
Self-Attentional Models Application
in Task-Oriented Dialogue Generation Systems

Mansour Saffar Mehrjardi, Amine Trablesi, Osmar R. Zaı̈ane
Department of Computing Science, University of Alberta
{saffarme,atrabels,zaiane}@ualberta.ca

Abstract

Self-attentional models are a new
paradigm for sequence modelling tasks
which differ from common sequence
modelling methods, such as recurrence-
based and convolution-based sequence
learning, in the way that their architecture
is only based on the attention mechanism.
Self-attentional models have been used in
the creation of the state-of-the-art models
in many NLP tasks such as neural machine
translation, but their usage has not been
explored for the task of training end-to-
end task-oriented dialogue generation
systems yet. In this study, we apply these
models on the three different datasets
for training task-oriented chatbots. Our
finding shows that self-attentional models
can be exploited to create end-to-end task-
oriented chatbots which not only achieve
higher evaluation scores compared to
recurrence-based models, but also do so
more efficiently.

1 Introduction

Task-oriented chatbots are a type of dialogue gen-
eration system which tries to help the users accom-
plish specific tasks, such as booking a restaurant
table or buying movie tickets, in a continuous and
uninterrupted conversational interface and usually
in as few steps as possible. The development of
such systems falls into the Conversational AI do-
main which is the science of developing agents
which are able to communicate with humans in a
natural way (Ram et al., 2018). Digital assistants
such as Apple’s Siri, Google Assistant, Amazon
Alexa, and Alibaba’s AliMe are examples of suc-
cessful chatbots developed by giant companies to
engage with their customers.

There are mainly two different ways to cre-
ate a task-oriented chatbot which are either using
set of hand-crafted and carefully-designed rules
or use corpus-based method in which the chatbot
can be trained with a relatively large corpus of
conversational data. Given the abundance of di-
alogue data, the latter method seems to be a bet-
ter and a more general approach for developing
task-oriented chatbots. The corpus-based method
also falls into two main chatbot design architec-
tures which are pipelined and end-to-end archi-
tectures (Chen et al., 2017). End-to-end chatbots
are usually neural networks based (Shang et al.,
2015; Dodge et al., 2015; Wen et al., 2016; Eric
and Manning, 2017a) and thus can be adapted
to new domains by training on relevant dialogue
datasets for that specific domain. Furthermore, all
sequence modelling methods can also be used in
training end-to-end task-oriented chatbots. A se-
quence modelling method receives a sequence as
input and predicts another sequence as output. For
example in the case of machine translation the in-
put could be a sequence of words in a given lan-
guage and the output would be a sentence in a sec-
ond language. In a dialogue system, an utterance
is the input and the predicted sequence of words
would be the corresponding response.

Self-attentional models are a new paradigm
for sequence modelling tasks which differ from
common sequence modelling methods, such as
recurrence-based and convolution-based sequence
learning, in the way that their architecture is only
based on the attention mechanism. The Trans-
former (Vaswani et al., 2017) and Universal Trans-
former (Dehghani et al., 2018) models are the
first models that entirely rely on the self-attention
mechanism for both encoder and decoder, and that
is why they are also referred to as a self-attentional
models. The Transformer models has produced
state-of-the-art results in the task neural machine



translation (Vaswani et al., 2017) and this encour-
aged us to further investigate this model for the
task of training task-oriented chatbots. While in
the Transformer model there is no recurrence, it
turns out that the recurrence used in RNN mod-
els is essential for some tasks in NLP including
language understanding tasks and thus the Trans-
former fails to generalize in those tasks (Dehghani
et al., 2018). We also investigate the usage of the
Universal Transformer for this task to see how it
compares to the Transformer model.

We focus on self-attentional sequence mod-
elling for this study and intend to provide an an-
swer for one specific question which is:

• How effective are self-attentional models for
training end-to-end task-oriented chatbots?

Our contribution in this study is as follows:

• We train end-to-end task-oriented chatbots
using both self-attentional models and com-
mon recurrence-based models used in se-
quence modelling tasks and compare and an-
alyze the results using different evaluation
metrics on three different datasets.

• We provide insight into how effective are
self-attentional models for this task and
benchmark the time performance of these
models against the recurrence-based se-
quence modelling methods.

• We try to quantify the effectiveness of self-
attention mechanism in self-attentional mod-
els and compare its effect to recurrence-based
models for the task of training end-to-end
task-oriented chatbots.

2 Related Work

2.1 Task-Oriented Chatbots Architectures
End-to-end architectures are among the most used
architectures for research in the field of conversa-
tional AI. The advantage of using an end-to-end
architecture is that one does not need to explic-
itly train different components for language un-
derstanding and dialogue management and then
concatenate them together. Network-based end-
to-end task-oriented chatbots as in (Wen et al.,
2016; Bordes et al., 2016) try to model the learn-
ing task as a policy learning method in which the
model learns to output a proper response given
the current state of the dialogue. As discussed

before, all encoder-decoder sequence modelling
methods can be used for training end-to-end chat-
bots. Eric and Manning (2017a) use the copy
mechanism augmentation on simple recurrent neu-
ral sequence modelling and achieve good results
in training end-to-end task-oriented chatbots (Gu
et al., 2016).

Another popular method for training chatbots is
based on memory networks. Memory networks
augment the neural networks with task-specific
memories which the model can learn to read and
write. Memory networks have been used in (Bor-
des et al., 2016) for training task-oriented agents in
which they store dialogue context in the memory
module, and then the model uses it to select a sys-
tem response (also stored in the memory module)
from a set of candidates. A variation of Key-value
memory networks (Miller et al., 2016) has been
used in (Eric and Manning, 2017b) for the train-
ing task-oriented chatbots which stores the knowl-
edge base in the form of triplets (which is (sub-
ject,relation,object) such as (yoga,time,3pm)) in
the key-value memory network and then the model
tries to select the most relevant entity from the
memory and create a relevant response. This ap-
proach makes the interaction with the knowledge
base smoother compared to other models.

Another approach for training end-to-end task-
oriented dialogue systems tries to model the task-
oriented dialogue generation in a reinforcement
learning approach in which the current state of
the conversation is passed to some sequence learn-
ing network, and this network decides the ac-
tion which the chatbot should act upon. End-
to-end LSTM based model (Williams and Zweig,
2016), and the Hybrid Code Networks (Williams
et al., 2017) can use both supervised and rein-
forcement learning approaches for training task-
oriented chatbots.

2.2 Sequence Modelling Methods

Sequence modelling methods usually fall into
recurrence-based, convolution-based, and self-
attentional-based methods. In recurrence-based
sequence modeling, the words are fed into the
model in a sequential way, and the model
learns the dependencies between the tokens given
the context from the past (and the future in
case of bidirectional Recurrent Neural Networks
(RNNs)) (Goodfellow et al., 2016). RNNs and
their variations such as Long Short-term Memory



(LSTM) (Hochreiter and Schmidhuber, 1997), and
Gated Recurrent Units (GRU) (Cho et al., 2014)
are the most widely used recurrence-based models
used in sequence modelling tasks. Convolution-
based sequence modelling methods rely on Con-
volutional Neural Networks (CNN) (LeCun et al.,
1998) which are mostly used for vision tasks but
can also be used for handling sequential data. In
CNN-based sequence modelling, multiple CNN
layers are stacked on top of each other to give the
model the ability to learn long-range dependen-
cies. The stacking of layers in CNNs for sequence
modeling allows the model to grow its receptive
field, or in other words context size, and thus
can model complex dependencies between differ-
ent sections of the input sequence (Gehring et al.,
2017; Yu and Koltun, 2015). WaveNet (2016),
used in audio synthesis, and ByteNet (2016), used
in machine translation tasks, are examples of
models trained using convolution-based sequence
modelling.

3 Models

We compare the most commonly used recurrence-
based models for sequence modelling and contrast
them with Transformer and Universal Transformer
models. The models that we train are:

3.1 LSTM and Bi-Directional LSTM

Long Short-term Memory (LSTM) networks are
a special kind of RNN networks which can learn
long-term dependencies (Hochreiter and Schmid-
huber, 1997). RNN models suffer from the vanish-
ing gradient problem (Bengio et al., 1994) which
makes it hard for RNN models to learn long-term
dependencies. The LSTM model tackles this prob-
lem by defining a gating mechanism which intro-
duces input, output and forget gates, and the model
has the ability to decide how much of the previous
information it needs to keep and how much of the
new information it needs to integrate and thus this
mechanism helps the model keep track of long-
term dependencies.

Bi-directional LSTMs (Schuster and Paliwal,
1997) are a variation of LSTMs which proved to
give better results for some NLP tasks (Graves
and Schmidhuber, 2005). The idea behind a Bi-
directional LSTM is to give the network (while
training) the ability to not only look at past to-
kens, like LSTM does, but to future tokens, so the
model has access to information both form the past

and future. In the case of a task-oriented dialogue
generation systems, in some cases, the information
needed so that the model learns the dependencies
between the tokens, comes from the tokens that
are ahead of the current index, and if the model is
able to take future tokens into accounts it can learn
more efficiently.

3.2 Transformer
As discussed before, Transformer is the first model
that entirely relies on the self-attention mecha-
nism for both the encoder and the decoder. The
Transformer uses the self-attention mechanism to
learn a representation of a sentence by relating
different positions of that sentence. Like many
of the sequence modelling methods, Transformer
follows the encoder-decoder architecture in which
the input is given to the encoder and the results
of the encoder is passed to the decoder to cre-
ate the output sequence. The difference between
Transformer (which is a self-attentional model)
and other sequence models (such as recurrence-
based and convolution-based) is that the encoder
and decoder architecture is only based on the
self-attention mechanism. The Transformer also
uses multi-head attention which intends to give
the model the ability to look at different rep-
resentations of the different positions of both
the input (encoder self-attention), output (decoder
self-attention) and also between input and output
(encoder-decoder attention) (Vaswani et al., 2017).
It has been used in a variety of NLP tasks such as
mathematical language understanding [110], lan-
guage modeling (Dai et al., 2018), machine trans-
lation (Vaswani et al., 2017), question answer-
ing (Devlin et al., 2018), and text summariza-
tion (Liu et al., 2018).

3.3 Universal Transformer
The Universal Transformer model is an encoder-
decoder-based sequence-to-sequence model
which applies recurrence to the representation
of each of the positions of the input and output
sequences. The main difference between the
RNN recurrence and the Universal Transformer
recurrence is that the recurrence used in the
Universal Transformer is applied on consecu-
tive representation vectors of each token in the
sequence (i.e., over depth) whereas in the RNN
models this recurrence is applied on positions of
the tokens in the sequence. A variation of the
Universal Transformer, called Adaptive Universal



Transformer, applies the Adaptive Computation
Time (ACT) (Graves, 2013) technique on the
Universal Transformer model which makes the
model train faster since it saves computation
time and also in some cases can increase the
model accuracy. The ACT allows the Universal
Transformer model to use different recurrence
time steps for different tokens.

We know, based on reported evidence that trans-
formers are potent in NLP tasks like translation
and question answering. Our aim is to assess
the applicability and effectiveness of transformers
and universal-transformers in the domain of task-
oriented conversational agents. In the next section,
we report on experiments to investigate the us-
age of self-attentional models performance against
the aforementioned models for the task of training
end-to-end task-oriented chatbots.

4 Experiments

We run our experiments on Tesla 960M Graphical
Processing Unit (GPU). We evaluated the models
using the aforementioned metrics and also applied
early stopping (with delta set to 0.1 for 600 train-
ing steps).

4.1 Datasets

We use three different datasets for training the
models. We use the Dialogue State Tracking Com-
petition 2 (DSTC2) dataset (Williams et al., 2013)
which is the most widely used dataset for research
on task-oriented chatbots. We also used two
other datasets recently open-sourced by Google
Research (Shah et al., 2018) which are M2M-
sim-M (dataset in movie domain) and M2M-sim-
R (dataset in restaurant domain)1. M2M stands
for Machines Talking to Machines which refers
to the framework with which these two datasets
were created. In this framework, dialogues are
created via dialogue self-play and later augmented
via crowdsourcing. We trained on our models on
different datasets in order to make sure the results
are not corpus-biased. Table 1 shows the statistics
of these three datasets which we will use to train
and evaluate the models.

The M2M dataset has more diversity in both
language and dialogue flow compared to the the
commonly used DSTC2 dataset which makes it
appealing for the task of creating task-oriented

1https://github.com/google-research-datasets/simulated-
dialogue

Dataset Num. of Slots Train Dev Test
DSTC2 8 1618 1117 500
M2M-R 9 1116 349 775
M2M-M 5 384 120 264

Table 1: Statistics of DSTC2, M2M-R, and M2M-
M Datasets

chatbots. This is also the reason that we decided
to use M2M dataset in our experiments to see how
well models can handle a more diversed dataset.

4.1.1 Dataset Preparation

We followed the data preparation process used for
feeding the conversation history into the encoder-
decoder as in (Eric and Manning, 2017a). Con-
sider a sample dialogue D in the corpus which
consists of a number of turns exchanged between
the user and the system. D can be represented as
(u1, s1), (u2, s2), ..., (uk, sk) where k is the num-
ber of turns in this dialogue. At each time step
in the conversation, we encode the conversation
turns up to that time step, which is the context of
the dialogue so far, and the system response after
that time step will be used as the target. For ex-
ample, given we are processing the conversation
at time step i, the context of the conversation so
far would be (u1, s1, u2, s2, ..., ui) and the model
has to learn to output (si) as the target.

4.2 Training

We used the tensor2tensor library (Vaswani et al.,
2018) in our experiments for training and evalua-
tion of sequence modeling methods. We use Adam
optimizer (Kingma and Ba, 2014) for training the
models. We set β1 = 0.9, β2 = 0.997, and
ε = 1e − 9 for the Adam optimizer and started
with learning rate of 0.2 with noam learning rate
decay schema (Vaswani et al., 2017). In order
to avoid overfitting, we use dropout (Srivastava
et al., 2014) with dropout chosen from [0.7-0.9]
range. We also conducted early stopping (Good-
fellow et al., 2016) to avoid overfitting in our ex-
periments as the regularization methods. We set
the batch size to 4096, hidden size to 128, and the
embedding size to 128 for all the models. We also
used grid search for hyperparameter tuning for all
of the trained models. Details of our training and
hyperparameter tuning and the code for reproduc-
ing the results can be found in the chatbot-exp



Dataset Split Model BLEU Per Turn. Acc Per Diag. Acc Entity F1
test LSTM (bs=1) 5.75 17.70 0.0 5.63

LSTM + Attention (bs=2) 30.84 18.08 0.15 32.16
Bi-LSTM (bs=2) 30.38 18.04 0.0 24.34
Bi-LSTM + Attention (bs=2) 38.64 26.04 0.62 43.52
Transformer (bs=2) 51.83 39.02 1.7 64.20
UT (bs=2) 44.93 36.62 1.08 57.98
UT + ACT (bs=2) 39.40 30.00 0.15 61.49

development LSTM 16.13 10.33 0.0 6.54
LSTM + Attention 31.05 18.68 0.31 32.59
Bi-LSTM 30.92 19.07 0.31 25.91
Bi-LSTM + Attention 39.12 27.28 0.96 44.15
Transformer 54.18 41.09 0.62 66.02
UT 47.95 39.01 0.31 61.27
UT + ACT 39.27 29.30 0.31 62.50

Table 2: Evaluation of Models on DSTC2 dataset for both test and development datasets (bs: shows the
best beam size in inference; UT: Universal Transformers)

github repository2.

4.3 Inference

In the inference time, there are mainly two meth-
ods for decoding which are greedy and beam
search (Freitag and Al-Onaizan, 2017). Beam
search has been proved to be an essential part in
generative NLP task such as neural machine trans-
lation (Wu et al., 2016). In the case of dialogue
generation systems, beam search could help alle-
viate the problem of having many possible valid
outputs which do not match with the target but are
valid and sensible outputs. Consider the case in
which a task-oriented chatbot, trained for a restau-
rant reservation task, in response to the user ut-
terance “Persian food”, generates the response
“what time and day would you like the reserva-
tion for?” but the target defined for the system
is “would you like a fancy restaurant?”. The re-
sponse generated by the chatbot is a valid response
which asks the user about other possible entities
but does not match with the defined target.

We try to alleviate this problem in inference
time by applying the beam search technique with a
different beam size α ∈ {1, 2, 4} and pick the best
result based on the BLEU score. Note that when
α = 1, we are using the original greedy search
method for the generation task.

4.4 Evaluation Measures

BLEU: We use the Bilingual Evaluation Under-

2https://github.com/msaffarm/chatbot-exp

study (BLEU) (Papineni et al., 2002) metric which
is commonly used in machine translation tasks.
The BLEU metric can be used to evaluate di-
alogue generation models as in (Eric and Man-
ning, 2017a; Li et al., 2015). The BLEU metric
is a word-overlap metric which computes the co-
occurrence of N-grams in the reference and the
generated response and also applies the brevity
penalty which tries to penalize far too short re-
sponses which are usually not desired in task-
oriented chatbots. We compute the BLEU score
using all generated responses of our systems.

Per-turn Accuracy: Per-turn accuracy mea-
sures the similarity of the system generated re-
sponse versus the target response. Eric and Man-
ning (2017a) used this metric to evaluate their sys-
tems in which they considered their response to
be correct if all tokens in the system generated re-
sponse matched the corresponding token in the tar-
get response. This metric is a little bit harsh, and
the results may be low since all the tokens in the
generated response have to be exactly in the same
position as in the target response.

Per-Dialogue Accuracy: We calculate per-
dialogue accuracy as used in (Bordes et al., 2016;
Eric and Manning, 2017a). For this metric, we
consider all the system generated responses and
compare them to the target responses. A dialogue
is considered to be true if all the turns in the sys-
tem generated responses match the corresponding
turns in the target responses. Note that this is a
very strict metric in which all the utterances in the



Dataset Split Model BLEU Per Turn. Acc Per Diag. Acc Entity F1
M2M-R LSTM(bs=2) 6.00 2.3 0.0 7.99
(test) LSTM+Att.(bs=1) 7.9 1.84 0.0 16.77

Bi-LSTM(bs=1) 8.15 1.8 0.0 19.61
Bi-LSTM+Att.(bs=1) 8.3 0.97 0.0 24.12
Transformer(bs=1) 10.28 1.76 0.0 36.92
UT(bs=2) 9.15 1.88 0.0 25.44
UT+ACT(bs=2) 8.54 1.43 0.0 23.12

M2M-M LSTM(bs=4) 7.7 3.36 0.0 31.07
(test) LSTM+Att.(bs=2) 8.3 3.27 0.0 31.18

Bi-LSTM(bs=2) 9.6 2.09 0.0 28.09
Bi-LSTM+Att.(bs=2) 10.62 2.54 0.0 32.43
Transformer(bs=1) 11.95 2.36 0.0 39.89
UT(bs=2) 10.87 3.15 0.0 34.15
UT+ACT(bs=2) 10.48 2.46 0.0 32.76

Table 3: Evaluation of models on M2M restaurant (M2M-R) and movie (M2M-M) dataset for test
datasets (bs: The best beam size in inference; UT: Universal Transformers)

dialogue should be the same as the target and in
the right order.

F1-Entity Score: Datasets used in task-
oriented chores have a set of entities which repre-
sent user preferences. For example, in the restau-
rant domain chatbots common entities are meal,
restaurant name, date, time and the number of peo-
ple (these are usually the required entities which
are crucial for making reservations, but there could
be optional entities such as location or rating).
Each target response has a set of entities which
the system asks or informs the user about. Our
models have to be able to discern these specific en-
tities and inject them into the generated response.
To evaluate our models we could use named-entity
recognition evaluation metrics (Jiang et al., 2016).
The F1 score is the most commonly used metric
used for the evaluation of named-entity recogni-
tion models which is the harmonic average of pre-
cision and recall of the model. We calculate this
metric by micro-averaging over all the system gen-
erated responses.

5 Results and Discussion

5.1 Comparison of Models

The results of running the experiments for the
aforementioned models is shown in Table 2 for
the DSTC2 dataset and in Table 3 for the M2M
datasets. The bold numbers show the best per-
forming model in each of the evaluation met-
rics. As discussed before, for each model we
use different beam sizes (bs) in inference time

and report the best one. Our findings in Table 2
show that self-attentional models outperform com-
mon recurrence-based sequence modelling meth-
ods in the BLEU, Per-turn accuracy, and entity F1
score. The reduction in the evalution numbers for
the M2M dataset and in our investigation of the
trained model we found that this considerable re-
duction is due to the fact that the diversity of M2M
dataset is considerably more compared to DSTC2
dataset while the traning corpus size is smaller.

5.2 Time Performance Comparison
Table 4 shows the time performance of the mod-
els trained on DSTC2 dataset. Note that in or-
der to get a fair time performance comparison, we
trained the models with the same batch size (4096)
and on the same GPU. These numbers are for the
best performing model (in terms of evaluation loss
and selected using the early stopping method) for
each of the sequence modelling methods. Time to
Convergence (T2C) shows the approximate time
that the model was trained to converge. We also
show the loss in the development set for that spe-
cific checkpoint.

5.3 Effect of (Self-)Attention Mechanism
As discussed before in Section 3.2, self-attentional
models rely on the self-attention mechanism for
sequence modelling. Recurrence-based models
such as LSTM and Bi-LSTM can also be aug-
mented in order to increase their performance,
as evident in Table 2 which shows the increase
in the performance of both LSTM and Bi-LSTM



Model T2C (sec) Dev Loss
LSTM 1100 0.89

LSTM+Att 1305 0.62
Bi-LSTM 1865 0.60

Bi-LSTM+Att 2120 0.49
Transformer 612 0.31

UT 1939 0.36
UT+ACT 665 0.33

Table 4: Comparison of convergence performance
of the models

when augmented with an attention mechanism.
This leads to the question whether we can in-
crease the performance of recurrence-based mod-
els by adding multiple attention heads, similar to
the multi-head self-attention mechanism used in
self-attentional models, and outperform the self-
attentional models.

To investigate this question, we ran a number
of experiments in which we added multiple atten-
tion heads on top of Bi-LSTM model and also tried
a different number of self-attention heads in self-
attentional models in order to compare their per-
formance for this specific task. Table 6 shows
the results of these experiments. Note that the
models in Table 6 are actually the best mod-
els that we found in our experiments on DSTC2
dataset and we only changed one parameter for
each of them, i.e. the number of attention heads
in the recurrence-based models and the number of
self-attention heads in the self-attentional models,
keeping all other parameters unchanged. We also
report the results of models with beam size of 2 in
inference time. We increased the number of atten-
tion heads in the Bi-LSTM model up to 64 heads
to see its performance change. Note that increas-
ing the number of attention heads makes the train-
ing time intractable and time consuming while the
model size would increase significantly as shown
in Table 5. Furthermore, by observing the results
of the Bi-LSTM+Att model in Table 6 (both test
and development set) we can see that Bi-LSTM
performance decreases and thus there is no need
to increase the attention heads further.

Our findings in Table 6 show that the self-
attention mechanism can outperform recurrence-
based models even if the recurrence-based mod-
els have multiple attention heads. The Bi-LSTM
model with 64 attention heads cannot beat the
best Trasnformer model with NH=4 and also its

results are very close to the Transformer model
with NH=1. This observation clearly depicts
the power of self-attentional based models and
demonstrates that the attention mechanism used in
self-attentional models as the backbone for learn-
ing, outperforms recurrence-based models even if
they are augmented with multiple attention heads.

Model T2C (sec) Dev Loss
Bi-LSTM+Att.[NH=1] 2120 0.49
Bi-LSTM+Att.[NH=4] 3098 0.47
Bi-LSTM+Att.[NH=8] 3530 0.44

Bi-LSTM+Att.[NH=16] 3856 0.44
Bi-LSTM+Att.[NH=32] 7320 0.36
Bi-LSTM+Att.[NH=64] 9874 0.38

Transformer[NH=1] 375 0.33
Transformer[NH=4] 612 0.31
Transformer[NH=8] 476 0.31

Table 5: Comparison of convergence performance
of the models

6 Conclusion and Future Work

We have determined that Transformers and
Universal-Transformers are indeed effective at
generating appropriate responses in task-oriented
chatbot systems. In actuality, their performance
is even better than the typically used deep learn-
ing architectures. Our findings in Table 2 show
that self-attentional models outperform common
recurrence-based sequence modelling methods in
the BLEU, Per-turn accuracy, and entity F1 score.
The results of the Transformer model beats all
other models in all of the evaluation metrics. Also,
comparing the result of LSTM and LSTM with at-
tention mechanism as well as the Bi-LSTM with
Bi-LSTM with attention mechanism, it can be
observed in the results that adding the attention
mechanism can increase the performance of the
models. Comparing the results of self-attentional
models shows that the Transformer model out-
performs the other self-attentional models, while
the Universal Transformer model gives reasonably
good results.

In future work, it would be interesting to com-
pare the performance of self-attentional mod-
els (specifically the winning Transformer model)
against other end-to-end architectures such as the
Memory Augmented Networks.



Dataset Split Model BLEU Per-Turn Acc Per-Diag Acc Entity F1
test Bi-LSTM+Att.[NH=1] 38.64 26.04 0.62 43.52

Bi-LSTM+Att.[NH=4] 42.23 29.01 0.92 48.06
Bi-LSTM+Att.[NH=8] 42.61 28.18 0.77 49.90
Bi-LSTM+Att.[NH=16] 43.11 30.34 0.61 50.87
Bi-LSTM+Att.[NH=32] 48.62 36.46 1.85 59.8
Bi-LSTM+Att.[NH=64] 47.33 33.17 1.23 56.49
Transformer[NH=1] 45.90 36.64 1.7 57.55
Transformer[NH=4] 51.83 39.02 1.7 64.20
Transformer[NH=8] 51.37 39.45 3.24 62.38
UT[NH=1] 43.02 31.20 1.54 60.10
UT[NH=8] 48.17 35.76 2.93 61.56
UT+ACT[NH=1] 34.98 25.66 0.46 51.32
UT+ACT[NH=8] 36.29 24.97 0.31 55.27

development Bi-LSTM+Att.[NH=1] 39.12 27.28 0.96 44.15
Bi-LSTM+Att.[NH=4] 40.47 27.64 0.93 48.10
Bi-LSTM+Att. [NH=8] 42.78 28.36 0.31 50.05
Bi-LSTM+Att.[NH=16] 42.88 30.36 0.93 52.09
Bi-LSTM+Att.[NH=32] 49.36 38.24 0.61 61.26
Bi-LSTM+Att.[NH=64] 47.28 33.12 0.93 56.86
Transformer[NH=1] 47.86 38.33 1.85 60.37
Transformer[NH=4] 54.18 41.09 0.62 66.02
Transformer[NH=8] 51.54 39.42 1.54 63.56
UT[NH=1] 43.01 32.12 1.58 60.42
UT[NH=8] 47.89 35.57 1.23 61.33
UT+ACT[NH=1] 35.74 26.46 0.31 52.71
UT+ACT[NH=8] 38.95 27.10 0.31 57.02

Table 6: Evaluation of effect of self-attention mechanism using DSTC2 dataset (Att: Attetnion mecha-
nism; UT: Universal Transformers; ACT: Adaptive Computation Time; NH: Number of attention heads)
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