66.4 66.3 71.9 73.2 74.6 74.1 74.7
7-2 49.6 52.4 68.3 67.9 72.7 72.9 72.5
7-3 43.4 43.7 73.5 72.7 81.6 81.2 82.0

Average 45.7 46.7 60.6 65.7 71.4 71.8 71.7

5 Conclusions

Learning to classify regions in an image is a challenging task, partly because labeling
each pixel in an image can require modeling spatial correlations among neighboring
pixels, which can be difficult to learn. As standard independent and identically dis-
tributed classification algorithms do not model these correlations, they typically fail to
correctly classify data instances. Such spatial correlations can, however, be effectively
modeled by various Random Field frameworks. However, these systems (especially the
ones that work effectively.) can require a significant amount of time to learn. This time
constraint makes such models inappropriate for large scale real-world problems, such
as segmenting brain tumors.

In this paper, we have proposed a Decoupled CRF (DCRF) to improve the efficiency
of a discriminative Random Field method for finding regions in an image. Our proposed
model first learns the two potentials (Association and Local-consistency) independently,
each based on a variant of Support Vector Machines. Afterwards, to segment regions in
a novel image, it uses a new potential that is the simple sum of these potentials, using
ICM (with respect to this combined potential) to produce a labeling. Our empirical
results — on both synthetic and real-world data — show that this DCRF approach is
virtually as accurate as the most accurate random field for this task (SVRF), but the
learning time is many times faster (here, by a factor over 14 in one case, and over 30
in another). In addition, our model produces effective classification results, even when
data sets are heavily imbalanced.
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