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Abstract

Preserving privacy of individuals when data are shared
for clustering is a challenging problem. Data owners must
not only meet privacy requirements but also guarantee
valid clustering results. In this paper, we show that this
dual goal can be achieved by transforming a database us-
ing two simple and effective data transformations: Object
Similarity-Based Representation (OSBR) and Dimensional-
ity Reduction-Based Transformation (DRBT). The former
relies on the idea behind the similarity between objects, and
the latter relies on the intuition behind random projection.
The major features of our data transformations are: a) they
are independent of distance-based clustering algorithms; b)
they have a sound mathematical foundation; and c) they do
not require CPU-intensive operations.

1. Introduction

In this paper, we focus primarily on Privacy-Preserving
Clustering (PPC), notably when personal data are shared be-
fore clustering analysis. The challenge is how to protect the
underlying data values subjected to clustering without jeop-
ardizing the similarity between objects under analysis. Each
application poses a new set of challenges. Let us consider
two real-life motivating examples where the sharing of data
poses different constraints.

• Small companies have recognized the value in data, es-
pecially with the introduction of the knowledge dis-
covery process. However, small companies do not have
enough (if any) expertise for doing data analysis, al-
though they have good domain knowledge and under-
stand their data. They have two choices: not mining the
data at all, which is not a good option due to compet-
itive reasons, or doing it with help from outside. Out-
sourcing the data mining process poses a potential se-
curity threat to data. A small enterprise could hire the
service of a company specialized in data mining, i.e.,

the data mining would be outsourced. How can this en-
terprise transform its data before the outsourced data
mining without putting in jeopardy the analysis itself?

• An Internet marketing company and an on-line retail
company have datasets with different attributes for a
common set of individuals. These organizations decide
to share their data for clustering to find the optimal
customer targets so as to maximize return on invest-
ments. How can these organizations learn about their
clusters using each other’s data without learning any-
thing about the attribute values of each other?

The above scenarios describe two different problems of
PPC. We refer to the former asPPC over centralized data,
and the latter asPPC over partitioned data. The existing so-
lutions in the literature address either PPC over centralized
data [14, 15], PPC over vertically partitioned data [17], or
PPC over horizontally partitioned data [13].

In this paper, we claim that PPC over centralized data
and PPC over vertically partitioned data can be addressed
by simple and effective transformations on a database. In
particular, we show that the difficult goal of achieving full
privacy and accuracy can be accomplished by the idea of
dissimilarity between objects, but at a high communication
cost. We refer to this solution as Object Similarity-Based
Representation (OSBR). In order to alleviate the communi-
cation cost introduced by OSBR, we show that a trade-off
between privacy and accuracy can be accomplished by us-
ing the intuition behind random projection. We refer to the
latter solution as Dimensionality Reduction-Based Trans-
formation (DRBT).

Dimensionality reduction techniques have been studied
in the context of pattern recognition [7], information re-
trieval [3, 5, 9], and data mining [6, 5]. One of the promis-
ing methods designed for dimensionality reduction is ran-
dom projection. In this work, we use random projection in
a different context:protection of the underlying values sub-
jected to clustering. In tandem with the benefit of privacy
preservation, our solution DRBT benefits from the fact that



random projection preserves distances quite nicely, which
is desirable in clustering analysis.

The major features of our OSBR and DRBT are: a) they
are independent of distance-based clustering algorithms; b)
they have a sound mathematical foundation; and c) they do
not require CPU-intensive operations.

We show analytically and experimentally that us-
ing OSBR and/or DRBT, a data owner can meet pri-
vacy requirements without losing the benefits of clustering
since the similarity between data points is still pre-
served.

Our contributions in this paper can be summarized as fol-
lows: a) we demonstrate that PPC over centralized data and
over vertically partitioned data can be addressed by DRBT,
while using OSBR one can address PPC over centralized
data. Most importantly, these solutions maintain the useful-
ness of the data and provide acceptable values in practice
to address privacy concerns in clustering; b) we introduce
a taxonomy of techniques to address PPC, including OSBR
and DRBT in the related work section.

This paper is organized as follows. The background in-
formation related to clustering and dimensionality reduction
is discussed in Section 2. In Section 3, we describe the re-
search problem employed in our study. The solutions for
PPC over centralized and vertically partitioned data are pre-
sented in Sections 4 and 5, respectively. The experimental
results are presented in Section 6. Related work is reviewed
in Section 7. Finally, Section 8 presents our conclusions.

2. Background

2.1. Data Matrix

Objects (e.g. individuals, patterns, events) are usu-
ally represented as points (vectors) in a multi-dimensional
space. Each dimension represents a distinct attribute de-
scribing the object. Thus, an object is represented as an
m × n matrixD, where there arem rows, one for each ob-
ject, and n columns, one for each attribute. This ma-
trix is referred to as a data matrix, represented as fol-
lows:

D =




a11 . . . a1k . . . a1n

a21 . . . a2k . . . a2n

...
...

. . .
...

am1 . . . amk . . . amn


 (1)

The attributes in a data matrix are sometimes normal-
ized before being used. The main reason is that different at-
tributes may be measured on different scales (e.g. centime-
ters and kilograms). For this reason, it is common to nor-
malize the data so that all attributes are on the same scale.

There are many methods for data normalization [8]. We re-
view only two of them in this section:min-max normaliza-
tion andz-score normalization.

Min-max normalization performs a linear transformation
on the original data. Each attribute is normalized by scal-
ing its values so that they fall within a small specific range,
such as 0.0 and 1.0.

When the actual minimum and maximum of an attribute
are unknown, or when there are outliers that dominate the
min-max normalization, z-score normalization should be
used. In z-score normalization, the values for an attribute
A are normalized based on the mean and the standard devi-
ation ofA.

2.2. Dissimilarity Matrix

A dissimilarity matrix stores a collection of proximities
that are available for all pairs of objects. This matrix is of-
ten represented by anm × m table. In (2), we can see the
dissimilarity matrixDM corresponding to the data matrix
D in (1), where each elementd(i, j) represents the differ-
ence or dissimilarity between objectsi andj.

DM =




0
d(2, 1) 0
d(3, 1) d(3, 2) 0

...
...

...
d(m, 1) d(m, 2) . . . . . . 0




(2)

In general,d(i, j) is a nonnegative number that is close
to zero when the objectsi and j are very similar to each
other, and becomes larger the more they differ.

To calculate the dissimilarity between objectsi and j
one could use the most popular distance measure called Eu-
clidean distance, or others. Ifi = (xi1, xi2, ..., xin) andj =
(xj1, xj2, ..., xjn) aren-dimensional data objects, the Eu-
clidean distance betweeni andj is given by:

d(i, j) = [
n∑

k=1

(xik − xjk)2]1/2 (3)

In case of binary variables (attributes), one can compute
the dissimilarity between objectsi andj by using the Jac-
card coefficient [8] defined as:

d(i, j) =
r + s

q + r + s
(4)

wherer is the number of variables that equal 1 for objecti
but that are 0 for objectj; s is the number of variables that
equal 0 for objecti but equal 1 for objectj, andq is the num-
ber of variables that equal 1 for both objectsi andj. This
metric assumes that variables are asymmetric, i.e., the out-
comes of the states are not equally important, such as posi-
tive and negative outcomes of a disease test.



Nominal variables can be encoded either by asymmet-
ric binary variables or by mapping them to a numerical
domain. However, if a dataset contains mixed variables, a
more preferable approach is to process all variable types to-
gether performing a single cluster analysis. Combining the
different variables into a single dissimilarity matrix brings
all of the meaningful variables onto a common scale of the
interval [0.0, 1.0]. For a dataset containingp variables of
mixed types, the dissimilarityd(i, j) between objectsi and
j is defined as:

d(i, j) =

∑p
f=1 δ

(f)
ij d

(f)
ij∑p

f=1 δ
(f)
ij

(5)

where the indicatorδ(f)
ij = 0 if either: (a)xif orxjf is miss-

ing; or (b)xif = xjf = 0 and variablef is asymmetric bi-

nary; otherwiseδ(f)
ij = 1. The contribution of variablef to

the dissimilarity betweeni andj, d
(f)
ij , is computed depen-

dent on its type:

• If f is binary or nominal:d(f)
ij = 0 if xif = xjf ; other-

wised
(f)
ij = 1.

• If f is interval-based:d(f)
ij = |xif−xjf |

maxhxhf−minhxhf
,

whereh runs over all non-missing objects for variable
f .

One advantage of using Equation (5) is that the dissim-
ilarities between objects can be computed even when the
variables describing the objects are of different types. More-
over, the dissimilarities are already normalized.

2.3. Dimensionality Reduction

When the data vectors are defined in a high-dimensional
space it is computationally intractable to use data analy-
sis or pattern recognition algorithms which repeatedly com-
pute similarities or distances in the original data source.
Therefore, it is necessary to reduce the dimensionality be-
fore clustering the data [11, 6].

The goal of the methods designed for dimensionality re-
duction is to mapd-dimensional objects intok-dimensional
objects, wherek � d [12]. These methods map each object
to a point in ak-dimensional space minimizing the stress
function:

stress2 = (
∑
i,j

(d̂ij − dij)2)/(
∑
i,j

dij
2) (6)

wheredij is the dissimilarity measure between objectsi and
j in ad-dimensional space, and̂dij is the dissimilarity mea-
sure between objectsi andj in ak-dimensional space. The
functionstress gives the relative error that the distances in
k-d space suffer from, on the average.

One of the methods designed for dimensionality reduc-
tion is random projection. This method has been shown to
have promising theoretical properties since the accuracy ob-
tained after the dimensionality has been reduced using ran-
dom projection is almost as good as the original accuracy.
The key idea of random projection arises from the Johnson-
Lindenstrauss lemma [10]: “if points in a vector space are
projected onto a randomly selected subspace of suitably
high dimension, then the distances between the points are
approximately preserved.”

A random projection fromd dimensions tok dimensions
is a linear transformation represented by ad × k matrixR,
which is generated by first setting each entry of the ma-
trix to a value drawn from an i.i.d.N (0,1) distribution and
then normalizing the columns to unit length. Given ad-
dimensional dataset represented as ann × d matrix D, the
mappingD × R results in a reduced-dimension datasetD ′,
i.e.,

D′
n×k = Dn×dRd×k (7)

Random projection is computationally very simple.
Given the random matrixR and projecting then × d ma-
trix D into k dimensions is of orderO(ndk), and if the
matrix D is sparse with aboutc nonzero entries per col-
umn, the complexity is of orderO(cnk) [16].

After the random projection, the distance between twod-
dimensional vectorsi andj is approximated by the scaled
Euclidean distance of these vectors in the reduced space as
follows:

dij =
√

d/k ‖ Ri − Rj ‖ (8)

whered is the original andk the reduced dimensionality of
the dataset. The scaling term

√
d/k takes into account the

decrease in the dimensionality of the data.
The choice of the random matrixR is one of the key

points of interest. The elementsrij of R are often Gaus-
sian distributed, but this need not to be the case. Achlioptas
[1] showed that the Gaussian distribution can be replaced
by a much simpler distribution, as follows:

rij =
√

3 ×



+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(9)

In fact, practically all zero mean, unit variance dis-
tributions of rij would give a mapping that still satis-
fies the Johnson-Lindenstrauss lemma. Achlioptas’ result
means further computational savings in database applica-
tions since the computations can be performed using inte-
ger arithmetics.



3. Problem Definition

We will approach the problem of PPC by first dividing it
into two sub-problems: PPC over centralized data and PPC
over vertically partitioned data. We do not address the case
of horizontally partitioned data.

3.1. PPC over Centralized Data

In this scenario two partiesA andB are involved, partyA
owning a datasetD and partyB wanting to mine it for clus-
tering. The dataset is assumed to be a data matrixDm×n,
where each of them rows represents an entity or object,
and each entity contains values for each of then attributes.
The matrixDm×n may contain binary, categorical, or nu-
merical attributes.

Before sharing the datasetD with partyB, partyA must
transformD to preserve privacy of individual data records.
However, the transformation applied toD must not jeopar-
dize the similarity between objects. Our first real-life moti-
vating example is a particular case of this scenario.

The problem of PPC over centralized data can be stated
as follows: LetD be a relational database andC a set of
clusters generated fromD. The goal is to transformD into
D′ so that the following restrictions hold:

• A transformationT when applied toD must preserve
the privacy of individual records, so that the released
databaseD′ conceals the values of confidential at-
tributes, such as salary, disease diagnosis, credit rat-
ing, and others.

• The similarity between objects inD ′ must be the same
as that one inD, or slightly altered by the transfor-
mation process. Although the transformed databaseD ′

looks very different fromD, the clusters inD andD ′

should be as close as possible since the distances be-
tween objects are preserved or marginally changed.

3.2. PPC over Vertically Partitioned Data

Consider a scenario whereink parties, such that
k ≥ 2, have different attributes for a common set of ob-
jects, as mentioned in our second real-life motivating ex-
ample. In this scenario, the goal is to do a join over the
k parties and cluster the common objects. The data ma-
trix for this case is given as follows:

� Party 1 �� Party 2 �� . . .�� Partyk �



a11 . . . a1i ai+1 . . . a1j a1p+1 . . . a1n

...
... . . .

...
am1 . . . ami ami+1 . . . amj amp+1 . . . amn


 (10)

Note that, after doing a join over thek parties, the prob-
lem of PPC over vertically partitioned data becomes a prob-
lem of PPC over centralized data. For simplicity, we do not
consider communication cost here since this issue is ad-
dressed later. Therefore, the two restrictions stated in Sec-
tion 3.1 must hold.

The challenge here is how to move the data of each party
to a central party concealing the values of the attributes of
each party. This central party could be any of thek parties.
However, before moving the data to a central party, each
party must disguise its data to protect the privacy of its at-
tribute values. We assume that the existence of an object
(ID) in a particular party may be revealed (for the purpose
of the join operation), but the values of the associated at-
tributes are private.

4. Object Similarity Representation

4.1. General Assumptions

The solution to the problem of PPC based on the similar-
ity between objects draws the following assumptions:

• The data matrixD subjected to clustering could con-
tain either binary, numerical, or categorical attributes,
or even a combination of these attributes.

• The existence of an object (ID) should be replaced by
a fictitious identifier.

4.2. PPC over Centralized Data

To address PPC over centralized data, OSBR performs
three major steps before sharing the data for clustering as
follows:

• Step 1 - Suppressing identifiers: Attributes that are not
subjected to clustering (e.g., address, phone, etc) are
suppressed.

• Step 2 - Normalizing numerical attributes: If the at-
tributes subjected to clustering are numerical, they
should be normalized. Normalization helps prevent at-
tributes with large ranges (e.g, salary) from outweigh-
ing attributes with smaller ranges (e.g., age). If the
dataset contains mixed variables, there is no need for
normalization. The distances between objects are nor-
malized when computing the dissimilarity matrix us-
ing Equation (5), in the next step.

• Step 3 - Computing the dissimilarity matrix: In the last
step, the pairwise distances between objects are com-
puted. Euclidean distance is widely used for numerical
attributes and Jaccard coefficient for binary attributes.
If the attributes are mixed types, Equation (5) must be
used.



To illustrate how this solution works, let us consider the
sample relational database in Table 1. This sample con-
tains real data of the Cardiac Arrhythmia Database avail-
able at the UCI Repository of Machine Learning Databases
[4]. The attributes for this example are:age, weight, h rate
(number of heart beats per minute),int def (number of
intrinsic deflections),QRS (average of QRS duration in
msec.), andPR int (average duration between onset of P
and Q waves in msec.).

ID age weight h rate int def QRS PR int

123 75 80 63 32 91 193
342 56 64 53 24 81 174
254 40 52 70 24 77 129
446 28 58 76 40 83 251
286 44 90 68 44 109 128

Table 1. A cardiac arrhythmia database.

Now suppose this data is made available for research pur-
poses. One may be interested in clustering patients with
similar characteristics to give a specific treatment to each
group. Our goal here is to protect the underlying attribute
values, and at the same time, guarantee accurate clustering
results. Following the three steps of OSBR, the dissimilar-
ity matrix DM corresponding to the data matrix in Table 1,
using Equation (3), is given as follows:

DM =




0
2.2436 0
3.3489 2.4776 0
3.6903 3.8844 3.1767 0
3.0203 4.0828 4.1303 3.9955 0




(11)

The dissimilarity matrix is the dataset shared for cluster-
ing. Many clustering algorithms in the literature operate on
a dissimilarity matrix [8]. In Section 4.3, we show that a dis-
similarity matrix is no longer invertible, as long as the data
analysts have no extra knowledge of the original data.

4.3. The Security of the OSBR

Now we move on to showing that sharing a dissimilar-
ity matrix is a secure procedure. Our goal is to show that
given the distance between twod-dimensional vectors, one
cannot determine the coordinates of these two vectors.

Lemma 1 Let DMm×m be a dissimilarity matrix, where
m is the number of objects. Given the distance between any
two objects, it is impossible to determine the coordinates of
the two objects by knowing only the distance between them.

Proof: Let i andj be any two vectors in ad-dimensional
space and letr be the distance between these vectors. For
any given distancer, there exist infinitely many pairs of vec-
torsi andj such thatd(i, j) = r. In fact, for every vectori
there exists a vectorj such thatd(i, j) = r. Therefore, the
coordinates ofi can be chosen completely arbitrarily and
there is no way to deduce the coordinates ofi from r. �

Even when sufficient care is taken, a solution that ad-
heres to OSBR can still be vulnerable to partial disclosure.
For instance, suppose that a user who has access to a dissim-
ilarity matrix, shared by one data owner, knows all the at-
tributes of one particular objectoi. In this case, partial dis-
closure can occur ifoi is identified in the global matrix.
However, since identifiers in centralized data are replaced
by fictive identifiers, identifyingoi is almost impossible.

Lemma 2 Knowing the coordinates of a particular object
i and the distance r between i and any other object j, it is
possible to estimate the attributes of j.

Proof: Let i andj be any two vectors in ad-dimensional
space and letr be the distance between these vectors. If
all the coordinates ofi are known, then every coordinate of
j cannot differ from the corresponding coordinate ofi by
more thanr sincej will lie on the circle of radius magni-
tude ofr. In this case, one can at least have some estimates
of the coordinates ofj because there are finitely many vec-
torsj. �

4.4. PPC over Vertically Partitioned Data

After illustrating how the problem of PPC over central-
ized data can be addressed by simply using the concept of
dissimilarity matrix, we now evaluate the feasibility of this
solution for PPC over vertically partitioned data.

In the context of PPC over vertically partitioned data,
OSBR present two limitations, as follows:

• Lemma 2 shows the restriction of OSBR when an ad-
versary has external knowledge of the original data.
When two or more parties share data for clustering, if
one party knows all the coordinates of a few points, the
dissimilarity matrix may disclose the original dataset.

• The significant communication cost of OSBR, as we
shall See in the next subsection, indicates that this so-
lution is not attractive for PPC over vertically parti-
tioned data.

The above limitations motivate our next solution based
on the intuition of dimensionality reduction.

4.5. The Complexity of the OSBR

We have shown that it is possible to address PPC over
centralized data based on the concept of dissimilarity ma-



trix. The main advantages of this solution are: (a) it is in-
dependent of distance-based clustering methods; (b) it pre-
serves privacy of values of the attributes subjected to clus-
tering; (c) it is accurate and very simple to implement; and
(d) it can handle both numerical and categorical attributes.

On the other hand, the communication cost makes PPC
over vertically partitioned data sometimes restrictive. A dis-
similarity matrix is am × m table, wherem is the number
of objects under analysis. Whenm grows, which is not un-
expected in data mining applications, this solution becomes
too expensive in terms of communication cost. However,
only half of the dissimilarity matrix is transmitted from one
party to another since distance is a symmetric function. For
instance, for a data matrix wherem = 1,000,000 objects,
the number of pairwise distances (elements of the matrix)
is Cm,2 = (m×(m−1))

2 = 5e+11. Thus, the complexity of
OSBR is of orderO(m2).

5. Dimensionality Reduction Transformation

5.1. General Assumptions

The solution to the problem of PPC based on random
projections draws the following assumptions:

• The data matrixD subjected to clustering contains
only numerical attributes that must be transformed to
protect individuals’ data values before clustering.

• In PPC over centralized data, the existence of an object
identifier (ID) should be replaced by a fictitious iden-
tifier. In PPC over vertically partitioned data, the ID of
the objects are used for the join purposes between the
parties involved in the solution.

• The transformation (random projection) applied to the
original data might slightly modify the distance be-
tween data points. Such a transformation justifies the
trade-off between privacy and accuracy.

One interesting characteristic of the solution based
on random projection is that, once the dimensional-
ity of a database is reduced, the attribute names in the re-
leased database are irrelevant. In other words, the released
database preserves, in general, the similarity between the
objects but the underlying data values are completely dif-
ferent from the original ones. We refer to the released
database asdisguised database, which is shared for cluster-
ing.

5.2. PPC over Centralized Data

To address PPC over centralized data, DRBT performs
three major steps before sharing the data for clustering:

• Step 1 - Suppressing identifiers: Attributes that are not
subjected to clustering (e.g., address, phone number,
etc.) are suppressed.

• Step 2 - Reducing the dimensions of the origi-
nal dataset: After pre-processing the data accord-
ing toStep 1, an original datasetD is then transformed
into the disguised datasetD′ using random projec-
tion.

• Step 3 - Computing the stress function: This function
is used to verify if the accuracy of the transformed
dataset is marginally modified, which guarantees the
usefulness of the data for clustering. A data owner can
compute the stress function and go back toStep 2 many
times in order to find a good compromise between pri-
vacy and accuracy.

To illustrate how this solution works, let us consider the
sample relational database in Table 1. We are going to re-
duce the dimension of that dataset from 6 to 3, one at a
time, and compute the error (stress function). To reduce the
dimension of this dataset, we apply Equation (7). In this ex-
ample, the original dataset corresponds to the matrixD. We
compute the random matrixR1 by setting each entry of the
matrix to a value drawn from an i.i.d.N (0,1) distribution
and then normalizing the columns to unit length. We also
compute the random matrixR2 where each elementrij is
computed using Equation (9). We transformD into D ′ us-
ing bothR1 andR2, one at a time. The random transfor-
mationRP1 refers to the random projection usingR1, and
RP2 refers to the random projection usingR2.

The relative error that the distances in6-3 space suffer
from, on the average, is computed using Equation (6). Ta-
ble 2 shows the values of the error usingR1 andRP2. In
this Table,K represents the number of dimensions in the
disguised databaseD′.

Transformation k = 6 k = 5 k = 4 k = 3

RP1 0.0000 0.0223 0.0490 0.2454
RP2 0.0000 0.0281 0.0375 0.1120

Table 2. The relative error that the distances
in 6-3 space suffer from, on the average.

In this case, we have reduced the dimension ofD from
6 to 3, i.e.,D′ contains 50% less attributes thanD. Note
that the error is very small for bothRP1 andRP2. In addi-
tion, the attribute values are completely disguised through
the random projections to preserve privacy of individuals.
One example of the attribute values, after reducing the di-
mension ofD from 6 to 3 attributes, is showed in Table 3. In



this Table, we have the attributes labeledAtt1, Att2, andAtt3
since we do not know the labels for the disguised dataset.
The datasetD′ was disguised using bothRP1 andRP2.

ID D′ usingRP1 D′ usingRP2

Att1 Att2 Att3 Att1 Att2 Att3

123 -50.40 17.33 12.31 91.0 -125.0 -97.58
342 -37.08 6.27 12.22 81.0 -98.50 -77.07
254 -55.86 20.69 -0.66 77.0 -93.0 -77.78
446 -37.61 -31.66 -17.58 83.0 -101.0 -73.53
286 -62.72 37.64 18.16 109.0 -123.0 -79.19

Table 3. Disguised dataset D′ using RP1 &
RP2.

As can be seen in Table 3, the attribute values are en-
tirely different from those in Table 1.

5.3. PPC over Vertically Partitioned Data

The solution for PPC over vertically partitioned data is a
generalization of the solution for PPC over centralized data.
In particular, if we havek parties involved in this case, each
party must apply the random projection over its dataset and
then send the reduced data matrix to a central party. Note
that, any of thek parties can be the central one. We show
in Section 5.5 that DRBT greatly alleviates the communi-
cation cost when compared with the communication cost in
OSBR.

Whenk parties (k ≥ 2) share some data for PPC over
vertically partitioned data, these parties must satisfy the fol-
lowing constraint:

• Mutually exclusivity: To avoid redundancy in the
clustering analysis and to alleviate the communi-
cation cost, the attributes provided by thek par-
ties should be mutually exclusive. More formally, if
A(D1), A(D2)..., A(Dk) are a set of attributes of the
k parties,∀i �= j A(Di) ∩ A(Dj) = ∅.

The solution based on random projection for PPC over
vertically partitioned data is performed as follows:

• Step 1 - Individual transformation: If k parties,k ≥ 2,
share their data in a collaborative project for cluster-
ing, each partyKi must transform its data according
to the steps in Section 5.2.

• Step 2 - Data exchanging or sharing: Once the data are
disguised by using random projection, thek parties are
able to exchange the data among them. However, one
party could be the central one to aggregate and cluster
the data.

• Step 3 - Sharing clustering results: After the data have
been aggregated and mined in a central partyk i, the re-
sults could be shared with the other parties.

5.4. The Security of the DRBT

In the previous sections, we show that transforming a
database using random projection is a promising solution
for PPC over centralized data and consequently for PPC
over vertically partitioned data since the similarities be-
tween objects are marginally changed. Now we show that
random projection also has promising theoretical properties
for privacy preservation. In particular, we show that a ran-
dom projection fromd dimensions tok, wherek � d, is a
non-invertible transformation.

Lemma 3 A random projection from d dimensions to k di-
mensions, where k � d, is a non-invertible linear transfor-
mation.

Proof: A classic result from Linear Algebra asserts that
there is no invertible linear transformation between Eu-
clidean spaces of different dimensions [2]. Thus, if there is
an invertible linear transformations from�m to�n, then the
constraintm = n must hold. A random projection is a linear
transformation from�d to �k, wherek � d. Hence, a ran-
dom projection fromd dimensions tok dimensions is a non-
invertible linear transformation. �

5.5. The Complexity of the DRBT

One of the major benefits of a solution that adheres to
DRBT is the communication cost to send a disguised dataset
from one party to a central one. Unlike OSBT in which a
data owner sends a dissimilarity matrix to a central party, in
DRBT only a disguised data matrix is subject to communi-
cation cost.

In general, a disguised data matrix is of sizem×k, where
m is the number of objects andk is the number of attributes
(dimensions). Considering thatk � m, the complexity of
DRBT is of orderO(m).

To quantify communication cost of one solution, we con-
sider the number of bits or words required to transmit a
dataset from one party to a central or third party. Using
DRBT, the bit communication cost to transmit a dataset
from one party to another isO(mlk), wherel represents the
size (in bits) of one element of them×k disguised data ma-
trix.

Recall that the communication cost in OSBR is much
more expensive, i.e.,O(((m×(m−1))/2)×l), wherel rep-
resents the size (in bits) of one element of them×m dissim-
ilarity matrix. Clearly, the solution that adheres to DRBT is
much more attractive, in terms of communication cost, for
addressing the problem of PPC over vertically partitioned
data.



6. Experimental Results

We performed a series of experiments to measure the ef-
fectiveness of our solution based on dimensionality reduc-
tion (DRBT). We do not evaluate the OSBR because this so-
lution requires a simple computation of a dissimilarity ma-
trix and the suppression of identifiers before the release of
data for clustering.

All the experiments were conducted on a PC, AMD
Athlon 1900/1600 (SPEC CFP2000 588), with 1.2 GB of
RAM running a Linux operating system.

To validated DRBT, we used two real datasets available
at the UCI Repository of Machine Learning Databases [4].
The datasets are described as follows: a)mushroom with
8124 objects and 23 numerical attributes. This dataset con-
tains records drawn from The Audubon Society Field Guide
to North American Mushrooms; b)chess with 3196 objects
and 37 numerical attributes containing information about le-
gal moves of chess.

6.1. DRBT: PPC over Centralized Data

To measure the effectiveness of DRBT for PPC over cen-
tralized data, we computed the relative error that the dis-
tances ind-k space suffer from, on the average, by using
the stress function given in Equation (6).

We computed the random matrixR1 by setting each en-
try of the matrix to a value drawn from an i.i.d.N (0,1) dis-
tribution and then normalizing the columns to unit length.
We also computed the random matrixR2 where each ele-
mentrij is computed using Equation (9). We transformed
the datasets using bothR1 andR2. In the random projec-
tion RP1, we used the random matrixR1, and inRP2 we
used the random matrixR2.

Figure 1(A) shows the error produced byRP1 andRP2

on the mushroom dataset, while Figure 1(B) shows the er-
ror produced byRP1 andRP2 on the chess dataset. We re-
duced the dimensions of mushroom from 23 to 15, taking 3
dimensions at a time. Similarly, we reduced the dimensions
of chess from 37 to 17, considering 4 dimensions at a time.
The error produced byRP1 andRP2 increased slightly. As
can be seen, the error produced byRP1 andRP2 on the
mushroom dataset was less that 0.14, whereas the error on
the chess dataset was less than 0.11. In both datasets, the
errors produced byRP2 were slightly lower than those in
RP1, which confirms the same findings in [3].

6.2. DRBT: PPC over Vertically Partitioned Data

To measure the effectiveness of DRBT for PPC over ver-
tically partitioned data, we split the datasets mushroom and
chess from 1 up to 4 parties and fixed the number dimen-
sions to be reduced. In particular, we setk = 12, i.e., the

number of projected dimensions for the dataset mushroom,
andk = 18 for the dataset chess.

After applying the random projection (RP1 andRP2) to
the subdatasets of each dataset, we computed the stress er-
ror on the subdatasets. Subsequently, we merged the results
of each party to compose the aggregate dataset in a central
party.

Figure 2(A) shows the error produced byRP1 andRP2

on the mushroom dataset when varying the number of par-
ties from 1 up to 4. Likewise, Figure 2(B) shows the error
produced byRP1 andRP2 on the chess dataset when vary-
ing the number of parties from 1 up to 4.

Again, in both cases the errors produced byRP2 were
slightly lower than those inRP1. In the mushroom dataset,
the error produced byRP1 andRP2 was less that 0.13, and
in the chess dataset the error was less than 0.12.

These results suggest that random projection is a promis-
ing method for achieving PPC. Using random projection, a
data owner can tune the number of dimensions to be re-
duced in a dataset trading privacy, accuracy, and communi-
cation costs before sharing the dataset for clustering.

7. Related Work

Some effort has been made to address the problem of
PPC. We classify the solutions into two major groups:PPC
over centralized data andPPC over distributed data.

A hybrid geometric data transformation method was pro-
posed in [14] to meet privacy requirements as well as to
guarantee valid clustering results. This method distorts nu-
merical attributes by translations, scalings, and rotations or
even by the combination of these geometric transforma-
tions. The key finding of this study was that by transforming
a data matrix by rotations only, one would attain both accu-
racy and a reasonable level of privacy. The investigation also
revealed that the Additive Data Perturbation (ADP) method,
widely used in statistical databases, offers some level of
privacy, but jeopardizes the distances between data points
compromising the clustering results.

A more accurate investigation on PPC using geometric
transformation is presented in [15]. In particular, it is shown
that distorting attribute pairs in a database by using only ro-
tations is a promising approach. In this work, a spatial data
transformation method is introduced, called Rotation-Based
Transformation (RBT). The method is designed to protect
the underlying attribute values subjected to clustering with-
out jeopardizing the similarity between data objects under
analysis.

Regarding PPC over distributed data, we classify the ex-
isting solutions in two groups:PPC over vertically parti-
tioned data andPPC over horizontally partitioned data. In
a horizontal partition, different entities are described with
the same schema in all partitions, while in a vertical parti-
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Figure 1. (A): The error produced on mushroom dataset. (B): The error produced on chess dataset.
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Figure 2. (A): The error produced on mushroom dataset. (B): The error produced on chess dataset.

tion the attributes of the same entities are split across the
partitions.

The work presented in [17] addresses PPC over verti-
cally partitioned data. The solution is based on secure multi-
part computation. Specifically, a method for k-means is pro-
posed when different sites contain different attributes for
a common set of entities. In this solution, each site learns
the global clusters, but learns nothing about the attributes at
other sites. This work ensures reasonable privacy while lim-
iting communication cost.

A solution for PPC over horizontally partitioned data
was proposed in [13]. This solution is based on generative
models. In this approach, rather than sharing parts of the
original data or perturbed data, the parameters of suitable
generative models are built at each local site. Then such pa-
rameters are transmitted to a central location. The best rep-
resentative of all data is a certain “mean” model. It was em-
pirically shown that such a model can be approximated by

generating artificial samples from the underlying distribu-
tions using Markov Chain Monte Carlo techniques. This ap-
proach achieves high quality distributed clustering with ac-
ceptable privacy loss and low communication cost.

The work presented here differs from the related work
in some aspects: First, we address PPC over centralized
data by using both OSBR and DRBT, but the later solu-
tion (DRBT) can be used to address PPC over vertically
partitioned data at a reasonable communication cost, which
emphasizes the generality of this solution. Second, our so-
lutions are independent of distance-based clustering algo-
rithms.

8. Conclusions

In this paper, we have showed analytically and experi-
mentally that PPC by simple transformations is to some ex-
tent possible. Our study revealed that PPC can be achieved



by simple and effective solutions. In particular, we showed
that the challenging goal of achieving full privacy and ac-
curacy can be accomplished by the idea of dissimilarity be-
tween objects, but at a high communication cost. We re-
ferred to this solution as Object Similarity-Based Represen-
tation (OSBR). In particular, we showed that OSBR is in-
efficient for PPC over vertically partitioned data when an
adversary has external knowledge of some attributes sub-
jected to clustering. As a result, OSBR is more atractive to
address PPC over centralized data.

In order to alleviate the communication cost introduced
by OSBR, we showed that a trade-off between privacy, ac-
curacy, and communication costs can be accomplished by
using the intuition behind random projection. We referred
to the latter solution as Dimensionality Reduction-Based
Transformation (DRBT). This solution is promising to ei-
ther PPC over centralized or vertically partitioned data since
it greatly alleviates communication costs while preserving
the accuracy of reduced data as good as the accuracy of the
original data.

The highlights of our approaches are as follows: a) they
are independent of distance-based clustering algorithms; b)
they have a sound mathematical foundation; and c) they do
not require CPU-intensive operations.

The contributions in this paper can be summarized as fol-
lows: a) we demonstrated that PPC over centralized data and
over vertically partitioned data can be addressed by OSBR
and DRBT, respectively. Our solutions maintain the useful-
ness of the data and provide acceptable values in practice
to address privacy concerns in clustering; b) we introduced
a taxonomy of solutions to address PPC, including OSBR
and DRBT.
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