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Abstract

With huge amounts of information connected to the global information network (Internet), e�cient

and e�ective discovery of resources from the \global information base" has become an imminent

research issue, especially with the advent of the Information Highway. This article proposes the use of

novel Arti�cial Intelligence and Database techniques (Assumption Grammars, Concept Hierarchies,

Multi-Layered Databases, Intelligent Agents) for intelligently searching information pertaining to a

speci�c industry on the web.
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1 Introduction

Global information systems, such as the Internet, are quickly turning into major information

resources. Anyone who wants to make information available can do so by simply placing a

�le in a designated location on their Internet-connected computer. They can then announce

that the �le exists, and other users can quickly and easily retrieve it for their own use.

New web sites spawn every day. It has been reported that the World-Wide Web (WWW)

contains more than 54 million documents1. There are already electronically-available academic

journals, stock market quotations and weather reports; the future may see virtual libraries,

universities and co-operatives, especially as electronic highways are opened to ordinary people

and business activities. It is foreseeable that in the near future, industry, as well as government

and academia, will also become more dependent upon such electronic resources.

However, one useful thing that this \electronic library" lacks is a good card catalogue

system. There are software tools, such as the World Wide Web Worm [MCBR94], Lycos2,

Excite3 and others, which can �nd articles containing user-supplied strings of characters; it

is usually possible to locate the e-mail address of any author. However, a user attempting to

do a subject search of the available documents will �nd it very di�cult. Most search engines

use spider-based indexing techniques like RBSE [EICH94] which systematically crawl the web

to access as many on-line documents as possible. These techniques, in general, because they

emphasize on speed, not only ood the network and servers but also lose the structure and

context of documents. AltaVista, which claims to have the fastest indexing scheme, spends

six weeks to go over all accessible documents on the WWW. Other indexing solutions, like

ALIWEB [KOST94] or Harvest [BOWM94], behave well on the network but still struggle with

the di�culty to isolate information with relevant context.

In physical libraries, skilled cataloguers handle the problem of trying to classify the subjects

of the books they receive from publishers, working from standard lists of subject headings.

On the Internet however, users supply documents themselves. The rapidity with which the

available information grows, changes and is made obsolete, makes professional cataloguing of

documents infeasible. The document providers are also notoriously lax at taking the time and

e�ort to supply subject classi�cations for their information, let alone complete and standard-

ized ones.

1HotBot search engine (http://www.hotbot.com) claims to have indexed more than 54 million documents.
2Lycos is available at http://www.lycos.com
3Excite is available at http://www.excite.com



It seems that what is needed is a computational agent which will at least approximately

classify documents according to their subjects, as a �rst step toward a subject index of the

library that is the Web. Such an agent, an \automated librarian", would read and assign

documents to appropiate categories.

Many search engines (programs and services designed to help users search for documents

of interest to them) have been implemented for the WWW. Netcreations4, which has a URL

announcement service, lists 4025 di�erent search engines and directories on the Web. We

know of none that does anything but textual pattern-matching on the titles and headers of

documents or the entire text of documents, except Excite which claims to use some concept

classi�cations.

The approach we propose in this paper uses novel Arti�cial Intelligence and Database

techniques to extract relevant topics from a text document and to categorize the document in

concise indices. We show in this paper how we can use this technique to index documents in

a global information network (internet/intranet), and how the same approach can be used to

extract the pertinent interest subjects from the user's query before searching for the relevant

documents.

The remainder of this paper is organized as follows: in section 2, we review some problems

that face internet users, and discuss how search engines index on-line documents; our approach

to solve the problem of poor indices is presented in section 3; in section 4, we describe our

implementation e�ort; �nally, section 5 summarizes our conclusions.

2 Today's Search Engines Will Kick the Bucket

How often have you been unsuccessful in �nding what you wanted in an on-line search because

the words you used failed to match words in the material that you needed? The frustration

is greater when an existing document, directly relevant to your quest, does not appear in the

list presented by the search engine as a response to your query. When presenting idiomatic

phrases, like \kick the bucket", search engines usually come-up with hilarious answers. The

causes are many. The important factors that make a search engine e�ective are the way

documents are analyzed and indexed, the techniques provided to the user to submit queries,

and the ranking method used to sort the list of documents in the response list.

4http://www.netcreations.com
5The list is accessible at http://www.netcreations.com/postmaster/thelist.html



The techniques used to index on-line documents are simple and crude. Because of the

dynamic nature and the size of the WWW, speed and e�ciency of these techniques are

primordial. Some search engines index documents based on the words in their titles or headers

(i.e. section titles). This method is fast, generates small indexes, but is inaccurate since it

may miss pertinent topics from the main body of the document. Other techniques simply take

all the words from a document and index the document based on all these words, creating an

inverted index. These techniques produce very big indices, from 10 to 40% of the document

original size, and are more accurate, but still generate a lot of noise6 in query answers. Some

variations of the \index all words" technique tend to reduce the number of words by eliminating

\empty" words like articles (i.e. the, a, etc.) or common verbs (i.e. is, do, have, etc.), or

aggregating words from the same canonical form (e.g.: clearing, cleared, clears, clear). This

reduces the size of the inverted index and thus accelerates the search. The aggregation of

words from the same canonical form reduces silence7. Some search engines attempt to reduce

the silence e�ect (without adding noise) by aggregating some common synonyms. Noise and

Silence are also known as recall8 and precision9.

The means provided to the user to submit queries is usually standard keyword based. Some

advanced interfaces allow conjunctions of keywords, combinations of disjunctions of keywords,

and even negations. The boolean combination of keywords is evaluated and matched with

the words in the inverted index, built in advance, to retrieve the identi�cation codes of the

documents containing these keywords. Some search engines, like Alta Vista10, allow entering

exact phrases instead of simple keywords. This generally makes the inverted index larger and

more complex.

Finally, the ranking methods applied to sort the document list presented to the user, are

used to order the documents by relevance to the query. The rank of a document is usually

based on the conformity of the keywords of the query and the document's keywords, as well

as the occurrence of the keywords in the document. Some ranking formulas may also include

in the ranking the relative position of keywords in the document.

Today's search engines use brute force to index on-line documents for the sake of simplicity.

6Noise is an irrelevant document which appears in the answer list.
7Silence happens when an existing document, relevant to the user's subject of interest, does not show up

in the response list given by the search engine.
8Recall= the percentage of relevant documents in the answer list among all possible relevant documents.
9Precision= the ratio of relevant documents to the total number of documents retrieved.
10Alta Vista is available at: http://www.altavista.com/



Changing the ranking formulas will not be su�cient to balance the reduction of noise and

silence. Some search engines added new features, like date of document, internet domain

of origin (location), and even format of the document, to narrow the search. These are

intermediate solutions that temporarily ease the user's frustration.

With most current popular search engines like AltaVista, all words are indexed. The in-

verted �le index can quickly identify the documents that contain a given word. This was

acceptable for a relatively small global information network or a local document database,

however, because of the dynamic nature of the WWW and its continuous fast growth, the

unique huge inverted �le index approach is not viable. Indeed, as pointed out in [GRAV94],

a major problem with this approach is the scalability of the index. The bigger the WWW

becomes, the less satisfactory the answers from today's search engines will become. Our pro-

posal focuses on qualitative search; while we do not ignore e�ciency issues, we feel it is more

important to focus on user e�ciency and to produce accurate search results. However, the

techniques we propose may actually lead to increased search e�ciency, since the use of do-

main restriction, concepts and relevance may decrease the size of the search space and index

structure.

An ideal document retrieval system should allow natural language (or pseudo natural lan-

guage) querying, and should index documents based on the concepts present in them. Docu-

ments containing idioms like \kick the bucket", \bite the dust" or \meet its maker", should

be indexed by the concept \death". The use of concept classi�cation could allow the appli-

cation of relationships like parent-child or sibling to link the concept \death" from a query

to concepts like \funeral", \obituary" or \suicide" present in documents. The use of concept

hierarchies could also allow the introduction of quali�ers like \like", \close-to", \related-to",

etc., in the query language to help the user re�ne the request.

The other obvious advantage of the concept-based indexing is the reduced size of the index.

Rather than indexing all words in this paper for example (there are 1300 di�erent words), we

could extract 10 to 20 major concepts and index the paper on them. The index is reduced

this way by two orders of magnitude.

Concept-based retrieval systems attempt to reach beyond the standard keyword approach

of simply counting the words from the request that occur in a document. The conceptual

indexing system we present in the next section attempts to extract pertinent subjects from

documents to categorize these documents by concepts, and uses knowledge of concepts and



their interrelationships to �nd correspondences between the concepts in the request and those

that occur in the documents.

By using the concept classi�cation, we could also divide the index in a hierarchy of indices,

each index specialized in a given domain. The information retrieval process would be split

into two steps: one to select the appropriate indices, and a second to use these selected indices

to �nd the documents. This approach is more scalable than the brute force indexing approach

used by most of today's search engines, which have a precision that tends to degrade with the

increase in size of the Internet. Each specialized index could be independently constructed

and updated, and could be queried or mirrored separately.

3 Methods and Approach

As a �rst step toward a concept index of the library that is the Web, a computational agent

which, at least, approximately classi�es documents according to their subjects, is needed. We

call such agents Subject Extractors. A Subject Extractor extracts relevant topics from a given

document.

It is unrealistic, in the �rst stage, to expect the development of such an agent for an

arbitrary range of applications. However, by focusing on a restricted domain, such as medicine

or forestry industrial problems, etc., we can provide domain-oriented search and concept-

extraction tools. Moreover, each specialized index could be constructed by another specialized

Subject Extractor.

As an example of how domain-speci�c search tools will help with queries, let us consider

what happens when we ask two of the existing popular search tools for \clear cuts near

water", a forestry related query: Lycos [MAUL94] responds with \Complete poetical works

from William Wordsworth", among a list of other equally wrong associations. Excite, which

succeeds with more speci�c queries such as \Clear cuts near river", also produces nonsense

replies to the query \clear cuts near water", such as \Plumbing frequently asked questions".

It is important to understand why this happens. The \Plumbing frequently asked questions",

for example, simply contains occurrences of \water", \near", \cuts" and \clear" and thus,

is indexed under these words in the inverted index. Another document about cleaning toys

might have contained the same words with high frequency and would have appeared in the

response list.
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Figure 1: Subject Extractor Expert indexing selected resources.
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Figure 2: Subject Extractor Expert extracts topics from the pseudo natural language query.

Our approach, in contrast, can use a taxonomy of forestry-related concepts which allows it

to specialize or generalize given concepts (e.g. going from \water" to \lakes" or vice versa),

and thus is able to use the contextual information provided by forestry domains in order to

avoid nonsensical answers. Therefore, a document like \Plumbing frequently asked questions"

would not be indexed with the words it contains, but with its semantic content.

Using Assumption Grammars and Concept Classi�cations, the Subject Extractor, as shown

in Figure 1, is used to educe relevant topics from given documents. The topics are then stored

with the document identi�cation in a subject catalogue for future matches with document

retrieval requests (Figure 3). The subject catalogue uses the same concept classi�cation to

order the index in a multi-layered database. Figure 2 shows how the same Subject Extractor

can be used to educe topics of interest from a user query written in natural language or

controlled English.

With the Subject Extractor and the Subject catalogue using the A.I. tools described in this

article, we propose a WWW agent for searching, indexing and organizing information relative

to a given industrial context (Figure 4). We call this second agent Network Crawler, which is
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Figure 3: Pseudo Natural Language Interface using the subject catalogue and concept classi�-

cation to retrieve documents.

a soft robot (also called wanderer or spider). The Network Crawler works in conjunction with

the Subject Extractor to index and organize documents. It starts from a given web page, gives

its content to the subject extractor for processing, then, like any web spider and following the

standard for robot exclusion11, recursively follows all the hyper-links in the document to load

other web pages. The search of documents can be restricted to a given directory, a given web

site, or a network domain.

In Figure 4, the Load Monitor is an agent which observes the usage of the Concept Clas-

si�cation and keeps a statistical record of the employment of paths in the concept hierarchy

in order to optimize the use of the concept classi�cation by eliminating paths that have been

used less often (i.e. by generalizing sibling concepts) or by reorganizing the overused paths in

more a e�cient way (i.e. by specializing concepts and adding new subsumed concepts). Figure

4 represents the complete concept-based retrieval system for a global information network.

The following subsections detail the concept classi�cation, the assumption grammars used,

and the multi-layered database.

3.1 Concept Classi�cations

For the concept classi�cation component in the computer generated phase, we use method-

ologies for the e�cient management of hierarchies. The fundamental basis for the concept

classi�cation in our system is a partial order of concepts: a pair (�,�), where � is a set

of concepts and � is a reexive, anti-symmetric and transitive relation, called subsumption,

11Non enforced set of rules that if followed would protect web servers from unwanted accesses by robots.
Accessible at http://info.webcrawler.com.mak/projects/robots/norobots.html
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Figure 5: An example of a Concept Classi�cation.

among those concepts[DAVE90]. In a graphical viewpoint this is equivalent to a directed

acyclic graph, where more general concepts appear above more specialized concepts.

An example of concept classi�cation is shown in Figure 5. Note that the graph is not

limited to a tree form - some nodes may have multiple parents. For example, the Data Mining

concept is subsumed by the concepts for Statistics, Machine Learning and Database Systems.

The primary operations on concept hierarchies include testing the subsumption relation,

and computing greatest lower bounds and least upper bounds. For example, in Figure 5, the

relation Data Mining � Science holds, but not Phonetics � Science.

The greatest lower bound, u, of a set of conceptsA is the most general concept (if one exists)

that is subsumed by all the concepts in A. For example, Computing Science u Linguistics

= Natural Language Processing. A greatest lower bound may not exist for a set of concepts,

or there may be more than one maximal lower bound. Our system for managing hierarchies

deals with all these situations. The least upper bound, t, of a set of concepts A is the dual

of a greatest lower bound. It is the most speci�c concept (if one exists) that subsumes all the

concepts in A. For example Data Mining t Physics = Science.

If greatest lower bounds and least upper bounds exists for all pairs of concepts, then a



partial order is called a lattice [DAVE90]. Although some systems require hierarchies to be

lattices, we feel that the more general structure of a partial order permits more intuitive and

less restrictive speci�cation of the concept classi�cation.

There are a number of important issues regarding the construction, representation and use

of such hierarchies. Obtaining relevant concept classi�cations is a non-trivial task. In the

current system, we hand-generate the concept classi�cation using domain speci�c knowledge

of the target application area. This construction occurs in consultation with domain experts,

and can be partially automated and directed by using some techniques from formal concept

analysis [GANT96, STUM97, WILL89]. Given a set of concepts, where the subsumption

relation has been partially speci�ed, these tools guide experts through the completion of the

hierarchical structure. This is done using e�cient algorithms that �ll out the hierarchy with

a minimum number of user queries.

As concept classi�cations grow in size, the need for e�cient representations or encodings

of hierarchies becomes important [FALL96a]. Hierarchical encoding techniques have been

developed for a variety of tasks, from knowledge representation [ELLI93], natural language

processing [MELL88] and logic programming [AITK89], to use in databases [AGRA89] and

operating systems [MATT89]. These methodologies encode a hierarchy already given (either

hand-generated or automatically generated), by associating with each element in the hierar-

chy a carefully constructed code which allows for e�cient subsequent consultation. This is

obtained by taxonomic encoding techniques which reduce expensive hierarchical operations to

inexpensive set operations [FALL95]. We have developed algorithms for the e�cient encoding

and management of concept classi�cations in dynamic environments [FALL96b, FALL96c].

3.2 Natural Language Interface

Assumption Grammars[DAHL96, TARA96a] can be used for representing natural language so

that it becomes executable (i.e., so that automatic inferences can be made from our description

which result in automatic translations between natural language and meaning representation).

Such a meaning representation is then used to consult our system and extract answers to

our queries. We have shown how to solve several crucial language processing problems (i.e.

coordination, anaphora, free word order) through assumption grammars [DAHL97]. A �rst

assumption grammar prototype for English has already been successfully produced for another

web application [ROCH97]. This prototype is easily adaptable to other domains by adjusting



the lexicon corresponding to nouns, verbs and adjectives. We maintain this approach in the

present work so that adapting the natural language processor to di�erent domains will not be

too complex a task.

Assumption Grammars are basically logic grammars, like De�nite Clause Grammars, except

that they are augmented with:

1. linear and intuitionistic implications scoped over the current continuation;

2. hidden multiple accumulators, useful in particular to make the input and output strings

invisible.

Hidden multiple accumulators are important for e�ciency and for other uses than the one

we exploit in this paper. Since for our purposes here, however, we can disregard them, here we

shall only describe our hypothetical reasoning tools. We refer to a companion paper [DAHL95]

for a description of multiple accumulators and for all details of design and implementation in

BinProlog [TARA95].

Intuitionistic implications temporarily assume clauses usable in later proofs. Such clauses

can be used an inde�nite number of times. Linear implications temporarily assume clauses

usable at most once in later proofs. Both of these assumptions vanish on backtracking. Linear

implications can be seen as implicitly existentially quanti�ed.

To give an intuitive idea of how assumptions can serve natural language processing, consider

a sentence that refers to an individual through an anaphora (pronoun, de�nite article) which

is not yet de�ned in the discourse. It is reasonable to delay resolving the referent and abduce

(make the hypothesis) that such an individual exists. Information from the current sentence

will be used to generate constraints on the referent of the anaphora. When the anaphora

is tentatively solved, abduced constraints are used to eliminate inconsistent interpretations.

Likewise, long-distance dependency problems (such as �nding an antecedent for a relative

clause), and other important natural language processing problems (such as free word order),

can be solved through hypothetical reasoning. The reader is referred to [DAHL97] for the

details.

More discussion on how Assumption Grammars are used in our natural language interface

can be found in [ZAIA97].



water

lake ocean river

logging

selective
cutting

thinningclearcutting

Figure 6: 2 sub-trees from a concept classi�cation.

Clearcutting

Lake

Ocean

River

Selective cutting

Thinning

D1, D2, D3, D11, D15

D2, D6, D8

D5, D14

D7, D9, D10, D11

D5, D9, D13, D14

D6, D7, D12

Logging

Water

Table 1: Layer 0

Table 2: Layer 1

D2, D5, D6, D7, D8, D9, D10, D11, D14

D1, D2, D3, D4, D5, D6, D7, D9, D11, D12, D13, D14, D15

Figure 7: Example of inverted index in a MLDB structure.

3.3 Multi-Layered Databases and Concept Hierarchies

We use a di�erent approach, called a Multiple Layered DataBase (MLDB) to represent our

indices. This approach uses our concept hierarchies to classify the inverted indices, which

in turn would facilitate information discovery in global information systems [ZAIA95]. A

multiple layered database (MLDB) is a database composed of several layers of information,

with the lowest layer (i.e., layer-0) corresponding to the primitive information stored in the

global information base, and the higher ones (i.e., layer-1 and above) storing generalized

information extracted from the lower layers. Every Layer i generalizes Layer i� 1. In other

words, concepts present in Layer i � 1 are subsumed by concepts present in Layer i. The

proposal is based on the previous studies on multiple layered databases [READ92, HAN94]

and data mining [PIAT91, HAN93, HAN95].

Building our indices in a multiple-layered database is simple. The inverted index constitutes

Layer 0. In our case, the entries in the inverted index are not words from the documents, but

are the subjects extracted. Each entry in the Layer 0 is a subject (i.e. concept) and the set of



documents related to it. The subsequent layers are built by going up in the concept hierarchy

for each concept, and uniting the sets of documents related to all subsumed concepts. In

other words, the entry in Layer i is associated with all its descendents in Layer i� 1. Notice

that there may be additional documents at the higher level. In the example using the concept

hierarchy shown in Figure 5, some documents can be indexed under \Linguistics" but not

under \Phonetics" or \Natural Language Processing". This can continue to Layer n (where

n is the depth of the concept hierarchy), or can be stopped at an arbitrary lower level of the

concept hierarchy. The set of documents related to a concept is a subset of the documents

related to a subsuming concept. Note that any sub-order of the concept hierarchy can be used

to create a specialized index.

Let's take an example: assuming we have 15 documents about logging practices and lo-

cations, and the two sub-trees from the concept hierarchy presented in Figure 6, table 1 in

Figure 7 can be the inverted index containing the concepts extracted and the identi�cation

of the documents from which they were extracted. The concept \thinning", for instance, is

in documents D6, D7, and D12. Table 1 in Figure 7 is considered Layer 0. \Water" sub-

sumes \lake", \ocean" and \river", therefore, when building Layer 1, the set of documents

associated with \water" is the union of all sets of documents containing concepts from Layer

0 subsumed by \water". Table 2 in Figure 7 shows Layer 1. Note that although D4 does not

appear in table 1, it is indexed under \logging". D4 contains the concept \logging" but none

of \clearcutting", \selective cutting" or \thinning" concepts. D8 is indexed under \water"

but not \logging". Apparently, the topic logging or logging practices were not present in the

document.

Inverted indices are used by search engines to immediately �nd documents that contain a

given keyword. The list of keywords is sorted and, by using a B-tree structure, the number

of I/O accesses is reduced signi�cantly. With the multi-layered database approach, this still

holds true. Each layer is an inverted index generalizing the previous layer, and specializing

the next one. The main advantage of the multi-layered database architecture is its progressive

search capability. A user can start by using high level concepts, then progressively narrow

the search by drilling down in the concept hierarchy. For example, using Layer 1 and 0 in

tables from Figure 7, and submitting the query \logging near water", we would get the answer

D2, D5, D6, D7, D9, D11, and D14, which is the intersection between the \logging" and the

\water" entries in Layer 1. By specializing the concept \water" to \river", the query becomes

\logging near river", and the answer D7, D9, D11, which is the intersection between the entry



\logging" in Layer 1 and \river" in Layer 0. Finally, by specializing \logging" to \clearcuts",

the query becomes \clearcuts near river", and the answer is reduced to D11. Note that the

same can be applied for generalizing concepts and enlarging the potential document set.

4 Implementation

We have used the described methods and approachs to implement a user interface with con-

trolled English for LogiMOO [DEBO96, TARA96c, TARA96b] with an interesting use of As-

sumption Grammars. LogiMOO is a BINProlog-based Virtual World running under Netscape

for distributed group-work over the Internet and user-crafted virtual places, virtual objects

and agents. We developed a Controlled English parser allowing people unfamiliar with Pro-

log to get along with the basic activities of the system. The current implementation of the

Concept Extractor does not take advantage of such a parser. However, we plan to adapt

LogiMOO's controlled English parser we wrote, to include it into the Concept Extractor.

We have completed a preliminary implementation of a Concept Extractor specializing in

computer science. The documents we used contain abstracts of technical reports published

by the School of Computing Science at Simon Fraser University.

We have also implemented a network crawler that can automatically and freely crawl all

accessible pages on the web starting from a given set of pages, or be restricted to an Internet

domain, a site, a directory structure, or just a list of URLs. All documents are fed to the

concept extractor as a list of documents. Note that a list of document URLs received from

a common search engine like AltaVista or OpenText can also be fed to our network crawler

and the concept extractor in order to automatically �lter out irrelevant documents.

The current implementation has focussed on the development of the Concept Extractor, for

determining relevance of concepts related to a document, and the Natural Language Interface,

which is used to match requested concepts to those found in the documents. The following

sections highlight each of these components of the prototype.

4.1 A Natural Language Interface

The interface, provided through a Netscape environment, allows the user to enter words related

to a topic(s) that they wish to retrieve documents on. From this input, a list is generated

containing concepts to which the input is related. It is these concepts that are used to match



concepts of documents. The translation of input words to concepts is accomplished through

the same mechanism documents are categorized into concepts. This will be discussed in 4.2.

As an example, we can image a set of keyword inputs such as: speech, parsing, translating

being translated into a concept list of: Natural Language Processing.

By being able to get a list of concepts from the users's input, we can advance the interface

to include mechanisms for generalizing and specializing the concepts we are interested in.

Through the use of concept hierarchies, as outlined in Section 3.1, we could possibly gener-

alize \Database Systems" to \Computing Science" or we could specialize it to \Transaction

Management".

This ability to use concepts to focus in (i.e. drill down) and out (i.e. roll up) of topics of

interest to the user is advantageous. One advantage is that we indirectly guide the user to

use concepts that are available through the system rather than having to worry about missing

concepts or words in the lookup database. Secondly, and maybe more importantly, we are

able to use advanced natural language processing techniques to convert user input to a usable

form for concept matching. An example here would be to use these advanced techniques to

convert idioms such as \kick the bucket" to the concept of \death".

4.2 A Concept Extractor

Basically, the Concept Extractor takes an input such as keywords from the user interface

or free text from the documents and extracts relevant words. These words are then used

to determine the original text's relevance to concepts stored in the concept database. This

database maps words in the input to associated concepts. Note that words may have multiple

meanings and hence may map to more than one concept. Domain restrictions may reduce

this set.

The input can be parsed to remove unnecessary words. For example, we may not need to

deal with common words such as \the", \a", and \and". Once common words are removed,

we are left with a set of distinguishing words that can be used to determine concept relevance

and form a list of concepts-relevance pairs about the input.

The �rst step in being able to accomplish this is to develop a concept \dictionary" or

database. This mapping can be extracted from the on-line lexical reference systemWordNet12

12http://www.cogsci.princeton.edu/~wn/



that relates words with their underlying lexical concepts [MILL95]. Each word may map

to more than one concept, and each concept may have more than one synonymous word

associated with it. These synonym sets are linked together through a variety of relations to

form a large semantic network. By restricting attention to the concepts in our classi�cation

hierarchy and words in our lexicon, we can retrieve the required information from WordNet

to create our concept database.

The entries in this database associate a concept with a list of words. It is these words that

can be matched with the words extracted from the parsed input. For example, we could have

the following entries in the dictionary:

� entry((\Natural Language Processing")-(parsing, generating, translating, speech)).

� entry((\Phonetics")-(speech, pronunciation, gaps))

Then we could take an input from either the user interface or a document and determine

what concept the input is related to. The following could be an example input: I need a

document about translating speech to text.

Now, let us assume that when this input is parsed, we have in our list of common words

the following: (i, a, \,", \.", need, some, about). The result of the parse will be the relevant

words from the input: (document, translating, speech, text)

We can then match these words to words in the database entries to determine concepts.

In this case, we can determine that the example input is related to \Natural Language Pro-

cessing" and \Phonetics". In the case that the relevant words from input match in two or

more concept entries, we can return a list of concepts that the input is related to. In the

case that the query has quali�ers, such as \like" for synonyms, \close-to" for siblings, and

\related-to" for ancestors, this list of concepts can be enriched with the concepts' siblings or

direct ancestors in the concept hierarchy.

We need to ask how relevant the input is to each of the possible concepts. Relevance of

input to concepts is a di�cult task to deal with. As an example, imagine a document detailing

the plumbing repairs in a house. We run into the di�culty of determining if the document is

more about plumbing, or home repairs.

As an attempt to deal with this di�cult task, we associate the use of word count with

amount of relevance. By doing this, we can use a function over word count and the words



associated with individual concepts to evaluate the relevance of an input to the concepts. Fur-

thermore, we can introduce a logarithmic function so as to address the concern of documents

or input containing numerous occurrences of particular words. This is a technique used by

web designers to fool common search engines into listing the designer's web page as a highly

relevant document by numerously adding a given word in a hidden META html tag.

Assumption Grammars can be used at this point to assist in creating a dynamic method for

revising the concept hierarchies. As we can see in the above plumbing example, plumbing has

a relation to home repairs. At this point, an assumption of the relation can be made. These

relation assumptions can then be consumed later in order to revise the concept hierarchies.

5 Conclusion

We have described how recently developed AI techniques can be put to use to produce a

prototype system for intelligently retrieving and classifying documents found in the Web. We

are currently developing such a prototype. This tool will prove useful for decision makers, as

already stated, but also to all people with an interest in getting information from the Web.

It is worthwhile mentioning that the use of the techniques here proposed will allow for

relatively straightforward adaptations of our prototype from one domain into another, by

replacing the concept hierarchy used for a given application domain by that required by an-

other application domain. In this sense we expect the �nalized system to be exible enough for

easy portability to di�erent speci�c areas of expertise, and construction of diverse specialized

indices.
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