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Supervisor

Dr. Vadim Bulitko

Dr. Lukasz Kurgan
External Examiner

Date:



To my parents



Abstract

Web recommender systems anticipate the information needs of on-line users

and provide them with recommendations to facilitate and personalize their

navigation. A variety of approaches have been attempted and proposed.

Among them, using Web access logs to generate users’ navigational profiles

for recommendation is a popular one, given its non-intrusiveness. However,

using only one information channel, namely the Web access history, is often in-

sufficient for accurate recommendation prediction. In this thesis, we advocate

the use of additional information channels, such as the content of visited pages

and the connectivity between Web resources, to better generate the user profile

and to build a hybrid recommender system. We test and evaluate our frame-

work with the University of Alberta Computing Science Department Web site

data. Our experiments show that this system can significantly improve the

quality of Web site recommendation by combining these distinct information

channels. In addition, we expand our approach to the context where pages are

not content-rich, or content data are absent. We also test our system in an

idiosyncratic data set provided by a commercial system – VIVIDESK.
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Chapter 1

Introduction

1.1 Motivation and Research Description

We are living in the “Information Age”, in which human beings produce and

publish far more data than at any other period in history. With the belief

that information leads to power and success, and with the assistance of so-

phisticated technologies, such as computers, we are also able to collect and

access the enormous amounts of information available. Although this solves

the problem of lack of necessary information suffered by our ancestors, we are

now dealing with the problem of information overload. There are too many

messages, too many journal articles, too many movies, too much content. In

a word, we now have far more information than we can handle.

The World-Wide Web (WWW or the Web) serves as an illustration of this

problem. The Web was originally created to make the storage, publishing, and

delivery of information easier. Ironically, people are finding it increasingly

frustrating to attempt to locate and access on-line resources. In [107], the

author provides a good summary of the underlying reasons:

• The Web is extremely large. A study [88] shows that there are more

than 10 billion unique, publicly accessible pages on the Web. Moreover,

approximately 6 terabytes of new content is added to the Web every

month;

• Web data changes rapidly. While the Web grows quickly in size, the

information it contains is also updated constantly. According to [33],
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the average lifetime of a Web document is 75 days, and approximately

600GB of Web data changes every month;

• The Web is poorly organized. Although small sections of the Web may

be well structured and maintained, the Web as a whole is highly unstruc-

tured. Web resources are published and distributed in an uncontrolled

manner, and there is no standard mechanism to guarantee the locating

of existing Web resources;

• The Web user community is very diverse. On-line users in different

communities may have different backgrounds, interests, and preferences.

In addition, a particular user community may be interested in only a

very small portion of the Web.

As a result of the above, on-line users have increasing difficulty in locating the

right on-line information at the right time [61]. Most Web users have had the

experience of taking an hour or more to find a Web document that they can go

through in five minutes. The amount of on-line information vastly outstrips

any individual’s capability to survey it; and how to find desired information

efficiently and effectively has become a increasingly important and emergent

issue for the cyber community.

Many attempts have been made to provide tools to assist people in ac-

cessing on-line information. The search engine, Google1 as an example, has

become an inherent component of the Web, helping users to pinpoint rele-

vant resources. The Adaptive Website technique [74] attempts to adjust and

improve the organization and presentation of Web sites, on-the-fly, according

to visitors’ preferences. A number of visualization tools [19] [16] have also

been developed to facilitate users’ on-line experience. The Web recommender

system is another approach, which we address in this thesis.

Generally speaking, a Web recommender system attempts to predict user

preferences from user data, and/or user access data, for the purpose of fa-

cilitating and personalizing users’ experience on-line by providing them with

1http://www.google.com
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recommendation lists of suggested items. The recommended items could be

products, such as books, movies, and music CDs, or on-line resources, such as

Web pages or on-line activities. Correct recommendation can save users con-

siderable time and effort in locating their information needs, by freeing them

from needless searching, and helping them find their interesting information

quickly. Thus, the Web recommender system is expected to become as popular

and common as search engines in assisting browsing on the Web.

However, building a “correct” recommender system is a challenging task,

due not only to the huge and constantly changing Web, but also to the ex-

tremely diverse user community, as mentioned above. Although Web rec-

ommender systems have been extensively explored in the Web Mining and

Machine Learning fields [27] [78] [43] [31] [92] [25], and some commercial-

ized systems have been produced, such as the ones used in Amazon.com2 and

Expedia.com3, the quality of the recommendations and the user satisfaction

with such systems are still not optimal [30]. In this thesis, we make an effort

to design a novel Web recommender framework to improve Web site recom-

mendation. Being aware that on-line users prefer to surf Web sites without

intrusiveness and interruption, we try to exempt any explicit user input (e.g.,

previous customers’ rating/ranking of products) from our framework design.

Rather, our system relies mainly on the Web access log to derive user navi-

gational models for recommendation. Most web servers have access logs, to

record the user’s browsing and activity history, which contain much hidden

information regarding users and their navigation. These access logs could pro-

vide a good alternative to explicit user ratings or feedback in deriving user

navigational models. However, the information recorded in the access log is

incomplete and may be even incorrect, which means a Web recommender sys-

tem depending solely on that information has several problems. On the other

hand, we recognize that there may be additional information channels avail-

able on the Web – such as textual content and connectivity information of

Web pages – which also do not require user input. Therefore, we advocate the

2http://www.amazon.com
3http://www.expedia.com
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use of these additional available information channels to better model user be-

havior for accurate recommendation. In this thesis, we investigate building a

framework for a hybrid Web recommender system, which attempts to combine

and make full use of all the information available to complement the deficiency

of access data, and to improve recommendation quality.

Discovering ways to combine these distinct information channels, in turn, is

worth further exploration. First, utilizing more information does not guarantee

a more desirable result. Second, using more than one information channel may

require additional computational cost. Determining how to use and combine

information in an efficient way, so that hybridizing does not jeopardize the

efficiency of the system, is therefore another issue to be considered.

1.2 Proposed Thesis

In this thesis, we investigate building a framework for a hybrid Web recom-

mender system, which attempts to combine and make full use of three distinct

information channels – the Web access log, the content of Web pages, and

Web connectivity information – to achieve high-quality recommendation. In

this framework, the content of web pages is used to help identify concurrent

information needs of users from the access log. Users may have different goals

during a visit, and they also may pursue these goals concurrently. However,

this fact has so far been ignored by the Web recommender system research

community. We combine content and usage information to identify and or-

ganize these concurrent information needs into what we call “missions”. The

identified missions are used to generate user navigational profiles. After that,

linkage information is used to improve these user profiles. The connectivity

is also applied to rank recommendation candidates for suitable presentation.

Our experiments have proved that our approach for hybridizing significantly

improves the quality of Web site recommendation. The recommendation qual-

ity is measured by how many given recommendations are correct, as well as

how many clicks the recommendation allows users to skip. Our experiments

also show that each additional channel used contributes to the improvement.
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All combinations of the different information channels in our system are done

off-line to maintain and improve system efficiency.

1.3 Contributions of the Thesis

The major contributions of this thesis are summarized as follows:

• We design a framework for a hybrid Web recommender system, which

combines and makes full use of different available channels to improve

recommendation quality;

• To the best of our knowledge, this is the first time that three distinct

information channels – usage, content, and structure data – are used and

combined to build a Web recommender system. In particular, we make

extensive use of the structure data to improve the performance of the

recommender system;

• The combination of the different information channels is done off-line to

improve system efficiency. As far as we know, this is the first hybrid

Web recommender system which does all combination work off-line;

• We propose a novel notion, mission, to capture users’ concurrent infor-

mation needs during on-line navigation. A user may pursue more than

one information need during a visit; a mission is a sub-session of the visit

for a given unique information need;

• Based on the notion of mission, a new on-line navigational model – a

mission-based model – is proposed. The mission-based model has been

proved superior to the previous transaction-based models in capturing

users’ on-line behavior for the purpose of fulfilling information needs.

• We propose a new recommendation evaluation approach, which uses the

combination of two metrics – recommendation accuracy and shortcut

gain – to evaluate the recommendation quality of a recommender system.

The former measures the predictability of a Web recommender system,

5



while the latter measures to what extent accurate recommendations help

a user to skip, that is, reach their goals faster.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces related work, includ-

ing Web Mining, Web recommender systems, and tools to build recommender

systems. In Chapter 3, we describe the design of a hybrid recommendation

framework. We first present the overall architecture of our system, then two

major modules in the framework: an off-line module and an on-line module

are discussed, step by step. Chapter 4 evaluates the quality of our system

and compares it with other systems, as well as validating the contribution of

the different information channels for recommendation improvement. First,

different possible evaluation methodologies and metrics are reviewed. Based

on this discussion, we identify and propose suitable evaluation methodology

and metrics to test and evaluate our system. We then illustrate and discuss

our experimental results. In Chapter 5, we discuss the expansion, application,

and evaluation of our framework on the VIVIDESK data. Finally, Chapter 6

concludes the thesis and discusses future work.

6



Chapter 2

Related Work

In this thesis, we investigate the building of a framework of a hybrid Web

recommender system for website navigation. In essence, it is an improved

Web usage recommender system, in that it mainly relies on Web server ac-

cess log data to build users’ models. However, it also complements this Web

Usage data with other information channels available – such as content and

structure data – to improve its recommendation quality. In this section, we

review the related work to this thesis, including Web mining techniques, Web

recommender systems, and Web usage based recommender systems tools.

2.1 Web Mining

In this section, we go through the basic concepts of Web mining, normally

categorized into Web content mining, Web structure mining, and Web usage

mining, with an emphasis on their applications to Web Recommender systems.

2.1.1 Knowledge Discovery in Databases and Data Min-
ing

Knowledge Discovery in Databases (KDD) is defined as the process of

automatic extraction of implicit, previously unknown, and potentially useful

information from data in large databases [76]. For effective and efficient discov-

ery of knowledge for large datasets, many steps are involved – including data

selection and preprocessing, data transformation and reduction, data mining

and pattern discovery and, lastly, post-processing and interpretation. Figure

7



 

Figure 2.1: Data mining is the core of the knowledge discovery process [76]

2.1 illustrates the core steps of this process [23] [76]. Here, we give a brief

introduction of each step in Figure 2.1, in turn.

• Data Selection: This is the first phase of any KDD process, in which

data relevant to the analysis are decided on and selected from the raw

data collection. This step may also include data integration in which

multiple data sources, often heterogeneous, are combined in a common

source;

• Data Preprocessing: In this phase, noise data are removed from the

selected dataset. More importantly, the selected data are reconfigured

and complemented to make the application of mining techniques and

algorithms on them possible and effective;

• Data Transformation: In this step, the data are not merely transferred

across but transformed, in which data are transformed into forms appro-

priate to the mining procedure and algorithm. This phase is treated as

a sub-phase of Data Preprocessing in some KDD systems;

• Data Mining: This is the crucial step in which data mining techniques,

8



such as the association rule technique and clustering analysis, are ap-

plied in order to extract patterns previously unknown but potentially

useful. Therefore, this phase is also referred to as the Pattern Discov-

ery phase;

• Interpretation and Evaluation: This is the final phase of the KDD

process, in which the discovered patterns are interpreted into knowledge

and represented to the user.

From this overview, we can see that Data Mining is only one part of the knowl-

edge discovery process. Because it is crucial in the whole process, however,

Data Mining and Knowledge Discovery in Databases are frequently

treated as synonyms.

2.1.2 Web Mining

Web Mining, or Data Mining on the Web, is the application of Data Mining

techniques to the World-Wide Web. Traditionally, Data Mining has been ap-

plied to databases. However, the wide dissemination of the WWW technology,

and the large number of document collections on the Web, have encouraged

researchers to apply Data Mining to the Web. Zäıane, in his Ph.D. thesis

[102], defines Web Mining as the extraction of interesting and potentially use-

ful patterns and implicit information from artifacts or activity related to the

World-Wide Web.

In [102], Zäıane also classifies Web Mining into three domains: Web Con-

tent Mining, Web Structure Mining, and Web Usage Mining. Conceptually,

the Web mainly comprises three major components: the content of the Web,

which encompasses the documents available; the structure of the Web, which

covers the hyperlinks and relationships between Web pages/documents; and

the usage of the Web, describing how and when the resources are accessed.

Consequently, Web Content Mining is the process of extracting knowledge

from the content of on-line documents or their descriptions; Web Structure

Mining is the process of inferring knowledge from Web organization and the

links between references and referents on the web; and Web Usage Mining,

9
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Figure 2.2: Taxonomy of Web Mining techniques [102]

also known as Web Log Mining, is the process of extracting interesting pat-

terns from Web access logs, which collect and record users’ on-line behavior.

Figure 2.2 illustrates the taxonomy of Web Mining techniques [102].

2.1.3 Web Content Mining

The World-Wide Web and the Internet have become the biggest data repos-

itory ever built. An enormous number of authors and publishers are contin-

uously contributing to its growth by adding all types of documents, such as

text, audio, video, raw data, and so on. With the tremendous number of

documents accumulated and available on-line, it has become more and more

difficult for people to locate interesting and useful content from the Web. Web

Content Mining, which aims at extracting relevant knowledge from documents

– thereby alleviating the need to go through the retrieved documents manually

in the search for pertinent knowledge – has therefore been extensively explored.

Among the many kinds of on-line documents, text documents were the earli-

est and are still the dominant format. In fact, one study [94] indicated that

80% of a company’s data is contained in text documents. Thus, Web Content

Mining has so far primarily focused on and been extensively applied to text

documents, and is referred to as Web Text Mining. Generally speaking, a

framework for Text Mining consists of two components [94]: text refining, that

transforms free-form text documents into an intermediate form; and knowl-

edge distillation, which deduces patterns or knowledge from the intermediate

form. The purpose of text refining is to abstract and represent text documents

10



in a concise form to facilitate knowledge distillation effectively, and the most

commonly used text refining technique is keywording. Keywording scrutinizes

text document content to investigate syntactical correlation and semantic as-

sociation between words/terms. Relevant key words/phrases are extracted to

represent the document in a feature vector (d1, d2, ..., dn), where di is the i-th

feature and n is the total number of features. Typically, each feature in the

vector corresponds to a keyword, and each entry of the vector stores a nu-

meric weight for the corresponding feature of the document. The criteria of

keywording is that the original document can be represented equally well [57].

If the selected features cannot accurately represent the original documents, any

Text Mining task would be destined to fail. Thus, feature extraction becomes

the major concern for Web Text Mining. [81] introduces a commonly used

feature extraction method, in which the weight of each feature is the num-

ber of occurrences of particular keywords in the documents (term frequency).

Another popular method, TF-IDF, combines term frequency with the inverse

document frequency. For a keyword Tj, its document frequency dfj is defined

as the number of documents in a collection of N documents in which it occurs.

Suppose the term frequency of Tj in document Di(i = 1, ..., n) is tfij, then the

weight of feature Tj in the document Di is given by Wij = tfij × log N/dfj.

One study [98] reveals, however, that the above commonly used methods are

not suitable to Web documents. Some feature extraction approaches for Web

documents, therefore, have been proposed [98] [57] [56], each of which may still

be designed and suitable for specific contexts [98]. Knowledge distillation, on

the other hand, is generally defined to deduce patterns and relationship across

documents. Document categorization, which organizes a document collection

in groups, is a typical example of knowledge distillation. Document catego-

rization can be further divided into two forms: classification and clustering :

Classification organizes a collection of documents by predefined themes. Given

a set of positive and negative training examples, a classifier is trained and can

then class documents into one or more classes [42] [45]. On the other hand,

clustering searches for predominant themes in a collection of documents and

performs the categorization of all documents in the found themes [102] [44]

11



[105].

Web Content Mining techniques on Web pages are useful for a recommender

system, in that users often visit a Web site to fulfill some information needs,

while Web resources related to a given goal are generally content coherent.

However, there is no guarantee that pages with similar content are related to

a goal.

Nowadays, increasing amounts of multimedia data are published on-line.

Web Multimedia Mining is utilized to mine the high-level information and

knowledge from these online multimedia sources, and has recently gained the

attention of many researchers [102] [40]. However, this research area is still

in its infancy and considerably more work needs to be done on it. We do not

consider multimedia data in this thesis.

Search Result Mining

The above discussion is concerned with the direct mining of the content of on-

line documents/Web pages. There is another group of Web Content Mining

strategies: search result mining [102].

Search Result Mining refers to mining the content of search results

returned by other tools, most commonly, search engines. Usually, a search

engine relies on keyword matching and returns a large number of documents.

Search Result Mining aims at mining subsets of the returned data to refine the

search results. The system presented in [54] accesses the documents retrieved

by search engines, and collects information from within the document or from

the data usually provided by servers, such as the URL, title, content type,

content length, modification date, and links. The information is used to refine

search results by retrieving pertinent documents from within the search result.

[105] presents a technique for clustering documents retrieved by a set of search

engines, categorizing the retrieved documents into clusters. The clusters can

present overlapping, representing a higher-level view on top of the list of re-

trieved documents and facilitating the sifting through of the often very large

search engine result list. Thus, Search Result Mining can be thought of as, to

some extent, one of the precursors of Web recommendation.

12



2.1.4 Web Structure Mining

Thanks to the interconnections between on-line documents, the World-Wide

Web can reveal more information than just that contained in documents. For

example, links pointing to a document (in-degree links) indicate the popularity

of the document, while links coming out of a document (out-degree links)

indicate the richness or perhaps the variety of topics covered in the document.

This can be compared to bibliographical citations: when a paper is cited often,

it is considered to be important.

Web Structure Mining is the research field focused on analyzing the

link structure of the Web. The goal of Web Structure Mining is to generate a

structural summary of the Web page, the Web site, or even the whole Web. If

Web Content Mining is viewed as focusing on the structure and relationship

of the inner document, Web Structure Mining attempts to discover the link

structure of the hyperlinks at the inter-document level.

The Web is a Graph

Apart from the content of documents, the Web provides additional informa-

tion through the manner in which different documents are connected to each

other via hyperlinks. The web may be viewed as a (directed) graph whose

nodes are the documents and whose edges are the hyperlinks between. In [10],

Broder et al. crawled and stored 203 million URLs and 1,466 million links.

The primary result they achieved is an analysis of the structure of the web

graph which, according to them, looks like a giant bow tie, with a strongly

connected core component (SCC) of 56 million pages in the middle, and two

components with 44 million pages each on the sides – one containing pages

from which the SCC can be reached (the IN set), and the other containing

pages that can be reached from the SCC (the OUT set). In addition, there are

“tubes” that allow the OUT set to be reached from the IN set without passing

through the SCC; and many “tendrils”, that lead out of the IN set or into the

OUT set with connecting to other components. Finally, there are also several

smaller components that cannot be reached from any point in this structure.
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Figure 2.3: The Web is a Graph [10]

A diagram illustrating this structure is depicted in Figure 2.3 [10].

The Importance of Hyperlinks between Pages

Pages in the Web graph are inter-linked via so-called hyperlinks. A hyperlink is

used to link one page (predecessor page) to another (target page or successor

page), which may contain information helpful in knowledge discovery, and

which content alone cannot provide. We try to motivate the information in

the following:

• Synonymous, Irrelevant or Misleading Text: Words and phrases

sometimes have more than one meaning; multiple topics may be covered

in the same page; a document may also contain irrelevant text. All

of these may lead a content-based mining system to fail. However, a

hyperlink p− > q may reflect the fact that pages p and q share a common

topic, and that the author of page p thinks highly of q ’s content. Thus,

such linkage could be very helpful for certain mining tasks;

• Sparse or Non-existing Text: Many Web pages contain only a lim-

ited amount of text. In fact, many pages contain only images and no

machine-readable text at all. Looking at connectivity information would

complement the deficiency of content for knowledge discovery;

14



• Independent Encoding: A link to a page (p) may originate from out-

side the control of the author of p (as opposed to the content of page p

is under complete control of p’s author). Therefore, the information pro-

vided by linkage is less sensitive to the vocabulary used by one particular

author;

• Redundancy: Often there is more than one page pointing to a single

page on the Web. The ability to combine multiple, independent sources

of information can improve accuracy for certain mining tasks.

Making Use of the Linkage Information

The importance of information contained in hyperlinks has long been recog-

nized. Anchor texts – that is, texts on hyperlinks in an HTML document of

predecessor pages – were indexed by the World-Wide Web Worm [53], one of

the first search engines and web crawlers. Spertus [90] suggested a taxonomy of

different types of hyperlinks that can be found on the Web, and discussed how

the links could be exploited for various information retrieval tasks. However,

the main break-through was not made until the realization that the popularity,

and hence the importance of a Web page is, to some extent, correlated to the

number of in-degree and/or out-degree links, and that this information can be

advantageously used for sorting and filtering the query results of a (keyword

based) search engine. The in-degree of a page was first adopted to measure

the importance of a page. However, in-degree alone is a poor measure because

many pages are frequently pointed to without being connected to the content

of the referring page (e.g., most pages in a Web site have a link that points to

the home page). Therefore, more sophisticated measures are needed.

PageRank proposed by Brin and Page [9] is the one of the most successful

of such measures. Specifically, PageRank is a numeric value that represents

how important or authoritative a page is on the Web. When computing the

PageRank of a page, not only the number of pages pointing to it (in-degrees),

but also the importance of pages linking to it, are taken into account. In

Brin and Page’s view, when one page links to another page, it is effectively
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casting a vote for the other page: the more votes that are cast for a page,

the more important the page must be. Moreover, votes cast by pages that

are themselves “important” weigh more heavily and help to make other pages

“important.”

To calculate the PageRank for a page, Brin and Page use a random surfer

model. They consider PageRank as a model of user behavior, where a surfer

clicks on links at random with no regard for content. As a result, PageRank

of any page A can be computed as follows;

PR(A) = (1− d)1/n + d

n∑
1

(PR(Ti)/C(Ti)) (2.1)

where

PR(A) is the PageRank of page A;

PR(Ti) is the PageRank of pages Ti which link to page A;

C(Ti) is the number of out-degree links on page Ti and;

d is a damping factor which can be set between 0 and 1.

From Formula 2.1, we can see that the PageRank of a page is computed

iteratively. The first term of this formula models the behavior where a surfer

gets bored (with probability (1−d)) and jumps to a randomly selected page of

the entire set of n pages. The second term uniformly distributes the PageRank

of the current page to all its successor pages. Thus, a page receives a high

PageRank if it is linked to by many pages, which in turn have a high PageRank

and/or only few successor pages.

PageRank is the basis of the most successful search engine – Google. In

Google, PageRank – a pure Web linkage/structure analysis algorithm – is com-

bined with the textual content information of Web pages to provide search

results. In general, when a user submits a query, Google searches all pages

containing the keyword(s) in the query. The resulting pages are ranked ac-

cording to their PageRank scores, which have been pre-computed. The higher

its PageRank value, the earlier a page is presented to the user. Traditionally,

a search engine can be viewed as an application of Information Retrieval with

the focus on “matching”: a search engine is supposed to return all those pages

that match users’ query, ranked by degree of match. On the other hand, the
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semantics of a recommender system refers to “interesting and useful”. How-

ever, Google blurs this distinction by incorporating PageRank into its ranking,

which uses Web structure information to measure the authoritativeness or im-

portance of Web pages. From this point, Google can be viewed as a form of

hybrid recommender system, combining content and structure analysis with a

one-input interface. (In contrast, regular recommender systems have a zero-

input interface). The success of the Google system encourages us to embed

Web structure analysis into our recommender system which, to the best of our

knowledge, has not yet been done.

In the PageRank algorithm, all pages and all hyperlinks are treated equally.

The contribution of any link to the page that it links to is the same, without

consideration of the differences among links. However, the pages and links on

the Web bear the following characteristics [26]:

• Some pages are informative, but some are used only for navigation. Judg-

ing whether a page is “important” or “authoritative” is only meaningful

for those informative pages;

• “Authoritative” pages may not inter-link with each other as expected,

but may still be pointed to by other pages. For instance, it is impossible

for Honda and Ford, two fierce competitors, to link their homepages to

each other, even though they are preferred by a car buyer. However,

such “authoritative” pages for cars may be pointed to by other pages,

e.g., a car lover’s personal page.

Thus, equalizing the contribution of any page to the identification of author-

itative pages is sometimes problematic. As a response, J. Kleinberg proposes

two types of web pages in his study to identify authoritative pages for gen-

eral search topics [36]: Authorities are pages that contain useful information

about the query topic (which is similar to the pages with high PageRank

scores), while Hubs are pages that link to many related Authorities. Based on

observation of the mutually reinforcing relationship between Authorities and

Hubs – that is, a good Hub is a page that points to many good Authorities; a

good Authority is a page that is pointed to by many good Hubs – J. Kleinberg
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develops an algorithm called the Hypertext-Induced Topic Selection (HITS )

algorithm to identify both types of pages iteratively and simultaneously, as

follows:

Hi+1(x) =
∑

(x,s)

Ai(s) (2.2)

Ai+1(x) =
∑

(p,x)

Hi(p) (2.3)

where

H(x) represents the Hub score of the page x;

A(x) represents the Authority score of the page x;

(x, y) denotes that there is a hyperlink from page x to page y.

In [36], the HITS algorithm is conducted on a so-called focused subgraph of

the Web. A Focused Subgraph is defined as a collection of pages (Sσ) with the

following properties:

1. Sσ is rich in relevant pages for a topic;

2. Sσ is relatively small;

3. Sσ contains most (or many) of the strongest authoritative pages of the

topic.

The purpose of restricting the computation in a focused subgraph is to achieve

a balance between computational effort and computational efficiency. (1) and

(3) ensure the finding of good authoritative pages, as these are likely to be

heavily referenced within Sσ, while (2) makes it easier to afford the compu-

tational cost of applying non-trivial algorithms. In the HITS algorithm, the

construction of a focused subgraph is divided into two steps, with the assump-

tion that a topic is specified by a query string σ. For the query σ, the algorithm

first collects t highest-ranked pages for it from a keyword-based search engine.

These t pages are referred to as the root set Rσ. The root set satisfies (1) and

(2) in the list above, but is generally far from satisfying (3) [36]. The root set

is then augmented to include any page pointed to by a page in it, and any

page that points to a page in it. The resulting set, which is referred to as the
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Figure 2.4: The Construction of the Focused Subgraph [36]

base set for σ, is used as the focused subgraph for σ. Figure 2.4 illustrates the

construction of the focused subgraph.

When running the HITS algorithm, the Hub and Authority scores are ini-

tialized uniformly with A0(x) = H0(x) = 1.0, and normalized so that they

sum up to one before each iteration. J. Kleinberg has proven that the algo-

rithm will always converge [36], and practical experience shows that it will

typically do so within a few iterations [14]. HITS has been widely used for

identifying relevant documents for topics in Web catalogues [14] [5] and for

implementing a “Related Pages” functionality [22], but has never been used

in Web recommender systems. Our system, however, will utilize the idea of

Authority and Hub to compute the importance of pages for the purpose of

ranking recommendation candidates.

One of the main drawbacks of the HITS algorithm is that the Hubs and

Authorities must be computed iteratively from the query result, which does not

meet the real-time constraints of an on-line search engine. However, when we

consider whether to use Hub/Authority or PageRank in our system, we prefer

the former because it captures the Web property more accurately, as discussed

above. However, because our system will perform the structure analysis in the

off-line phase, there is no such real-time constraint.

Another major difficulty with the HITS algorithm is the topic drift prob-
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lem. A study conducted by K. Bharat and M. R. Henzinger [5] reveals that

a base set used in the original HITS algorithm often includes documents not

relevant to the query topic. As a result, if these pages are well connected, the

topic drift problem arises: the most highly ranked Authorities and Hubs tend

not to be about the original topic [5]. One of the examples given by the au-

thors is when running the HITS algorithm on the query “jaguar and car”, the

computation drifted to the general topic “car” and returned the home pages of

different car manufacturers as top Authorities, and lists of car manufacturers

as the best Hubs. K. Bharat and M. R. Henzinger then propose an improved

HITS algorithm [5], which combines content analysis with connectivity analy-

sis to tackle this topic drift problem. The content analysis is used to identify

and eliminate non-relevant pages from the base set. More specifically, a rele-

vance weight with the query topic is computed for each page in the base set,

and all pages whose relevance weight is below a threshold are pruned. As the

query topic is usually broad and general, matching the query against a doc-

ument is not sufficient to measure the similarity between the document and

the query topic. Instead, the authors use all the documents in the root set to

re-define the query topic, and then match every document in the base set with

it. Specifically, they consider the concatenation of the first 1000 words from

each document to be the representation of the query topic. After that, the

similarity of the query topic (Q) and any document (D), Similarity(Q,D) is

computed as follows:

Similarity(Q,D) =

∑t
i=1(ωiq × ωid)√∑t

i=1(ωiq)2 ×∑t
i=1(ωid)2

where

ωiq = freqiq × IDFi

ωid = freqid × IDFi

freqiq = the frequency of the term i in query Q

freqid = the frequency of the term i in document D

IDFi = an estimate of the inverse document frequency of term i on the Web

Once the similarity between documents in the base set and the query topic is
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established, there are many approaches to deciding if any a document should

be eliminated from the set. [5] investigates three approaches based on thresh-

olding the relevance weight: all documents whose weights are below a threshold

are pruned as follows:

1. Median Weight : The threshold is the median of all the relevance weights.

2. Start Set Median Weight : The threshold is the median of the relevance

weights of the documents in the root set.

3. Fraction of Maximum Weight : The threshold is a fixed fraction of the

maximum weight.

Corresponding to the three relevance weight measurements, the authors pro-

pose three versions of their improved HITS algorithm: med, startmed, and

maxby. Their experiment shows the potential of augmenting the previous

pure connectivity analysis-based algorithm with content analysis to make a

significant improvement; however, the differences among the three different

version are not great.

The ARC algorithm of S. Chakrabarti et al. [14] also extends Kleinberg’s

algorithm with textual analysis. Noting that the text describing the query

topic is ignored in the iterative process of the HITS algorithm, they remedy this

by altering those sums in Formula (2.2) and (2.3) to be weighted with textual

content, so as to maintain focus on the original topic. While in [5], the whole

document is used to compute the relevance, in [14], a window surrounding the

hyperlink is used to capture the topic of a page. This is based on the authors’

fundamental notion: the text around hyperlinks to a page p is descriptive of

the content of p. Here, these hyperlinks are not in p, but in pages pointing

to p. In particular, if text descriptive of a topic occurs in the text around a

hyperlink into p from a good Hub, it reinforces the belief that p is an Authority

on the topic. To incorporate this textual conferral of authoritativeness into

the basic iterative process of the HITS algorithm, for any page x and y, a

weight(x, y) is assigned, if there is a link from page x to page y. As a result,
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the Hub and Authority is computed as follows;

Hi+1(x) =
∑

(x,s)

W (x, s)Ai(s) (2.4)

Ai+1(x) =
∑

(p,x)

W (x, p)Hi(p) (2.5)

where W (x, y) denotes the the weight between page x and page y, and mea-

sures the authoritativeness on the topic invested by page x in y. According to

the notion discussed above, if the text in the “vicinity” of the hyperlink from x

to y contains text descriptive of the topic at hand, W (x, y) should be increased.

There are two questions, however, when applying this notion in practice: (1)

what precisely is “vicinity”? and (2) how are the occurrences of descriptive

text mapped into a real-value weight? The technique presented in [14] looks

on either side of the hyperlink for a window of B bytes, which is called the

anchor window. That is, B bytes of text between the < a href=”...” > and

< /a > tags of a hyperlink are included. Suppose there is a hyperlink in page q

pointing to page p, and let n(t) denote the number of matches between terms

in the topic description and the anchor window of this hyperlink. Then,

W (q, p) = 1 + n(t)

The authors of [14] also conduct a study to determine B, the parameter gov-

erning the width of the anchor window; and the study suggests that most

matching occurrences are within 50 bytes of the hyperlinks. Therefore, the

parameter B is set to be 50.

In this thesis, the method presented in [5] is adopted to eliminate the

possible topic drift problem during the structure analysis in our system The

idea of the anchor window in [14] is used to capture the current focused topis

of interest to the on-line user.

2.1.5 Web Usage Mining

If users’ navigational behavior, such as how and when a user visits a web

page, has been tracked and recorded, this usage data would provide us with
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an additional information source. In fact, because usage data itself records

some users’ true behavior, it has the potential to reveal hidden patterns which

neither content information nor linkage information are able to, and various

research has shown this potential [52] [91] [38] [104]. Usage data were first

used for straightforward statistics, such as page access frequency1. However,

the ability of this approach is obviously very limited. Usage data can actu-

ally include more sophisticated forms of analysis, such as finding the common

traversal paths through a Web site. In order to do this, some data mining

algorithms and techniques are commonly used: among them, the most popu-

lar are association rule and clustering techniques. Such analysis of Web usage

data is often referred to as Web Usage Mining.

Association rule techniques [1] [2] discover unordered correlations between

items found in a database of transactions. In the context of Web Usage Mining,

a transaction is a group of Web page accesses to fulfill one information need,

with an item being a single page access. As example of an association rule

from the Web site of the University of Alberta Computing Science Department

(referred to as the CS Web site below)2 is the following:

57.81% visitors who accessed the “Program and Admission” page also accessed

a page on the graduate program.

The percentage in the example above is referred to as confidence. Confi-

dence is the number of transactions containing all of the items in a rule, divided

by the number of transactions containing the rule antecedents (The rule an-

tecedents in the example are the accesses of the “Program and Admission”

page). There is another criteria used in the association rule analysis: Support,

which is defined as the number of transactions containing all of the items in a

rule, divided by the total number of transactions. An association rule captures

item dependency in a transaction set, and usually we are interested only in

the association rules that have high support and confidence.

Clustering analysis [35] [64] allows one to group together users or items

that have similar characteristics. The clustering criteria is based on domain

1http://www.broadvision.com, http://www.webtrends.com, http://www.netgen.com
2http://www.cs.ualberta.ca
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knowledge and the specific tasks or interests of the analyzers, and the results

are often used to perform further processing. An example of a cluster discov-

ered on the CS Web site is the following:

the “Program and Admission” page, the “Graduate Program” page, and the

“GAPS” page (which is the graduate application processing system in the de-

partment), tend to be accessed together.

As the examples above show, Web Usage Mining techniques have the po-

tential of revealing valuable information. In particular, Web recommender

systems which take advantage of usage data have been extensively utilized

[92] [25] [49] [100], and we also use such data in building our system. To

apply data mining algorithms to usage data, however, there are some require-

ments. Ideally, the input of the Web Usage Mining process is a collection of

user requests that give an exact accounting of who accessed, what Web re-

sources were requested and in what order, and how long each resource was

viewed. This format enables us to group users’ requests into transactions,

each of which is a group of Web resources accessed to fulfill an information

need of the visitor. Without accurately identifying these semantically mean-

ingful transactions, data mining algorithms may mistakenly identify incorrect

patterns.

However, the usage data collected do not usually fulfill these requirements.

In fact, there are a number of difficulties involved in accurately identifying

transactions from raw usage data, which make preprocessing one of the major

tasks for any Web Usage Mining system, and still an open question. In the

following section, we will discuss this issue in detail. Although the usage data

can be collected on the client side [109] [86] [106], the majority of Web Usage

Mining systems make use of usage data on the server side, where collective

information is available. This server side usage data is usually referred as the

Web server access log. As a result, Web Usage Mining is also referred to as

Web Log Mining. In this thesis, we will focus only on the Web server access

log.
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Term Description
Remote Host Remote host name or IP address, from which the request is made
Rfc931 Remote login name of the client
Auth User Server authenticated client password
Date Date and time of the request
Offset Local time offset of the client from Greenwich Time
Method Method of the request (GET, POST, etc.)
URL Full page URL address input by the client
Protocol Communication protocol used by the client (HTTP/1.0, HTTP/1.1)
Status Server status responding to the request and sent to the client
Bytes Number of bytes transferred to the client in response to his/her request
Referrer URL that the request originated from
Agent Name and version of the operating system and browser at the client

Table 2.1: Web Access Log Field Description

Web Server Access Log

The Web server access log is the most commonly used source for Web Usage

Mining. Currently, most Web servers provide the option of storing log files in

the Extended Common Log Format (ECLF). Table 2.1 lists the fields in this

format. In most cases, clients need no user name and password to visit a Web

page. Thus, the field Rfc931 and Auth User are empty (indicated by value

‘-’). The following is an example of an entry in the server access log of the CS

Web site using the ECLF format:

129.128.4.126 - - [21/May/2004:01:20:06 - 0700] “Get /research HTTP/1.1”

200 8031 /index.html Mozilla/4.0(compatible; MSIE 6.0; Windows NT 5.1)

Please note that a Web server may adopt a different log format, and this

could cause a difference in the log preprocessing which follows. In this thesis,

we will focus on the most commonly used format (ECLF ). However, later on

we will apply our system to the VIVIDESK system, which provides a very

special format of log data. We will discuss the format and its preprocessing

work in Chapter 5.

The raw access log recorded in the ECLF format is somewhat arbitrary and

incomplete for any data mining algorithm. For example, in most cases, there is

no entry to identify users and transactions directly from the log because of the

anonymity of Web visits. Worse, due to client and proxy caches, not all client

requests are captured in the server access logs, which makes the identification

of users and transactions more difficult.
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Figure 2.5: A Sample Web Site

In order to group individual web pages recorded in the Web log into mean-

ingful transactions for the discovery of patterns such as association rules, there-

fore, preprocessing has been performed to reliably identify users and transac-

tions from raw server access logs.

User Identification

In the best case, we can rely on the values in fields Rfc931 and/or Auth User

to accurately identify individual users, but in most cases, the two fields are

empty. In the absence of such information, some heuristics have to be made

to help identify users [21] [77]. If the Agent field in the log, which records the

name and version of the operating system and browser at the client, shows

a change, a reasonable assumption to make is that each different agent type

represents a different user. The next heuristic in [21] is to use the access log

in conjunction with site topology to construct browsing paths for each user.

If a page is requested that is not directly reachable from any visited pages,

it is assumeed that there is another user with the same IP address. Consider

the Web site shown in Figure 2.5 (the arrows between the pages represent

the hyperlink), and a sample server access log shown in Table 2.2 (The first

column is for referencing purposes and would not be part of an actual log.)

With the two assumptions above, three unique users and their browsing paths

are identified:
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User 1: A-B-F-O-F-B-G-A-D

User 2: A-B-A-C-J

User 3: L-R

in which the hyphens represent the browsing paths of the users.

Admittedly, these assumptions are only heuristics for identifying users,

and cannot guarantee correct identification. Two users with the same IP

address that use the same browser on the same type of machine can easily be

mistakenly identified as a single user, if they are looking at the same set of

pages. Conversely, a single user with two different browsers running, or who

types in URLs directly without using a site link structure, can be mistaken for

multiple users.

Visit Session Identification

For logs that span long periods of time, it is very likely that users will visit

the Web site more than once. The goal of visit session identification, or ses-

sion identification, is to divide the page accesses of each user into individual

sessions, which will become the base on which to identify meaningful transac-

tions later. The simplest method of achieving this is through a timeout where,

if the time between page requests exceeds a certain limit, it is assumed that

the user is starting a new session. Many commercial products use 30 minutes

as a default timeout, and a study [13] established a timeout of 25.5 minutes

based on empirical data. As a result, a timeout of 30 minutes is generally

used in generic website log data to identify sessions. Using this timeout value,

the path for user 1 from the sample log is broken into two separate sessions,

since the last two accesses are more than an hour later than the first five. The

session identification step results in a total of four visit sessions in the sample

log:

Session 1: A-B-F-O-F-B-G

Session 2: A-D

Session 3: A-B-A-C-J

Session 4: L-J
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Figure 2.6: Auxiliary-Content Transactions

Transaction Identification

Generally speaking, the reason that users visit a Web site is to search for some

information that they need. During each visit session, a user may pursue one,

or more than one, information need(s). The goal of transaction identification

is to identify, from sessions, pages clicked to fulfill individual information needs

during the same visit. If a user pursues only one information need, a whole

session can be viewed as a single transaction. If a user has multiple information

needs, and each page in his/her visit session fulfills one of them, a session can

be viewed as a set of transactions, each consisting of a single page. In most

cases, however, a transaction consists of more than one, but not all pages of

a session, and the task of transaction identification is to divide and identify

such meaningful transactions.

A number of transaction identification approaches have been proposed [21]

[17]. R. Cooley et al. identify transactions based on their proposed auxiliary

& content page model. In this model, they classify Web pages in a Web

site into two categories. A content page is a page that contains a portion of

the information content that the Web site is providing, and which may meet

the user’s needs; while an auxiliary page is simple a page to facilitate the

browsing of a user searching for information (to reach content pages). Using

this concept, all pages in each session are labeled as either content pages or

auxiliary pages. A transaction is defined as a sequence of auxiliary pages (could

be zero) that end with a content page, representing a user reaching his/her

goal after following a set of auxiliary pages. This is illustrated in Figure 2.6,

in which auxiliary and content pages in a visit session are labeled along the

time axis with an A or C, respectively.

There are two underlying assumptions in this transaction identification

approach. First, it is assumed that a visitor may have different information
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needs to fulfill during a visit, but that all the information needs must be

fulfilled in sequence. The second assumption is made in order to identify

content pages and auxiliary pages. It is assumed that the amount of time a user

spends on a page in a visit correlates to whether the page is an auxiliary or a

content page for that user (The time spent on a page is referred to as Reference

Length in [21]. Therefore, this approach is often called the Reference Length

approach). More specifically, it is assumed that a user would spend more

time on content pages, and a time has been calculated that estimates the

cutoff between auxiliary and content pages. Using a qualitative analysis of

several server access logs, [21] gives an estimated cutoff time of 78.4 seconds.

According to this estimation, the sessions in the example above are divided

into 6 transactions:

Transaction 1: A-B-F

Transaction 2: O-F-B-G

Transaction 3: A-D

Transaction 4: A-B-A-C-J

Transaction 5: L

Transaction 6: R

There are two things worthy of mention in this approach of classifying

auxiliary and content pages according to estimated cutoff time. First, the

reasonable cutoff time may change for different Web sites. Thus, the estimation

needs to be re-done in different contexts. Second, even for the same Web site,

the same page may appear more than once in web logs, and it may sometimes

be labeled as an auxiliary page, and sometimes as a content page. Therefore,

the concept of auxiliary and content pages is applied only at the session level.

For this reason, some pages could be considered multiple purpose pages from a

high-level view. We illustrate this point in Figure 2.5, in which pages classified

as auxiliary pages in all sessions in Web logs, are represented using circles;

pages classified only as content pages are represented using rectangles; and

multiple purpose pages are represented using triangles. This fact reflects, to

some extent, the unreasonableness and difficulty of identifying content pages

based on stay time alone.
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Another transaction identification approach, Maximal Forward Refer-

ence is proposed, based on the work presented in [17]. In this approach, each

transaction is defined to be the set of pages in the browsing path, from the first

page in a visit session up to the page before a backward reference is made. A

backward reference is defined to be a page that is already contained in the set

of pages for the current transaction. Similarly, a forward reference is defined

to be a page not already in the set of pages for the current transaction. A

new transaction is started when the next forward reference is made. Again,

using the example above, the Maximal Forward Reference approach forms 6

transactions from the sessions:

Transaction 1: A-B-F-O

Transaction 2: A-B-G

Transaction 3: A-D

Transaction 4: A-B

Transaction 5: A-C-J

Transaction 6: L-R

The Maximal Forward Reference approach can be thought of as using the

same auxiliary & content page model as the Reference Length approach. It

also makes the same assumption that a visitor may have different informa-

tion needs to fulfill during a visit, and that all the needs must be fulfilled in

sequence. The Maximal Forward Reference approach is different from the Ref-

erence Length approach in the way it classifies auxiliary and content pages in

individual sessions. Instead of using time spent on a page, the Maximal For-

ward Reference approach performs the classification by identifying backward

reference points. It has an advantage over Reference Length in that it does

not require the input parameter (estimated cutoff time); however, a problem

is raised in that a backward reference point does not guarantee that a visitor

has found his/her goal. For example, a user could have fulfilled one of his/her

information needs in the middle of a navigational path to reach a backward

reference point.

To address the identified problems, in this thesis we propose a new user

navigation model, and an improved transaction identification approach. In-
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stead of identifying transactions based on cutoff time or backward points, we

rely on the real content of pages to more accurately identify transactions. We

will discuss our approach in detail in Section 3.2.2.

Once transactions have been identified, a Data Mining algorithm can be

applied on them to discover patterns. The most commonly used techniques

include association rule and clustering, and we will discuss some of these in

detail in Section 2.3.

2.2 Web Recommender Systems

Web recommender systems were originally defined as systems in which

on-line users provide recommendations as inputs, which the system then ag-

gregates and directs to other appropriate recipients [29]. The term now has

a broader connotation, describing any on-line system that produces individu-

alized recommendations as output, or has the effect of guiding the Web user

in a personalized way to interesting or useful objects in a large space of pos-

sible options [11]. The recommended items could be products, such as books,

movies, and music CDs; or on-line resources, such as Web pages or on-line

activities [32]. Web recommender systems can recommend Web resources that

particularly merit users’ attention, saving them needless search and enabling

them to reach their goals faster. By recommending, the system can also be

used to warn users, for example, that a page is irrelevant to their goals. By

doing so, the recommender system could prevent users from losing time during

their visits. Web recommender systems, therefore, have the potential to soon

become as common as search engines in assisting browsing on the Web [48].

As a matter of fact, some recommender systems have been an integral part of

some e-commerce sites, such as Amazon.com3 and CDNow4.

A Web recommender system is also referred to as Web recommender agents,

Web recommendation system, etc. Generally speaking, a Web recommender

system is an interactive software agent, and most such agents work in two

3http://www.amazon.com
4http://www.cdnow.com
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phases: off-line and on-line. During the off-line phase, the agent preprocesses

and analyzes available data to build user models, which infer user preferences

and interests; in the on-line phase, it uses and updates these models on-the-fly

to recognize the user’s current goals and predict recommendations.

Recommendation techniques have a number of possible classifications [79]

[29]. Recommendations may be anonymous, tagged with the source’s iden-

tity, or tagged with a pseudonym. Recommender systems can provide advice

based upon users’ requests, or on their own discretion. The given Recom-

mendations can be presented to users in different ways and interfaces, such

as presenting a Top-N list, highlighting recommended URLs, or filtering out

negative recommendations. For each recommendation candidate, the content

of the recommendation can be a single bit (recommended or not), numeric

scale (e.g., 1, 2, ..., 5, representing not recommended at all, not recommended,

neutral, recommended, and strongly recommended, respectively), or unstruc-

tured textual annotations. A Recommender system can also be server-based

or client-based. The former resides in a Web server to assist users to navigate

within the Web site, while the latter is a program running in users’ machines

to help them surf through the whole Web. While client-based recommender

systems have the merit of being customized for individual users, server-based

recommender systems are able to take advantage of collective information.

In this thesis, our interest focuses on the sources of data on which rec-

ommendation is based, and the use to which that data is put. Thus, we

propose a new classification of Web recommender systems, in terms of the

data sources. On this basis, we distinguish three different Web recommender

systems: rating-based recommender systems, survey-based recommender sys-

tems, and activity-based recommender systems.

2.2.1 Rating-based Recommender Systems

If the recommender system requires web users’ explicit participation to judge

and rate items encountered so far, before being able to provide any recommen-

dation, it is referred to as a rating-based recommender system.

Rating-based recommender systems stem from our social activities. In
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everyday life, we often find it necessary to make choices without sufficient

personal experience of the alternatives. In this scenario, we rely on recom-

mendations from other people by word of mouth, letters of recommendation,

movie and book reviews printed in newspapers, among other sources. The

rating-based recommender system assists and augments this natural social

process. In a typical rating-based recommender system, on-line users provide

recommendations as inputs, which the system then aggregates and directs to

appropriate recipients.

One of the most widely implemented, most mature, and therefore most im-

portant categories of rating-based recommender systems is the collaborative

filtering recommender system. In fact, the phrase “collaborative filter-

ing” was coined by D. Goldberg, D. Nichols, and B. M. Oki, the developers

of the first Web recommender system [27]. Collaborative filtering systems can

produce personal recommendations by computing the similarity between the

user’s preference and that of other people. The main idea is to automate the

social process of “word-of-mouth” by which people recommend products or

services to one another. As mentioned above, if an individual needs to choose

between a variety of options with which they do not have any experience, they

will often rely on the opinions of others who do have such experience. However,

when there are thousands or millions of options, as on the Web, it becomes

practically impossible for an individual to locate reliable experts who can give

advice about each of the options. To make the problem more manageable, col-

laborative filtering techniques shift from an individual to a collective method

of recommendation.

The basic mechanism behind collaborative filtering systems is the following:

• A large group of people are required to register in the system and rate

items they have encountered. A profile for each user is built, based on

the user’s rating;

• Using a similarity metric, the system aggregates the rating objects and

recognizes commonalities between users, according to their ratings on

items. Users with commonalities are classified into the same sub-groups.
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A collective profile is computed to represent the “average” preference of

the sub-group;

• For an active user who seeks advice, the sub-group s/he belongs to is

identified, and the opinions of people in the same sub-group (whose pref-

erences are similar to the preferences of this user) are used to give rec-

ommendation. More specifically, items highly preferred by these people,

but not already accessed by the active user, are recommended.

A typical user profile in a collaborative system consists of a vector of items

encountered by the user and their ratings, continuously augmented as the user

interacts with the system over time. Some systems used time-based discount-

ing of ratings to account for drift in user interests [7] [85]. In some cases,

ratings may be binary (like/dislike) or real-valued, indicating degree of prefer-

ence. The user profile is then grouped based on some similarity metric. Typical

similarity metrics are Pearson correlation coefficients between the users’ pro-

files and (less frequently) vector distances or dot products. The similarity

metric is also used to identify the preference group.

The greatest strength of collaborative filtering is that this technique can be

completely independent of any machine-readable representation of the objects

being recommended, and works well for complex objects, such as music and

movies, where variations in taste are responsible for much of the variation

in preferences. Indeed, if the similarity metric has in fact selected people

with similar tastes, the chances are excellent that the options that are highly

evaluated by that group will also be appreciated by the advice-seeker. As

a result, the typical application of collaborative filtering on a recommender

system is the recommendation of books, music CDs, or movies. Of course,

this method can be used for the selection of documents, services, or products

of any kind. Some of the most important recommender systems using the

collaborative filtering technique are GroupLens/NetPerceptions [78] [39] [55],

Ringo/Firefly [87], and Tapestry [27]. These systems can be memory-based,

comparing users with each other directly using correlation or other measures;

however, the more common form is model-based, in which a model is derived
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from the historical rating data of users to make predictions [8].

The main bottleneck with existing collaborative filtering systems is the

collection of preferences [87]. To be reliable, the system needs a very large

number of people (typically thousands) to express their preferences about a

relatively large number of options (typically dozens). This requires a consid-

erable effort from a great number of people. Since the system becomes useful

only after a “critical mass” of opinions has been collected, people will not be

very motivated to express detailed preferences in the beginning stages (e.g., by

scoring dozens of music records on a 10 point scale), when the system cannot

yet help them. Scalability is another major concern for a practical collabo-

rative filtering recommender system. The matching of the active user profile

with each preference group has to be computed as an on-line process. For a

practical system with many thousands of users, this may lead to unacceptable

latency in providing recommendations.

Another type of rating-based recommender system is the content filter-

ing system [43] [70] [31] [4]. As with collaborative filtering, the goal of the

content filtering technique is to sort through large volumes of dynamically

generated information and present to the user those which are likely to satisfy

his or her information requirement. The two systems are different, however, in

how they filter out the unnecessary information. In a content filtering system,

the objects (e.g., on-line news archives) are represented by their associated

features. As in other Web Content Mining systems, most use keywords in

documents as representation features. For example, Fab [4] represents docu-

ments in terms of the 100 words with the highest TF-IDF weights [81], i.e.,

the words that occur more frequently in those documents than they do on

average. Syskill & Webert system [70] represents documents by the 128 most

informative words, i.e., the words that are more associated with one class of

documents than another.

During navigation, users are asked to rate the documents they have visited,

according to whether and/or how they are interested in the documents. Based

on the ratings, a content filtering recommender system compiles a profile of

the user’s interests. Since all of the documents are represented by their as-
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sociated features (e.g., keywords), the profile can also be represented by the

designed features. Having derived the user profile, the system makes recom-

mendations based on the content similarity of documents to user profiles. The

similarity comparison can be performed using different learning methods, such

as Decision Trees, Neural Net, and Bayesian Classifier. For example, Syskill &

Webert system [70] employs a Bayesian Classifier to estimate the probability

that a document is liked by a user.

Zhu et al.’s work [109] [108] extends the concept of “content filtering” in

the recommender system. Rather than relying on a limited range of keywords,

their work investigates identifying suitable “browsing features” of words in

individual pages to capture and represent users’ interests. Recommendations

are then given based on this browsing feature matching component of their

system.

As indicated above, content filtering recommender systems provide rec-

ommendations based on “item-to-item” correlation, while collaborative filter-

ing systems use “people-to-people” correlation to give recommendations [29].

Both, however, require users to rate items they have visited so far, in order

to obtain recommendations. Generally, the more user ratings, the better the

recommendations the system can provide. This is because in the collaborative

case, user profiles are long-term models and are updated as more evidence

about user preferences is observed.

2.2.2 Survey-based Recommender Systems

Survey-based recommender systems are defined as systems which ask users

to explicitly submit personal information and/or preferences before providing

any recommendation. The demographic recommender system is the most

well-known survey-based recommender system type. It uses demographic in-

formation, e.g., personal attributes such as gender, age, or career, to identify

the types of users that like certain objects [41] [71]. A demographic recom-

mender system aims to categorize the user based on the demographic informa-

tion, and make recommendations based on demographic classes. For instance,

Lifestyle Finder [41] uses a marketing research survey to gather data regarding
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Figure 2.7: Interview Example in the PersonaLogic System [75]

user categorization to suggest a range of products and services. Demographic

techniques form “people-to-people” correlation as does collaborative filtering,

but they use different data. The benefit of a demographic approach is that it

may not require a history of user ratings of the type needed by collaborative

and content-based filtering techniques.

There is another type of survey-based recommender system called the

utility-based system [75] [28], which bases its advice on an evaluation of

the match between a user’s need and the set of options available. Utility-

based recommenders make suggestions based on a computation of the utility

of each object for the users. Obviously, the central problem is how to create

a utility function for each user; the current systems usually make use of ques-

tionnaires to do that. For instance, PersonaLogic [75] helps consumers identify

which products best meet their needs by guiding them through a large prod-

uct feature space in the format of a “deep interview”. Figure 2.7 illustrates

an example of the questions in the interview.

The system derives the utility function for the users based on the collection

of questionnaires, and then employs constraint satisfaction techniques to locate

the best match for users, with the assistance of the function. The benefit of

utility-based recommendation is that it can factor non-product attributes in

the e-commerce environment (e.g., vendor reliability and product availability),
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into the utility computation, making it possible, for example, to trade off price

against delivery schedule for a user who has an immediate need. However,

as we have seen from the example in Figure 2.7, this relies heavily on the

information provided by the user.

2.2.3 Activity-based Recommender Systems

In recent years, there has been an increasing interest in building Web recom-

mender systems without input from users. As we can see above, both rating-

based systems and survey-based systems rely heavily on users’ input – either

rating items they have known or answering surveys – to build user profiles,

based on which recommendation actions can be determined. The drawbacks

of this are as follows:

• explicit user input requires extra work on the part of the user, which is

more often than not, either unavailable or considered intrusive;

• the input is often a subjective description of the users by the users them-

selves, and thus prone to biases;

• the profile is static. It may be good for providing recommendation for

a period of time after it is collected; however, its performance degrades

over time as the profile ages;

• With the sparsity of such user input, recommendation precision and

quality drop significantly.

On the other hand, the footprints users leave while surfing the Web, that is,

the activities they performed during their navigation, contain a lot of hidden

information concerning the relationship between Web resources and between

users. If such user navigation histories are recorded, we can discover hidden

knowledge about interesting resources and users without users’ explicit ratings

or inputs. We call a recommender system which provides recommendations

based on users’ activity history an activity-based recommender system.

Such systems have been widely explored [92] [25] [49] [47].
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An activity-based recommender system may be located on the client side:

Letizia [46] [47] is a typical system in this category. Letizia is a software agent

running simultaneously with Netscape when the user surfs the Web, which

records and analyzes the user’s browsing activity in real time. Over time,

Letizia compiles a profile of the user’s interests, and presents recommendations

based on the user’s profile, as well as the current page. Letizia simply uses

Netscape as its interface, with one window dedicated to user browsing, and

one or more additional windows continuously showing recommendations.

However, the more common and widely-explored activity-based recom-

mender systems are Web usage recommender systems residing on individual

Web servers [92] [25] [49] [100], where the collective information is available.

Most Web servers have access logs available. As we have shown in Section

2.1.5, the access logs record user browsing and activity history in the server,

which contains much hidden information regarding users and their navigation.

The access logs could, therefore, be a good alternative to explicit user rating

or feedback, in deriving user navigational models for recommendation. Gen-

erally speaking, Web usage recommender systems take web server access

logs as input, and make use of Data Mining techniques, such as association

rule and clustering (see Section 2.3) to extract implicit, previously unknown,

and potentially useful navigational patterns – which are then used to provide

recommendations. A simple example illustrates the basic idea: suppose 90%

of former visitors who visited web page A also visited web page B, we can

then be confident in recommending page B to a new visitor who is currently

focused on page A.

2.2.4 Comparing Recommendation Techniques

We have so far discussed three types of web recommender techniques, each of

which has strengths and weaknesses. In this section, we discuss and summa-

rize them, and indicate how they link to the motivation for our work. [11]

presents a comprehensive analysis of the advantages and disadvantages of dif-

ferent recommendation techniques.

Collaborative filtering is the most widely implemented and successful tech-
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nique, especially for recommending products such as books and movies in

e-commerce. However, it suffers from the following problems:

• New User Problem: Because recommendations follow from a compari-

son between the target user and other users, based solely on the accumu-

lation of ratings, a user with few ratings becomes difficult to categorize;

• New Item Problem: As with the New User Problem, a new item that

has not had many ratings also cannot be easily recommended. This

problem shows up in domains such as news articles where there is a

constant stream of new items, and each user rates only a few. This is

also known as the Early Rater Problem, since the first person to rate an

item gets little benefit from doing so: such early ratings do not improve

a user’s ability to match against others. This makes it necessary for

recommender systems to provide other incentives to encourage users to

provide ratings;

• Sparse Rating Problem: Collaborative filtering recommender systems

depend on overlap in ratings across users and have difficulty when the

space of ratings is sparse. The sparsity of such user input causes the

recommendation precision and quality to drop significantly. This is a

significant problem in domains such as news filtering, since there are

many items available. Unless the user base is very large, the odds that

another user will share a large number of rated items is small.

• Scalability Problem: In a collaborative filtering system, user profile

matching has to be performed on-the-fly as an on-line process. The

match usually involves the comparison of very large vectors, which may

lead to unacceptable latency for providing recommendations.

These problems suggest that collaborative filtering techniques are best suited

to problems where the density of user interest is relatively high across a small

and static universe of items. If the set of items changes too rapidly, old ratings

will be of little value to new users, who will not be able to have their ratings

compared to those of the existing users. If the set of items is large and user
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interest thinly spread, then the probability of overlap with other users will be

small.

While collaborative filtering systems rely only on user ratings, and recom-

mend items without any textual content or descriptive data, content filtering

systems make use of the descriptive data to give “item-to-item” recommenda-

tions. Content-based techniques are advantageous in that the goal of people’s

on-line visits is to find interesting content, and pages related to a given goal in

a visit are supposed to be content coherent. As a result, these techniques do

not have the New Item problem found in collaborative filtering systems. For

example, a TV show recommender can recommend new shows on the basis of

their descriptions, even if they have not been rated by anyone. However, these

techniques have their own problems:

• New User Problem: As with collaborative filtering, content filtering

techniques encounter this problem, in that they must accumulate suffi-

cient ratings to build a reliable classifier for users;

• Document Representation Problem: Most of the current content-

based approaches represent documents by the “important” words or key-

words in the documents. However, as we have pointed out, the combina-

tion of the keywords in a document is not necessarily able to accurately

represent the semantics of the document. The misrepresentation of doc-

uments would also create the Fake Similarity problem and the Excessive

Similarity problem;

• Fake Similarity Problem: Once a representation has been found for

documents, a similarity comparison is used to recommend to users the

documents which are highly similar to their preferred ones. However, the

fact that two documents are similar to each other does not guarantee that

people who like one, wish to visit the other at the same time;

• Excessive Similarity Problem: In a typical content filtering system,

the more similar two documents are, the more likely it is that they will

recommend each other. However, people prefer not to read two docu-
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ments that contain too much overlapping information. For example, the

same news may appear in many newspapers with tiny change in presen-

tation. A news recommender system based purely on content filtering

technique might, in fact, annoy readers.

Finding a way to overcome these weaknesses of content filtering techniques

while maintaining the benefit of content for recommendation, motivates us

to combine content data with usage data to build our hybrid recommender

system.

Survey-based recommender systems do not have the New User problem

found in the rating-based systems, because they do not require a list of ratings

from the user. Instead, they have the task of gathering the requisite informa-

tion – personal information in demographic systems, for example – which leads

to one of the more serious difficulties they have: the privacy problem. Asking

users to report requisite information may conflict with users’ privacy. In fact,

the data most predictive of user preference is likely to be information that

users are reluctant to disclose. The utility-based systems do not require such

personal information. However, users must construct a complete preference

function, and must therefore weigh the significance of each possible feature,

which often creates a significant burden of interaction. What we would like to

build is a recommender system minimizing users’ efforts, combined with the

greatest endeavor to protect users’ privacy.

The root of some of the most severe problems of both rating-based and

survey-based recommender systems is that, as their names suggest, the sys-

tems heavily rely on users’ input to build user profiles and provide suggestions.

Activity-based recommender systems, however, have the advantage of being

able to give recommendations in the absence of any user input. For instance,

Web usage recommender systems take Web server access logs as input, and

make use of data mining techniques to extract implicit, previously unknown,

and potentially useful navigational patterns, which are then used to provide

recommendations. Web server logs record user browsing history, which con-

tains much hidden information regarding users and their navigation. They
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could, therefore, be a good alternative to explicit user rating or feedback in

deriving user models.

However, a Web usage recommender system which focuses solely on web

server access logs has its own problems:

• Incomplete Information Problem: One restriction with web server

logs is that the information in them is very limited. A number of heuris-

tic assumptions are typically made before applying any data mining al-

gorithm; as a result, some patterns generated may not be proper or even

correct.

• Incorrect Information Problem: When a web site visitor is lost, the

clicks made by this visitor are recorded in the log, and may mislead

future recommendations. This becomes more problematic when a web

site is badly designed and more people end up visiting unsolicited pages,

making them seem popular.

• Persistence Problem: When new pages are added to a web site, be-

cause they have not yet been visited, the recommender system may not

recommend them, even though they could be relevant. Moreover, the

more a page is recommended, the more it may be visited, thus making

it look popular and boost its candidacy for future recommendation.

The client-side action-based recommender systems have similar problems.

In a summary, all of the recommendation techniques that we have dis-

cussed here have their pros and cons, and each would be best suited for some

situations. For example, collaborative filtering can be used when the recom-

mended items are products, such as books, movies, and music CDs; while

Web usage recommender systems have the power to recommend shortcuts to

reach Web pages within a Web site. For each technique, ways to overcome

its drawbacks to gain higher performance have been extensively explored. For

instance, [24] [80] [83] investigate using a singular value decomposition ap-

proach [93] to reduce the dimensionality of the space in which comparison for

collaborative filtering takes place. Some researchers attempt to use heuristics
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such as time spent reading a page [39], or customers’ real purchases [65] to

complement users’ explicit rating of items. Another method is combine two

or more recommendation techniques to gain better performance with fewer of

the drawbacks of any individual one. This will be discussed in the following

section.

2.2.5 Hybrid Recommender Systems

Hybrid recommender systems are traditionally defined as systems that

combine two or more recommendation techniques. There are several ways,

however, to do the combining.

Weighted Hybrid Recommender Systems

A weighted hybrid recommender system is one in which the score of a recom-

mended item is computed from the results of all of the available recommenda-

tion techniques present in the system. For example, the simplest combination

would be a linear combination of recommendation scores. The P-Tango sys-

tem [20] uses such a hybrid. It initially gives collaborative filtering and content

filtering recommenders equal weight, but gradually adjusts the weighting as

predictions about user ratings are confirmed or discounted.

The benefit of a weighted hybrid is that all of the system’s capabilities

are brought to bear on the recommendation process in a straightforward way,

and it is easy to perform post-hoc credit assignment and adjust the hybrid

accordingly. However, the implicit assumption in this technique is that the

relative value of the different techniques is more or less uniform across the

space of possible items. This may not always be correct (e.g., a collaborative

filtering recommender will be weaker for those items with a small number of

raters).

Switching Hybrid Recommender Systems

A switching hybrid recommender system builds in item-level sensitivity to the

hybridization strategy: the system uses some criterion to switch between rec-

ommendation techniques. The DailyLearner [6] users a content/collaborative
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filtering hybrid in which a content filtering recommendation method is em-

ployed first. If the content filtering system cannot make a recommendation

with sufficient confidence, then a collaborative filtering recommendation is

attempted.

DailyLearner’s hybrid has a “fallback” character – one technique is always

used first and another technique only comes into play when the former fails.

[95] proposed a more straightforward switching hybrid system, in which an

agreement between a user’s past ratings and the recommendations of each

technique are used to select the technique to employ for the next recommen-

dation.

Switching hybrids introduces additional complexity into the recommenda-

tion process, since the switching criteria must be determined, and this in-

troduces another level of parameterization. However, the benefit is that the

system can be sensitive to the strengths and weaknesses of its constituent

recommenders.

Mixed Hybrid Recommender Systems

Where it is practical to make a large number of recommendations simulta-

neously, it may be possible to use a mixed hybrid recommender system, in

which recommendations from more than one technique are presented together.

The PTV system [89] uses this approach to assemble a recommended program

of television viewing. It uses content filtering techniques based on textual de-

scriptions of TV shows and collaborative information about the preferences of

other users. Recommendations from the two techniques are combined in the

final suggested program.

The PTV case is somewhat unusual because it is using recommendation to

assemble a composite entity, the viewing schedule. Because many recommen-

dations are needed to fill out such a schedule, it can afford to use suggestions

from as many sources as possible. Where conflicts occur, some type of ar-

bitration between methods is required. In the PTV system, content filtering

recommendation takes precedence over collaborative filtering. Usually, how-

ever, recommendation requires ranking of items, or selection of a single best
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recommendation, at which point the mixed hybrid is not suitable.

Most commonly, hybrid recommendation techniques are investigated to

combine collaborative filtering with some other technique in an attempt to

avoid the “new user” and “new item” problems. A few hybrid activity-based

recommender systems have been proposed in the literature [59] [62]. [59]

adopts a weighted hybridization method – more specifically, a clustering tech-

nique, to obtain both site usage and site content profiles in the off-line phase.

In the on-line phase, a recommendation set is generated by matching the cur-

rent active session and all usage profiles. Similarly, another recommendation

set is generated by matching the current active session and all content profiles.

Finally, a set of pages with the maximum recommendation value across the

two recommendation sets is presented as the recommendation. [62], on the

other hand, utilizes the switching hybridization approach. The authors use

association rule mining, sequential pattern mining, and contiguous sequential

mining to generate three kinds of navigational patterns in the off-line phase.

In the on-line phase, recommendation sets are selected from the different nav-

igational models, based on a localized degree of hyperlink connectivity with

respect to a user’s current location within the site.

Whether using the weighted method, the switching method, or the mixed

method, we find that the process of combination in existing hybrid systems

occurs only in the on-line phase. This method suffers from several drawbacks.

First, it is only a combination of generated user profiles or models. When

generating models, however, there is still only one type of information used:

content information, structure information, or usage information. Therefore,

these systems do not make full use of all available information to find the use-

ful patterns. Secondly, how to combine the resulting sets to present the most

useful recommendations is an open question. In this thesis, we propose a new

type of hybrid recommender system. We recognize that there may be distinct

information channels available to build users’ models for a recommender sys-

tem. For example, except for Web access log data, the content and structure

information of a Web site are possibly available. We could therefore use these

data to augment each other in building a better model of users’ information
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needs. More specifically, our system relies mainly on the Web server access

log to build the users’ navigational profiles, but also embeds textual content

of Web pages and linkage information. For this reason, our system can be

viewed as an improved Web usage recommender system. Another distinction

of this hybrid system is that the combination could be done in the off-line

phase, which can reduce user latency and improve system efficiency. We will

talk about our system in detail in Chapter 3.

2.3 Tools for Web Usage Recommender Sys-

tems

There are many techniques and algorithms available for Data Mining and Web

Mining, and we here present some of those which are related to the building

of Web usage recommender systems.

2.3.1 Association Rule Techniques

The association rule technique was first introduced in the literature [1] to

address market basket data. Let I = i1, i2, ..., in in which ik (1 ≤ k ≤ n) is

a binary attribute called item. In a transaction database, each transaction

T is represented as a set of items such that T ⊆ I. Let D be a set of such

transactions. Let X be a set of s items such that X ⊆ I, called an s-itemset.

We say that a transaction T contains X, if X ⊆ T . An association rule is an

expression of the form X => Y , where X ⊆ I (rule antecedent), Y ⊆ I (rule

consequence), and X
⋂

Y = ∅.
We define Support(X => Y ) as the percentage s% if s% of transactions

in D contain X
⋃

Y , and Confidence(X => Y ) as the percentage c% if c%

of transactions in D that contain X also contain Y . An association rule

X => Y holds for D if Support(X => Y ) > minsup and Confidence(X =>

Y ) > minconf , where minsup and minconf are two threshold values set in

the system. Support and confidence are two important measures of associ-

ation. We can also represent these two measures as Support(X
⋃

Y ) and

Confidence(X
⋃

Y ). Usually, we are interested in only the association rules

48



that have high support and confidence.

An association rule captures item dependency in a transaction set D. Es-

sentially, it answers questions such as: what items do customers often buy

together? A classic and interesting association rule found in grocery store

data is that people who buy diapers also buy beer.

In general, to find all the association rules X => Y with Support(X =>

Y ) > minsup and Confidence(X => Y ) > minconf , an association rule

algorithm can be divided into two steps. First, all itemsets with minsup (called

frequent itemsets) are generated from the database. This is a computationally

expensive step. In the second step, association rules are generated from these

frequent itemsets. This step is very straightforward. For a given frequent

itemset, X = i1, i2, ..., ik, k ≥ 2, the antecedent of each association rule will

be a subset Y of X, and the consequent will be the subset X − Y .

Most current algorithms for the discovery of frequent itemsets work itera-

tively. They first query the database to find all the frequent 1-itemsets. Then,

the frequent s-itmesets are generated from the (s-1)-itemsets of the previous

pass. Since the process of discovering frequent itemsets is expensive over large

databases, various techniques have been proposed to speed up the search [2]

[84] [69]. Investigators may put constraints on the mining process [97] [72], or

prune the extracted rules [51]. Some researchers also report distributed and

parallel association rule mining [18] [103].

Association rule techniques are the earliest and most commonly used tech-

nique in Web usage recommender systems [92] [25] [49] [15]. The main idea is

that an association rule algorithm is picked up and applied on the Web server

access logs (after preprocessing), and generates association rules in which sup-

port and confidence are higher than designated parameters, i.e., refer to sets of

pages that are accessed together with a support value exceeding some specified

threshold. These pages may or may not be directly connected to one another

via hyperlinks. The antecedents of these rules are used to match the current

user’s visit page (or a portion of his/her visit history), and if matched, the

consequence of the corresponding rule is presented to the user as a recommen-

dation. We have implemented such a recommender system [25] and test our
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proposed approach against this technique (see Section 4.3 for experimental

results).

2.3.2 Clustering Techniques

The Clustering technique is defined as a process of partitioning a set of data

(or objects) in a set of meaningful sub-classes, called clusters. Each cluster

is a collection of data objects that are “similar” to one another and thus can

be treated collectively as one group. In order to do so, measurement meth-

ods must be employed to measure the similarity between objects, according

to some criteria. A good clustering method will produce high quality clusters

in which the intra-cluster similarity is high, while the inter-cluster similarity

is low. The clustering criteria is based on domain knowledge and the specific

tasks or interests of the analyzers, and the results are often used to perform

further processing. In the Web Usage Mining domain, there are two kinds of

interesting clusters to be discovered: usage clusters and page clusters. Clus-

tering of users tends to establish groups of users exhibiting similar browsing

patterns. Such knowledge is especially useful for inferring user demographics

in order to perform market segmentation in e-commerce applications, or pro-

vide personalized Web content to the users. The clustering of pages, on the

other hand, will discover groups of pages tending to be visited together. This

information is especially useful for recommender systems.

User Clustering

User clustering in the context of Web Usage Mining is the process of clus-

tering users based on their behaviors. Sometimes it is impossible to acquire

knowledge of a user’s interests, but we can guess a user’s characteristics based

on their behaviors while navigating. Paliouras et al. [66] built user communi-

ties by means of clustering. A community corresponds to a group of users who

have common interests. In [12], users are partitioned into different clusters by a

model-based algorithm. The clustering analysis utilizes a mixture of first-order

Markov models using Expectation-Maximization (EM). A first-order Markov

model is a Markov model assuming that the probability of occupying a state
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at a specified time is determined solely by the preceding state. Each cluster

has a different Markov model, and each user belongs to the cluster with some

probability. While training, a user is assigned to a particular cluster with

some probability, and the initial value of the model is equal. Then, EM is

used to determine the proportion of users assigned to each cluster, as well as

the parameters of each Markov model.

Page Clustering

Page clustering is the process of grouping pages according to the users’ access

to them. The intuition is that if the probability of visiting page a, given page

b has also been visited, is high, then maybe they can be grouped into one

cluster. Page clustering here is very different from text clustering, because for

text clustering, the criteria are based on the analysis of the text content, while

page clustering is not related to content.

M. Perkowitz and O. Etzioni propose a page clustering method called the

PageGather algorithm in [74]. PageGather is a type of clustering algorithm

which is different from traditional clustering, in that the PageGather algorithm

attempts to find a small number of high quality clusters, and these clusters

may overlap each other. It is quite reasonable because only subsets of Web

pages are of importance to visitors; moreover, there may be multiple themes

in a single web page. Another note-worthy point of PageGather is that its

goal is to find clusters of related, but not linked, pages. Thus, we adopt this

algorithm in our system to cluster Web pages. We will introduce this algorithm

in Section 3.2.3.

Mobasher et al. [60] use Association Rule Hypergraph Partitioning (ARHP)

to perform page clustering. In ARHP, the association rule technique is adopted

to capture frequent itemsets in the user access dataset. The frequent itemsets

are then used to construct a data structure called hypergraph. A hypergraph

is an extension of a graph in the sense that each edge (called hyperedge) can

connect more than two vertices. In their implementation, each frequent itemset

is represented by a hyperedge whose weight is equal to the average confidence

of the association rules generated from this frequent itemset. Then, hMETIS,

51



a multi-level hypergraph partitioning algorithm [34], is used to partition the

hyperedges, and group pages into individual clusters. hMETIS has been shown

to produce high quality bi-sections on a wide range of problems [34], and

therefore, is used to create partitions from the frequent itemsets hypergraph.

52



Chapter 3

A Mission-based Hybrid Web
Recommender System

In this thesis, we investigate the design of a hybrid Web recommender sys-

tem, with three emphases. First, the system is designed to recommend on-line

resources (e.g., Web pages) of a specific Web site to its visitors. Second, we

attempt to make use of as many information channels as are available to better

construct the user profile to be used for recommendation. Third, we take the

presence of concurrent information needs of the on-line user into consideration.

Pursuing more than one goal, or surfing with concurrent information needs,

is fairly common for Web users, but this fact has so far been ignored in Web

recommender systems. Our goals are to first accurately identify users’ multi-

ple information needs, and then assist them to fulfill their needs by accurately

predicting their goals, and recommending Web resources to them. We call the

sub-sessions to fulfill individual information needs during an on-line visit mis-

sions. In our framework, we combine different information channels to identify

missions, and then accurately build the user profile based on them. The major

information channel we use is the Web server access log, but we also make use

of Web content, as well as Web connectivity information. In this chapter, we

will discuss the design of this mission-based hybrid Web recommender system,

step by step.
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Figure 3.1: System Architecture

3.1 Overall Architecture of the System

As with most Web recommender systems, our system is composed of two

modules: an off-line component, which pre-processes data to generate the

user profile; and an on-line component, which is a real-time recommendation

engine. Figure 3.1 depicts the general architecture of our system.

Generally, entries in the Web server access log are used to identify users

and visit sessions, while Web pages or resources in the site are clustered,

based on their textual content. These content clusters of Web pages are used

to scrutinize the discovered visit sessions in order to identify what we call

missions. A mission is a sub-session with a consistent goal. These missions

are in turn clustered to generate the user navigational profile. After that,

these user profiles are improved with their linked neighbourhood and ranked

based on resource connectivity, using the Hub and Authority ideas [36]. These

improved and ranked user profiles are provided to the recommendation engine.

When a visitor starts a new session, the session is matched with these clusters

to generate a recommendation list. The details of the whole process are given

below.
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3.2 Off-line Module: Building and Improving

the User Profile

To make our system efficient and scalable, the majority of tasks are designed to

be done in the system’s off-line module. First, Web server access logs are pre-

processed so that individual users and visit sessions are identified. Instead of

dividing sessions into transactions, as the current activity-based system does,

we identify missions from sessions with the assistance of content information.

The identified missions are then clustered to discover the user navigational

profile to be used for recommendation. Before this profile is provided to the

recommendation engine, however, our system also uses Web site linkage infor-

mation to improve the user profile to better model users’ navigational patterns.

The structure information is also used to rank the pages in individual clusters.

3.2.1 User and Session Identification

For the typical Web server access log, where each entry contains a client ad-

dress, the requested data address, a timestamp, and other related information

(i.e., the ECLF format as discussed in Section 2.1.5), we use similar pre-

processing techniques as in [21] to identify individual users and sessions. The

combination of the client’s IP address and Agent (including client operating

system information and browser information) are used to identify individual

users. For sessionizing, we chose an idle time of 30 minutes. Details are pro-

vided in Section 2.1.5.

3.2.2 Mission Identification: An Improved Transaction
Identification Approach

As discussed in Section 2.1.5, the usual last data pre-processing step of a Web

server access log is transaction identification, which divides individual visit

sessions into transactions. A number of transaction identification approaches

have been proposed. Among them, Reference Length [21] and Maximal For-

ward Reference [17] are widely adopted, and accepted as the standards for

access data preprocessing. As we have noted in Section 2.1.5, both approaches
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share the same underlying assumption: Web pages in each visit session belong

to one of two categories: content pages or auxiliary pages; while a transaction

is a section of a session, composed of a consecutive sequence of auxiliary pages

that ends with a content page. This assumption, however, is problematic in

that it requires the sequential ordering in which users’ multiple information

needs during a visit session are fulfilled. That is, any user must complete

one information need before starting another. However, this may not be true

in the real Web context. More often than not, we open several browsers to

surf a Web site, looking for different information and pursuing several goals

at the same time. Moreover, we may sometimes interrupt our current goal

and start another in the middle, and then return to the original one later on.

In these scenarios, the transaction identification approaches above mistakenly

group pages to fulfill users’ different information needs into one transaction.

Because the transaction is the base of any Data Mining algorithm for pattern

discovery, this misclassification would obviously compromise the effect of the

Data Mining task, or even cause it to fail. To address this problem, we are here

proposing an improved transaction identification approach. To distinguish our

approach from the standard approaches, we name the transactions identified

using our approach, missions. In our mission-based model (in contrast with

the transaction-based models), we acknowledge that users may visit a Web

site with multiple goals, i.e., different information needs. What’s more, we

make no assumption on the sequence in which these needs are fulfilled. A mis-

sion would model a sub-session related to one of these concurrent information

needs, and would allow overlap between missions, which would better repre-

sent a concurrent search in the site. While in the transaction-based model,

pages are labeled as content pages and auxiliary pages, and a transaction is

simply a sequence of auxiliary pages that ends with a content page, in our

mission-based model, the identified sequence is based on the real content of

pages. Indeed, a content page in the transaction-based model is identified

simply based on the time spent on that page [21], or on backtracking in the

visitor’s navigation [17]. We argue that missions are better able to model

users’ navigational behavior than are transactions. For example, a user could
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fulfill two goals in a visit session a, b, c, d, in which pages a and c contribute to

one goal, while pages b and d contribute to the other. Neither the Reference

Length [21] or Maximal Forward Reference [17] approaches can identify correct

transactions in this example, due to their sequential requirement. However,

since pages related to a given goal in a visit session are supposed to be content

coherent, whether they are neighbouring each other or not, it is possible for

the model we propose to accurately identify missions, using real page content.

More specifically, all Web site pages are clustered based on their content

in our system, and these clusters are used to identify content coherent clicks

in a session into individual missions. Let us give an example to illustrate this

point. Suppose the text clustering algorithm groups web pages a, b, c, and e;

web pages a, b, c, and f ; and web pages a, c, and d into three different content

clusters (please note that our text clustering algorithm is a soft clustering one,

which allows a web page to be clustered into several clusters). Then, for a

visit session a, b, c, d, e, f, our system identifies three missions as follows:

Mission 1: a, b, c, e

Mission 2: a, b, c, f

Mission 3: a, c, d

As seen in this example, mission identification in our system is different

from transaction identification, in that we are able to group web pages into

one mission, even if they are not sequential in a visit session. However, we

can see that our mission-based model generates the transaction-based model,

since missions could become transactions if visitors fulfill only one information

need in a visit, or fulfill their information needs sequentially. For instance,

using the same visit session as in the last example, suppose the user has two

information needs, and s/he fulfills them sequentially by visiting a, b, c, and

d, e, f, respectively. In this situation, it is very likely that Web pages a, b,

and c and Web pages d, e, and f would be grouped into two content clusters.

As a result, both our mission-based approach and the previous transaction

identification approaches would identify two missions (transactions):

Mission/Transaction 1: a, b, c

Mission/Transaction 2: d, e, f
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From the same example above, we can see another difference between our

mission identification and the traditional transaction identification. Our adop-

tion of soft clustering makes it possible that a page could participate in more

than one mission, while each page belongs to one and only one traditional

transaction. This better models the fact that Web pages may be multi-

purposed, that is, the same page could be helpful for fulfilling users’ different

information needs.

To cluster Web pages based on their content, we propose a content clus-

tering algorithm called DC − tree+. This is a modified version of the DC-tree

algorithm proposed in [98]. We selected the DC-tree algorithm because it is

specifically designed to classify Web documents. More importantly, the DC-

tree algorithm does not require the number of clusters to be discovered as a

constraint, but allows the designation of the preferred cluster size. This was

the appealing property to us. Indeed, we do not want either too large or too

small content cluster sizes. Very large clusters cannot help capture missions

from sessions, while very small clusters may break potentially useful interre-

lations between pages in terms of access usage in sessions.

The original DC-tree algorithm, however, was a hard clustering approach,

prohibiting overlap of clusters. We modified it to allow Web pages to belong

to different clusters in our DC-tree+ algorithm. In both the original and our

modified DC-tree algorithm, each Web page is represented as a feature vector;

a feature is represented by a keyword extracted from Web pages. After that,

Web pages are organized in, and clustered by, a tree structure called DC-tree.

In the following sections, we present the DC-tree algorithm, as well as the

modifications made to it, in order to make it a soft clustering approach (i.e.,

allowing cluster overlap).

Web Page Feature Extraction

The first sub-task in the DC-tree algorithm is to represent each Web page

by a feature vector. Originally designed to automatically cluster Web pages

returned from search engines to narrow down the search scope, a novice feature

extraction approach is proposed in the DC-tree algorithm, especially designed
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Algorithm Feature Extraction in DC-tree Algorithm
Input: A collection of Web documents
Output: A set of keywords
Procedure
1. Randomly select a subset of documents with size m from the collection.
2. Extract the set of words that appear at least once in the documents.
Remove stop words and combine the words with the same root by using the
stemming technique.
3. Count the document frequency of the words which are extracted in Step
2.
4. Set lower = k and upper = k
5. Select all words with document frequency in the range from lower to
upper
6. Check if the coverage of these words is larger than the pre-defined
threshold. If so, stop. Otherwise, set lower = lower−1 and upper = upper+1,
and then goto Step 5.

Figure 3.2: Feature Extraction Sub-system in DC-tree Algorithm

to prevent either very large or very small clusters. Very large clusters cannot

help to narrow the search scope, while very small clusters can increase the total

number of clusters, and may actually be caused by noise. In order to do this,

a parameter k is used to set an approximate number on the cluster size when

extracting features, representing that the resulting cluster to contain about

k Web pages are preferred. Hence, the number of clusters is approximately

N/k, where N is the total number of web pages to be clustered. The feature

extraction sub-system in the DC-tree algorithm is shown in Figure 3.2.

In Figure 3.2, in order to extract the representative features from the Web

page collection efficiently, the algorithm randomly selects a set of sample pages

for feature extraction, in Step 1. Since shorter feature vectors lead to shorter

clustering time, Steps 4 to 6 try to minimize the number of features and obtain

reasonable coverage for them. The coverage of the features is defined as the

percentage of documents containing at least one of the features extracted.

Assume the user wants the resulting cluster to contain k documents. In the

ideal case, a feature for a cluster will appear only in the cluster and, hence, the

document frequency of the feature is k. Therefore, the algorithm first selects
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the features with document frequency equal to k, by setting lower and upper

to k in Step 4. The range {lower, upper} is enlarged repeatedly in Step 6 to

ensure sufficient coverage for the resulting feature set; this is done by applying

a pre-defined coverage threshold. Here, we can also see that N/k is only a

rough guideline; the actual number of clusters of the clustering result may

not be the same as N/k. In the experiments in [98], 0.8 is given as a good

coverage threshold value. After extracting document features, each Web page

Pi is represented in the following form: Pi = (IDi,Wi), where IDi is the page

identifier which can be used to retrieve page Pi, and Wi is the feature vector of

page Pi: Wi = (wi1, wi2, ..., win). Here, n is the number of extracted features,

and wij is the weight of the j-th feature, where j ∈ {1, 2, ..., n}. wij is equal

to 1 if Pi contains the j-th feature. Otherwise, wij is equal to 0.

Document Cluster (DC) and DC-tree

A Document Cluster (DC) is a data structure for storing the information about

a set of documents to be grouped into the same cluster. Given N documents in

a cluster: D1, D2, ..., DN , the Document Cluster (DC) of the cluster is defined

as a triple: DC = (N, ID, W ), where N is the number of documents in the

cluster; ID is the set of the document identifiers of the documents in the

cluster, i.e, ID = {ID1, ID2, ..., IDN}; and W is the feature vector of the

cluster, i.e, W = (w1, w2, ..., wn), where wj =
∑N

i=1 wij, and n is the number

of extracted features.

This triple becomes the component data structure of the DC-tree algo-

rithm. This algorithm organizes Web pages into a tree structure called DC-

tree, in which each non-leaf node can be considered as a Document Cluster.

The algorithm scans the collection of Web pages, guiding each incoming docu-

ment to an appropriate Document Cluster at the leaf nodes. This structure is

similar to the B+-tree, and is designed so that assigning a document to a clus-

ter requires visiting only a small number of nodes. In detail, for each incoming

document D, represented by a feature vector V(D), the DC-tree algorithm re-

cursively descends the DC-tree, starting from the root, to search the close child

DC node of D. The closeness is measured with some similarity value between
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DCA+DCB+DCE DCC+DCD DCF 

   

DCA DCB DCE DCC DCD  

Document 

DC1 DC2 DC3 

DC4 DC5 

Figure 3.3: Example of a DC-tree Insert (A): Original DC-tree Algorithm

V(D) and the feature vector of the individual DCs. In [98], three alternatives

for measuring the similarity – Cosine Correlation, Euclidean Distance, and

Manhattan Distance – were tested. The experiment in [98] shows that Man-

hattan Distance always gives the best performance. Therefore, we chose to use

Manhattan Distance in our implementation. The Manhattan Distance similar-

ity between two items represented by feature vectors, W1 = (w11, w12, ..., w1n)

and W2 = (w21, w22, ..., w2n), is defined as:

Similarity(W1,W2) = 1−
∑n

i=1 |w1i

n
− w2i

n
|

n

If such a close child DC node is found, the document D is inserted into

it (e.g., the document E is inserted into DC4 in Figure 3.3). If such a child

node does not exist, D is inserted as a new leaf node (e.g., the document F in

Figure 3.3). After the document is inserted, all non-leaf entries on the path

from the root must be updated to reflect the addition of this new document.

The process of inserting document E is shown in Figure 3.3, as an example.

Before the insert, DC1 = (2, (IDA, IDB), (wA1+wB1, wA2+wB2, ..., wAn+wBn),

where wAi is the value of the i-th feature of document A, while wBi is the value

of the i-th feature of document B. After the insert, the Document Cluster value

will be updated as DC ′
1 = (3, (IDA, IDB, IDE), (wA1+wB1+wE1, wA2+wB2+

wE2, ..., wAn + wBn + wEn).
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Figure 3.4: Example of a DC-tree Insert (B): Our DC − tree+ Algorithm

In the original DC-tree algorithm, any document is inserted into the clos-

est child node with the highest similarity value. For instance, in the example

illustrated in Figure 3.3, Document E is inserted only into the cluster repre-

sented by DC1. This makes it a hard clustering algorithm; that is, a document

cannot belong to more than one cluster at the same time. Recognizing that

a Web page may be designed to contain information for multiple topics, we

prefer to allow Web pages to belong to different clusters. Thus, we modify

the DC-tree algorithm so that a document will be inserted into any close child

nodes with a similarity value higher than a threshold S. In the example above,

suppose the document E is similar to both cluster DC1 and cluster DC2, then

our algorithm inserts the document into both of them, as illustrated by the

insert of document E in Figure 3.4.

For practical implementation, there is another parameter for the DC-tree

algorithm: Branching Factor (B), which is used to limit each node to contain

at most, B entries. We therefore must deal with the case in which there

is no available space for inserting. In that scenario, node splitting must be

performed, in order to add a new entry to a DC node containing B entries. In

detail, when inserting the B+1 entry, we partition the set of B+1 entries into

two groups, one for each new node. The division is done in such a way that

the similarity between the two new nodes will be minimized and the similarity
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among the documents within the same node will be maximized [98].

Identifying the Interesting Clusters

After inserting and organizing Web pages in a DC-tree, a breadth-first search

algorithm is applied to discover the clusters that we are interested in. An

interesting cluster is defined as a cluster that fulfills the following two condi-

tions:

1. All of the Web pages in the cluster are coherent to a topic;

2. The size of the cluster is in a predetermined range.

Condition (1) has been fulfilled in the DC-tree algorithm by inserting and or-

ganizing Web pages into the DC-tree. We now make use of the lower and upper

values found in the feature extraction method (see Section 3.2.2) to determine

the cluster size range in Condition (2). Let l and u be the lower bound and

upper bound of the cluster size range, then l and u can be determined by the

following equations: (a) l = lower ×N/m, (b) u = upper ×N/m, where N is

the data set size, and m is the size of the sample data set used in the feature

extraction. Once we have determined the cluster size range, we choose all

DC nodes with Web pages within l and u as interesting clusters. Please note

that the information of pages in the same cluster has been summarized by a

corresponding DC node. Thus, once we have identified an interesting cluster,

the cluster can be represented by the feature vector of the corresponding DC

node.

The parameters we adopt to run the DC-tree algorithm in our experiment

are as follows: approximate number of the cluster size k = 20 (the resulting

lower bound and upper bound are 2 and 39, respectively); the size of the

subset for feature extraction m = 6000 (about 20% of the number of total

Web pages); branching factor B = 20; similarity threshold S = 0.3. These

parameters have been chosen by trial and error, meaning that we have tried

different combinations of values and discovered that the chosen values give

comparably good results.
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The content clusters derived after running the modified DC-tree algorithm

are used to divide sessions into missions. There is one more thing that needs

to be pointed out in the mission identification process. Our DC-tree algorithm

cannot guarantee each Web page will be grouped in one of the resulting content

clusters. As a result, there may be some clicks in a session which cannot be

classified into any mission, based on the content clusters. For the purpose of

keeping the interrelationship between pages in terms of usage, we attach these

pages into all the identified mission(s) from the same session. For instance, in

the example we give in the earlier part of this section, suppose there is one

more page g, which cannot be clustered in any of the three content clusters.

Then, page g is attached to all three missions as follows:

Mission 1: a, b, c, e, g

Mission 2: a, b, c, f, g

Mission 3: a, c, d, g

3.2.3 Clustering the Missions: Building User Profiles

After identifying the missions, we discover patterns regarding users’ navigation

in the Web site from the mission file, which may be used by the recommender

system to make recommendations for users with similar navigational behavior.

The action of this pattern discovery can also be viewed as a branch of user

profiling/modeling in the field of Information Retrieval, which is generally

defined as the process of gathering, organizing, and discovering information to

create the summarization or description of the user and/or user interests [68].

For the Web recommender system, user profiling can be done on two lev-

els: personal level and mass level. In the former, the user profile is built

for individual users; while in the latter, the profile is built based on a mass of

users, as a whole. Most rating-based recommender systems (Section 2.2.1) and

survey-based recommender systems (Section 2.2.2) are examples of personal

user profiling. This type of system allows fine-grained recommendation, since

the recommendation is customized for each user. However, as we have pointed

out, the system relies heavily on explicit user input, which may be either un-

available or considered intrusive. On the other hand, in the activity-based

64



recommender system, without individual user information, the user profile

can be built only on the mass level, which is actually an overall navigational

preference for the general user.

To build the (mass) user profile in our system, we simply group the missions

we uncovered into clusters of Web pages. This process is similar to other Web

Usage Mining systems [58] [63] [99] [86], in which each cluster groups a set of

Web pages that are frequently visited together, representing a user profile in

terms of navigational behavior. However, the user profile discovered from the

mission has its own distinction: each cluster in our system is a set of Web pages

that are not only frequently visited together, but also have coherent content.

In other words, the user profiles discovered from missions possess two charac-

teristics: usage cohesive and content coherent. Usage cohesiveness means the

pages in a cluster tend to be visited together, while content coherence indi-

cates that pages in a cluster tend to be related to a topic or concept (This is

because missions are grouped according to content information). Since each

cluster is related to a topic, and each page has been represented in a keyword

vector, we are able to easily compute the topic vector of each cluster. In fact,

this topic vector has been represented in the corresponding DC node in the

DC-tree (see Section 3.2.2). The cluster topic is widely used in our system, in

both the off-line and on-line phases (see below for details).

The clustering algorithm we adopted for grouping missions is PageGather

[73]. This algorithm is a soft clustering approach, allowing overlap of clusters.

Instead of attempting to partition the entire space of items, it attempts to

identify a small number of high quality clusters, based on the clique clustering

technique. This property makes it suitable for a recommender system. The

algorithm is briefly described in Figure 3.5 [73].

Here we discuss each step in Figure 3.5, in turn.

1. Compute the co-occurrence frequencies between pages. For each

pair of Web pages, P1 and P2, in the mission file, we compute P (P1|P2),

the probability of a visitor visiting P1 if s/he has already visited P2 ;

and P (P2|P1), the probability of a visitor visiting P2 if s/he has already
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Algorithm PageGather
Input: Missions
Output: A set of page clusters (cliques)
Procedure PageGather
1. Compute the co-occurrence frequencies between pages
2. Create the similarity matrix
3. Create the graph corresponding to the matrix, and find cliques in the
graph
4. Return the found cliques

Figure 3.5: PageGather Algorithm

visited P1. We call the minimum of the two values the co-occurrence

frequency between P1 and P2.

2. Create a similarity matrix. We create a matrix called the similar-

ity matrix. We set the matrix cell for two pages to the co-occurrence

frequency between the two pages if there are no links between them; or

zero, if they are already linked in the site. In order to reduce noise, we

apply a threshold to remove edges corresponding to low co-occurrence

frequency.

3. Create the graph corresponding to the matrix. We create a graph

in which each page is a node and each nonzero cell in the matrix is an

arc. In this graph, a cluster corresponds to a set of nodes whose members

are directly connected with arcs. A clique – a subgraph in which every

pair of nodes has an edge between them – is a cluster in which every pair

of pages co-occurs often.

4. Return found cliques as the found clusters.

3.2.4 Augmenting and Pruning the Clusters: Improv-
ing User Profiles

The missions we extracted and clustered to generate the user profile are based

primarily on the sessions from the Web server access logs. These sessions

exclusively represent Web pages or resources that were visited. It is conceiv-
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Figure 3.6: User Profiles(UPs) and Augmented User Profiles(AUPs)

able that there are other resources not yet visited, even though they may be

relevant, interesting, and worth including in the recommendation list. Such

resources could be, for instance, newly added Web pages, or pages that have

links to them not evidently presented due to bad design. Thus, these pages

or resources are never presented in the missions previously discovered. Since

the user profile, represented by the clusters of pages in the missions, is used

by the recommendation engine, we need to provide an opportunity for these

rarely visited or newly added pages to be included in the clusters; otherwise,

they would never be recommended. To alleviate this problem, we expand our

clusters to include the connected neighbourhood of every page in a mission

cluster. The neighbourhood of a page p is a set of pages directly linked from

p, and pages that directly link to p. Figure 3.6 illustrates the concept of neigh-

bourhood augment. This process also helps to avoid overfitting, i.e., avoids

recommending only what has been visited.

In more detail, this approach of expanding the neighbourhood is performed

as follows: we consider each previously discovered user profile (i.e., a cluster

of content coherent and visitation cohesive missions) as a set of seeds. Each

seed is supplemented with pages it links to, and pages from the Web site

that link to it. The result is what we is called a connectivity graph which

now represents our augmented user profile. This process of obtaining the

connectivity graph is similar to the process used by the HITS algorithm [36]

to find the Authority and Hub pages for a given topic (see Section 2.1.4). The

difference is that we do not consider a given topic, but start from a mission
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cluster as our set of seeds. Please note, however, that each cluster obtained

in our system so far has been content coherent, that is, consists of Web pages

with a specific topic. That is the rationale for treating each cluster as a set

of seeds comparable to a root set in the HITS algorithm. In addition, we

consider only internal links, i.e., links within the same Web site. By extending

the clusters with connectivity information, the augmented user profile includes

a local neighbourhood of pages of the original clusters, which could include

Web pages that have not appeared in access logs. Because two pages are linked

only when the authors thought that a user who was viewing one might want

to view the other, the connection is a good indication of relevance. Therefore,

the extended cluster is a good approximation of the “semantic neighbourhood”

of the original clusters, which could contain important pages in terms of the

topic of the original user profile. Thus, this augmented user profile could

recommend to users “important” but “unexpected” resources, e.g., new added

authoritative pages. However, not all the pages in the local neighbourhood of

a cluster are coherent in the same topic of the cluster. As a result, including

all pages in the local neighbourhood may compromise one of the benefits of

the user profile in our system: content coherence. To eliminate this problem,

a further step is included in order to continue to improve the user profile.

In detail, we compute content relevance weights of all supplemented pages in

each augmented cluster. The content relevance weight of a page equals the

similarity of the page content to the corresponding mission cluster, which is

represented by the cosine normalization of Web pages and mission clusters’

keyword vectors. We then prune nodes, whose relevance weights are below

a threshold, from the connectivity graph. This process is similar to the one

proposed in [5] that aims at eliminating the “topic drift” problem of the original

HITS algorithm (see Section 2.1.4). According to the experimental comparison

in [5], we use Median Weight (i.e., the median of all relevance weights) as the

pruning threshold in our system. The pruning process avoids augmenting the

user profile with pages that focus on other topics, and guarantees that the

augmented profiles are still topic coherent and focused. After expanding and

pruning the clusters representing the user profile, we also augment the feature
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vectors that label the clusters. The new keyword vectors that represent the

improved user profile also have the keywords extracted from the content of the

augmented pages.

In addition, we made one attempt at performing the expansion step to

include neighboring pages twice, thus including pages (with content pruning)

which have a link-distance two or less from at least one page in each original

user profile. We theorized this might include more “important” but “unex-

pected” resources as desirable, but experiments show that its performance is

worse than doing the expansion only once. Thus, we continue to perform the

expansion once, as the original HITS algorithm does.

The structure information is also used in our system to rank the pages

within the cluster. We recognize that determining how to present the candidate

recommendation items in a suitable order is an important issue in building a

Web recommender system, especially when the number of recommendation

candidates is large. For example, suppose a user is on Web page a, and the

system finds 10 other pages the user may be interested in. Which ones should

be presented as the top 3 of the recommendation list? Which one should be

selected if only a single recommendation can be given? If a recommender

cannot rank and present its recommendation items in a proper order, users

would lose trust in it, even though its recommendation list includes items that

are actually desirable. Although a large number of Web recommender systems

have been proposed, few systems have so far dealt with this important issue.

Most systems simply provide recommendation lists, treating all items in a list

as equal.

We take advantage of the constructed connectivity graph of clusters and,

apply the HITS algorithm on them to identify the Authority and Hub pages

within each of them. These measures of Authority and Hub allow us to rank

the pages within the cluster, and this ranking will be used for recommendation

presentation order later in the on-line module.

As mentioned in 2.1.4, Authority and Hub are mutually reinforcing con-

cepts [36]. Indeed, a good Authority is a page pointed to by many good Hub

pages, and a good Hub is a page that points to many good Authority pages.
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Figure 3.7: User Profile Improvement Process

Since, in our framework, we would like to be able to recommend pages newly

added to the site, we consider only the Hub measure. This is because a newly

added page would be unlikely to be a good authoritative page, since not many

pages are linked to it. However, a good new page would probably link to many

Authority pages; it would, therefore, have the potential to be a good Hub page.

Consequently, we use the Hub value to rank the candidate recommendation

pages in the on-line module.

In sum, our system makes use of structure and content information to im-

prove the user profiles built from missions. Connection information is also

used to rank pages within the improved user profiles. The process is summa-

rized in Figure 3.7. Both the methodologies of constructing the user profile in

multiple steps (building and then improving), and ranking items in the profile

with Web structure information, are new in the field of Web recommender

systems.

3.3 The On-line Module: The Recommenda-

tion Engine

The previously described process consists of work done exclusively off-line. The

on-line module in our framework, on the other hand, is a recommendation

engine which gives recommendations to visitors of the Web site on-the-fly.

Generally speaking, the recommendation engine in a recommender system is

triggered to give recommendations with some trigger mechanism. The trigger
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could be something bought, a special date, etc. In our framework, the trigger

is the user’s current information need. When a visitor starts a new visit on the

Web site, we identify his/her information need, and try to match it on-the-fly

with already captured user profiles. If they match, we recommend the most

relevant pages in the matched cluster. Please note that due to the concern for

user privacy, we delete the behavior record of the current user as soon as s/he

leaves. If the user returns, new recommendation are provided, based on his or

her new behavior.

Identifying the information need of the current visitor consists of recogniz-

ing the current focused topic of interest to the user. A study in [14] shows that

looking on either side of an anchor (i.e., text encapsulated in a href tag) for

a window of 50 bytes would capture the topic of the linked pages (see Section

2.1.4). Based on this study, we consider the anchor clicked by the current user,

and its neighbourhood on either side, as the contextual topic of interest. The

captured topics are also represented by a keyword vector, which is matched

with the keyword vectors of the clusters representing the improved user profile.

From the best match, we get the pages with the best Hub values and provide

them in a recommendation list, ranked by the Hub values. To avoid supplying

a very large list of recommendations, the number of recommendations is ad-

justed to make it proportional to the number of links in the current page. Our

goal is to have a different recommendation strategy for different pages, based

on how many links the page already contains. Our general strategy is to give
√

n best recommendations (n is the number of links), with a maximum of 10.

This strategy is applied in order to prevent adding noise and providing too

many options. The relevance and importance of recommendations is measured

with the Hub value already computed off-line.
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Chapter 4

Evaluation of the Recommender
System

In Chapter 3, we discussed how we utilize the usage, content, and structure

data of a Web site to build the user profile, and use it to make recommenda-

tions. The immediate questions, then, would be: 1) what is the performance of

our recommender system, especially when compared with other similar ones?

And 2) to what extent do the usage, content, and structure information actu-

ally contribute to the improvement in recommendations?

Thus, in this chapter we talk about the evaluation of our recommenda-

tion system. In fact, with Web recommender systems becoming more widely

used, a careful evaluation of their performance becomes increasingly impor-

tant. However, recommender systems are complex applications that are based

on complicated models, and this complexity makes evaluation efforts very dif-

ficult. In addition, recommender systems are designed for different contexts.

Choosing proper methodologies and metrics for evaluation of the diverse sys-

tems is challenging, and results are hardly generalizable. As a consequence,

many recommender systems in the literature ignore this evaluation and com-

parison work. As an alternative, they seek some examples to show the “ra-

tionality” of the results their systems generate. In this thesis, however, we

explore how to choose a proper evaluation methodology, as well as suitable

mathematical metrics to evaluate the overall performance of our hybrid rec-

ommender system. Moreover, the methodology and metrics are used to assist

us in evaluating the impact of the different information channels we use in
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improving recommendations.

From our point of view, the quality of a Web recommender system should

be measured by its efficiency and its effectiveness. While efficiency can be

easily measured by the latency between the user’s request and the system re-

sponse in presenting the recommendation, effectiveness can be measured in

two ways: transparency and trust. Transparency means that the system can

explain the recommendation it gives. That is, the system gives the recommen-

dation when it has confidence and can satisfy a user’s challenge, such as “why

do you recommend this to me?”. At other times, the system seems transpar-

ent to users without any intrusion on their surfing. Trust measures whether

and how the user likes the recommendation, which would contribute and add

to the user’s trust in the system. This can be compared to work done with

the assistance of a secretary. A competent assistant has a good idea of what

you might like, as well as knowing when s/he should appear. We recognize

that the user’s trust in a recommender system stems from the user profile the

system uses for recommendation.

In the following sections, we first identify possible evaluation methodologies

and commonly used metrics to evaluate the recommender system. After that,

we describe our evaluation methodology and metrics, and apply them to the

University of Alberta Computing Science Department Web site data, to test

and evaluate our system.

4.1 Evaluation Methodologies Overview

Let us review briefly how an activity-based Web recommender system is con-

structed. After preprocessing the data collection, a Data Mining algorithm

(e.g., a clustering algorithm in our system) is applied to the data to generate

the user profile. The recommender system utilizes the user profile in the on-line

module to give the recommendation to users, on-the-fly. We recognize from

this process that three evaluation methodologies could be used to evaluate a

Web recommender system.
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4.1.1 Evaluation of the Algorithm

The first method is to evaluate the Data Mining algorithm the recommender

system adopts. For example, some recommender systems use clustering tech-

nology to group either users who have common interests, or Web pages that are

frequently visited together. The recommender system then takes advantage of

the resulting clusters to generate recommendations. Because the clustering al-

gorithm is the core and most important component in building such a system,

we may evaluate the performance of the recommender system by evaluating

the quality of the clusters. For two recommender systems, each of which uses a

different clustering algorithm to generate clusters, the system whose clustering

algorithm generates higher-quality clusters can be argued to be better than the

other. However, there are several major shortcomings with this methodology:

• This approach emphasizes how well patterns in the data set can be

learned, rather than how useful the patterns are for recommendation

purposes. The quality of a clustering algorithm cannot be simply equal

to the quality of a recommender system based on it. The clusters gener-

ated by a clustering algorithm may be very helpful for some applications,

but it is not certain that a recommender system based on them is the

most optimal;

• A Web recommender system is a complicated system, but this approach

ignores many aspects in the system which could contribute to system

performance. For instance, as we have pointed out, the problem of how

to present the candidate recommendation items in a suitable order is an

important issue in building the Web recommender system. Evaluation

of the algorithm cannot identify any endeavor of improving recommen-

dation quality by adjusting recommendation order.

• It is impossible to compare different types of recommender systems using

this methodology. One of the main purposes for evaluating recommender

systems is to compare different recommenders. We cannot achieve this

purpose if we only evaluate the algorithms they use. For example, sup-
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pose there are two recommender systems – one based on the association

rule algorithm and the other based on the clustering algorithm. The re-

sult of the association rule algorithm is a set of frequent itemsets, while

the result of the clustering algorithm is a set of clusters. It is both

meaningless and virtually impossible to compare a frequent itemset and

a cluster set, and to say which one is better.

4.1.2 User-centred Evaluation

Whatever the algorithm used in a recommender system, its final purpose is

certain: facilitating users’ navigation by recommending to them useful Web

resources. The users’ trust and satisfaction is the ultimate goal for the design

of any recommender system. As a result, ideally, the quality of a recommender

system can only be evaluated by its real users. That is, in order to evaluate a

recommender system, it must be installed in the real world and real users must

be able to use it. We then can ask for the users’ feedback in order to evaluate

the system. We call this evaluation methodology user-centred evaluation. An

example of evaluation in this category is given in [3], in which a recommender

system for a virtual university information system at the University of Karl-

sruhe is tested and evaluated by a group of persons, including 6 students, 1

system administrator, 1 secretary, and 5 researchers. They are asked to mark

each recommendation presented to them, “right” or “wrong”.

Evaluation by the real user is obviously better than evaluation of the al-

gorithm. However, in most cases, this methodology is too ideal to be imple-

mented, for the following reasons – some of which have been demonstrated in

the above example:

• As with the design of the rating-based or survey-based recommender

system, asking real users to evaluate the system is often considered in-

trusive. When a recommender system is launched on-line, and users

experiencing it are asked to give feedback, most of them do not respond

to the request, even though they understand that their feedback will

benefit themselves, by helping to improve the quality of the system.
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• Organizing a special group of people, for whom it is mandatory to test

the recommender system and give feedback to evaluate the system has its

own problems. In the first place, it is costly: human resources are expen-

sive and a large number of people are needed, to avoid bias in the test.

For example, [3] employs only 13 people for the evaluation, and omits

one of the most important portions of users of the system – prospective

students. As a result, costs are usually too prohibitive to make exten-

sive testing feasible, especially for a research community. Even for a

commercial community, such testing is difficult, as the construction of

a recommender system is usually a spiral process. Any recommender

system has a great number of parameters to be tested and tuned before

launching formally, which cannot be done at one time. In summary, it is

unrealistic, both in terms of economy and time, to use this methodology

to test a recommender system.

4.1.3 Simulation-based Evaluation

One of the major concerns in designing our recommender system was to avoid

user intrusiveness. We would like to make every effort to avoid user involve-

ment, including in the evaluation phase. Thus, evaluation by the real user is

not applicable for our system. Rather, we propose a non-intrusive, quantitative

evaluation approach.

In the Supervised Machine Learning field, the data set is usually divided

into two parts: training data and test data. The former is used to train and

build a model, while the latter is used to validate and evaluate the model.

Enlightened by that, when we make use of the Web server access log to build

our recommender system, we also separate the log data into two parts. The

first part, combined with textual content as well as linkage information, is used

to build the user profile and the system, as we have described in Section 3, while

the second part is kept to test and evaluate the system. This methodology is

illustrated in Figure 4.1.

The rationale for this methodology is that what the Web access log records

is the user’s real navigational behavior. Therefore, entries in the test data log
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Figure 4.1: Simulation-based Evaluation

can be thought as the behavior of users in the presence of the recommender

system. In this scenario, we make an assumption that the user’s behavior, in

the absence of a Web recommender which has been recorded in the web log,

is similar to the user’s behavior after we add the recommender on-line. Using

this assumption, we can view the test part of the log data as the behavior of

some “dummy” users, which simulate the behavior of the real user utilizing the

assistance of a recommender system. Hence, we call this the simulation-based

evaluation approach.

For each Web page in a session in the test log data, our recommender

system generates a recommendation list. We can then evaluate the quality

of the recommender system by measuring the degree of match between the

pages in the recommendation list and in the session (see below for a more de-

tailed description). The evaluation is measured and presented in quantitative

format; therefore this approach can be used to compare the effect of differ-

ent recommender systems, regardless of which Data Mining techniques they

adopt: association rule, clustering, or others.

Admittedly, some assumptions have to be made before applying this simulation-

based approach. However, it is fast, economical and, most important, auto-

matic and able to avoid any user involvement.
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Negative Positive
Negative Predicts a b
Positive Predicts c d

Table 4.1: Confusion Matrix

4.2 Evaluation Metrics

To quantitatively measure the quality of a recommender system, some evalua-

tion metrics have to be employed; however, metrics selection is not a straight-

forward task. In this section, we first briefly review some metrics for perfor-

mance measures proposed in the fields of Statistics, Machine Learning, and

Information Retrieval, and their application in the recommender system. We

then propose our improved metrics.

4.2.1 Metrics for Measuring Recommender System
Performance

Some metrics for measuring the performance of information systems, originat-

ing from Statistics, Machine Learning, and Information Retrieval have been

applied to evaluate recommender systems [58] [50] [101]. Most of them use

similar information, which is based on the so called confusion matrix [37],

as depicted in Table 4.1. The confusion matrix corresponds exactly to the

outcomes of a classical statistical experiment. In the matrix, c + d represents

those items which should be recommended, while b+d represents what is actu-

ally predicted and presented as recommendations by the system. The matrix

shows how many of those recommendations actually are correct recommenda-

tions (cell d) and how many are not (cell b). The matrix also shows how many

of the possible recommendations the system rejected (a + c), were correctly

rejected (cell a), or should actually have been recommended (cell c).

4.2.2 Performance Metrics from Machine Learning

Performance metrics from Machine Learning are applied mainly to evaluate

the performance of the algorithm used in the recommender system – more

specifically, to evaluate the ability of the algorithm to learn and build the user
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profile and model. The most commonly used performance metrics from Ma-

chine Learning are accuracy and coverage. Accuracy is the fraction of correct

recommendations out of total possible recommendations (see Formula 4.1).

Coverage measures the fraction of objects in the search space the system is

able to provide recommendations for (see Formula 4.2). We cannot define cov-

erage directly from the confusion matrix, since it only represents information

at the level of recommendations.

Accuracy =
Correct Recommendations

Total Possible Recommendations
=

a + b

a + b + c + d
(4.1)

Coverage =
Objects with Recommendations

Total Number of Objects
(4.2)

4.2.3 Performance Metrics from Information Retrieval

From the point of view of Information Retrieval, the goal of the recommender

system is to help users find items of interest from the set of all available items.

To accomplish this task, the most frequently used performance metrics in

Information Retrieval are precision and recall, which are defined in Formulas

4.3 and 4.4, respectively.

Precision =
Correctly Recommended Items

Total Recommended Items
=

d

b + d
(4.3)

Recall =
Correctly Recommended Items

Total Useful Recommendations
=

d

c + d
(4.4)

Often the number of total useful recommendations needed for computing

recall is unknown, since the whole data collection would have to be inspected.

However, instead of the actual total useful recommendations, the total number

of known useful recommendations, that is, c + d in the confusion matrix, is

used as an estimate.

Studies have shown that precision and recall are conflicting properties;

high precision means low recall, and vice versa [82] [96]. Therefore, an optimal

trade-off between precision and recall is required for an Information Retrieval

system.
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4.2.4 Recommendation Accuracy and Shortcut Gain

As mentioned before, a Web recommender system can be utilized to recom-

mend either products, such as books, movies, and music CDs; or on-line re-

sources, such as Web pages or on-line activities. Our system can be seen as an

improved Web usage recommender system mainly designed to be used for the

latter purpose. In this scenario, we recognize that the quality of a recommender

system depends on whether the recommendation can accurately predict users’

information needs, and assist them to fulfill their needs as quickly as possible.

Consequently, we propose two measurement metrics: Recommendation Accu-

racy and Shortcut Gain. Recommendation Accuracy measures the degree to

which the recommendation given by a recommender system accurately pre-

dicts the users’ needs and interest. In fact, this metric is identical with the

Precision given by Formula 4.3. If the recommendation matches with users’

needs and interests, the user will probably like it. Thus, Recommendation

Accuracy can be used to measure the possibility that the user will like the

recommendation. This measure indicates the trust of the user in the system.

It is impossible for a system with a lower Recommendation Accuracy to gain

the trust of the user. Further, if the system can recommend a resource the

user is interested in, but would have to make considerable effort to reach, it is

highly probable the user’s trust in the system would be strengthened. There-

fore, a new metric, Shortcut Gain, is introduced in this thesis, and is used to

measure the ability of a recommender system to reduce the navigation effort

needed by users to fulfill their information needs. More precisely, we measure

the Recommendation Accuracy and the Shortcut Gain as described below.

Recommendation Accuracy is the ratio of correct recommendations among

all recommendations, and the correct recommendation is the one that appears

in the suffix of a session from which the prefix triggers the recommendation.

As an example, consider that we have S visit sessions in the test log. For

each visit session s, we take each page p and generate a recommendation list

R(p). R(p) is then compared with the remaining portion of s (i.e., the suffix

of s). We denote this portion T(p) (T stands for Tail). The recommendation

80



accuracy for a given session would be how often T(p) and R(p) intersect. The

general formula for recommendation accuracy is defined as:

RecommendationAccuracy =

∑
s

|⋃p(T (p)
⋂

R(p))|
|⋃p R(p)|
S

The Shortcut Gain measures how many clicks the recommendation allows

users to save if the recommendation is followed. Suppose we have a session

a, b, c, d, e, and at page b, the system recommends page e; then, if we follow

this advice, we would save two hops (i.e., pages c and d). An issue arises

in measuring this Shortcut Gain when the recommendation list contains more

than one page in the suffix of the session. Should we consider the shortest gain

or the longest gain? To solve this problem, we opted to distinguish between

key pages and auxiliary pages. A key page is a page that may contain relevant

information, and in which a user may spend some time. An auxiliary page is

an intermediary page used for linkage, and in which a user spends a relatively

short time. In our experiment, we use a threshold of 30 seconds to make this

distinction. Given these two types of pages, a Shortcut Gain is measured as

being the smallest jump gain towards a key page that has been recommended.

If no key page is recommended, then it is the longest jump towards an auxiliary

page. The set of pages in the session we go through with the assistance of the

recommender system is called the improved session s’. For the total S visit

sessions in the test log, Shortcut Gain can be computed as:

ShortcutGain =

∑
s
|s|−|s′|
|s|

S

In addition, we would like to compute the Coverage of a recommender system,

to test the consistency of system performance. Coverage measures the ability

of a system to produce all pages that are likely to be visited by users. The

concept is similar to the Recall in Information Retrieval. Coverage is defined

in our system as:

RecommendationCoverage =

∑
s

|⋃p(T (p)
⋂

R(p))|
|⋃p T (p)|
S
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4.3 Experimental Results

Using the definitions of Recommendation Accuracy, Shortcut Gain, and Cover-

age, we evaluated our recommendation framework on the University of Alberta

Department of Computing Science Web site. In this section, we report and

discuss the evaluation results.

In our experiment, we collected Web server access logs for 8 months (Sept.

2002 – Apr. 2003), and partitioned the data into months. We also collected and

stored content data, as well as structure data of the Web site. On average, each

monthly partition contains more than 40,000 pages, resulting in, on average,

150,000 links between them. The log for each month averaged more than

200,000 visit sessions, which generated an average of 800,000 missions per

month. The modified DC-tree content clustering algorithm generated about

1500 content clusters, which we used to identify the missions per month.

Given the data partitioned per month as described above, we adopt the

following empirical evaluation: one or more months’ data is used for building

our models (i.e., training the recommender system), and the following month

or months for evaluation. The reason we divide the data based on a time frame

(months), rather than use standard cross-validation in Machine Learning on

the data set, is that we want to measure the prediction ability of our system for

the future, rather than merely the past. Moreover, the Web site evolves over

time. More specifically, given a session s from a month m, if the recommender

system, based on data from month m− 1 and some prefix of the session s, can

recommend pages pi that contain some of the pages in the suffix of s, then the

recommendation is considered accurate. Moreover, the distance in the number

of clicks between the suffix of s and the recommended page pi is considered a

gain (i.e., a shortcut).

We evaluate the Recommendation Accuracy, Shortcut Gain, and Coverage

of our recommender system, which makes use of usage, content, and structure

information (referred to as Hybrid123 ). For the purpose of comparison, we

also implement a pure Web Usage recommender system (referred to as Us-

age), based on [17] using the association rule technique; and a pure Content-
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based recommender system (referred to as Content), based on [67] using the

clustering technique. The Usage system works as follows: an efficient asso-

ciation rule algorithm [17] is applied to the access logs to generate a set of

rules. Whenever the pages in the antecedent of a rule have appeared in the

user’s current session, those pages in its consequence are recommended. For

the Content system, all pages recorded in the access logs (referring to all pages

having once been accessed) are grouped into clusters solely based on their tex-

tual content, using a content clustering algorithm [67]. If one or more pages

in a cluster have been visited in the user’s current session, the pages in the

same cluster are selected to be recommended. To avoid supplying a very large

list of recommendations, and to make the comparison in the same context, we

apply the same limitation of recommendations number of our system on the

two. That is, we limit the number of recommendations in the two systems
√

n best recommendations (n is the number of links), with a maximum of 10.

To pick up the best recommendations, for all rules with the same antecedent,

recommendation candidates in Usage are ranked by the Confidence scores of

the individual rules; while in Content, candidates are ranked by the cosine

similarity with the current page. The Recommendation Accuracy and Short-

cut Gain of the three systems are depicted in Figures 4.2 and 4.3, respectively.

In the experiment, we vary the Recall to test the trend and consistency of

the system quality. We have to point out that it is very difficult to locate

parameters to cause the three systems to perform with the exact same Recall

values. Therefore, what we do in the experiment is try different parameters

for individual systems, and report the best results in a series of similar Recall

values.

As expected, the Accuracy decreases when the Recall is increased from

all three systems. However, Hybrid123 is consistently the best among the

three systems, superior to Usage by at least 30% – while Usage always ranks

second. The last-place ranking of Content justifies our argument that using

content information only is not sufficient to build a Web recommender system.

This is mainly because having pages with similar content does not guarantee

that they are related to a goal. We can conclude from the figure that usage
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Figure 4.2: System Performance Comparison: Recommendation Accuracy
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Figure 4.3: System Performance Comparison: Shortcut Gain
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Figure 4.4: Shortcut Gain vs. Recommendation Accuracy

information is a much better alternative to content in contributing to recom-

mendation accuracy, while attaching content to usage could further improve

system accuracy.

From Figure 4.3, we can see that in the low boundary, the Shortcut Gain

of Content is the best of the three systems, and the other two are close.

With the increase of Recall, the Shortcut Gain of all three systems continues

to improve, but in different degrees. Hybrid123 can achieve an increasingly

superior Shortcut Gain to that of Usage, and exceeds Content after Recall is

larger than about 10%. The major reason that the Shortcut Gain improvement

of Content is lowest is that with the increase of Recall, more and more pages

containing only the same keywords, but without any logical relationship are

selected to be recommended. This further proves that only recommending

pages with similar content does not necessarily assist the user to fulfill their

information needs.

Combining Figures 4.2 and 4.3, we can also see the relationship between

Recommendation Accuracy and Shortcut Gain in our system (Hybrid123 ), as

depicted in Figure 4.4. It shows that Recommendation Accuracy is inversely

proportional to the Shortcut Gain. Our study draws the same conclusion

from the Usage and Content system. We argue that this is an important

property of a Web recommender system. Therefore, how to adjust and balance
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Figure 4.5: Hybrid123, Hybrid-3, and Hybrid-2 : Recommendation Accuracy

between Recommendation Accuracy and Shortcut Gain, in order for a Web

recommender system to achieve the maximum benefit, is a question that should

be investigated. Some web sites, e.g., those with high link density, may favor a

recommender system with high Recommendation Accuracy, while others may

favor a system with high Shortcut Gain.

In our next experiment, we illustrate the advantage of incorporating Web

content and Web structure information in our system. To do so, we imple-

mented an additional two recommender prototypes. The first is similar to

Hybrid123 but is stripped from its connectivity information channel. That is,

we do not make use of linkage information to augment and improve the user

profile built on usage and content information. We name this hybrid recom-

mender Hybrid-3. The second is also a similar system to Hybrid123, but does

not make use of content information to identify a mission. Rather, the user

profile in the system is built upon traditional transactions identified according

to the approach in [17]. Then, the user profile is improved with structure

information, as with Hybrid123. This hybrid system is called Hybrid-2. The

Recommendation Accuracy and Shortcut Gain of the three systems are de-

picted in Figures 4.5 and 4.6.

Figure 4.5 shows the Recommendation Accuracy of the three contenders.

The consistent best performance of Hybrid123 illustrates the validity of us-
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Figure 4.6: Hybrid123, Hybrid-3, and Hybrid-2 : Shortcut Gain

ing content and connectivity information to improve recommendations in our

recommender system, and also indicates that content is more useful for recom-

mendation accuracy improvement. The Shortcut Gains of the three systems

are depicted in Figure 4.6. We notice that with the increase of Coverage,

Hybrid123 can achieve an increasingly superior Shortcut Gain compared to

both Hybrid-3 and Hybrid-2, while those two systems maintain a similar per-

formance in terms of Shortcut Gain. This further verifies our justification for

using distinct information channels in building a hybrid recommender system,

and shows that content and structure information make a similar contribution

to the improvement in Shortcut Gain. This experiment also proves that our

mission-based model is better than traditional transaction-based model.
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Chapter 5

The Case of VIVIDESK

In addition to the University of Alberta Department of Computing Science

Web site data, we also apply and test our system with another data set pro-

vided by the VIVIDESK system. VIVIDESK1 is a commercial system devel-

oped by the Centre of Health Evidence at the University of Alberta, as a gate

to a multitude of applications and on-line resources, and is used by hospital

personnel. The VIVIDESK system tracks and records in its log the on-line

activity and requests of those health care providers that are using the system.

The VIVIDESK data was originally considered in our intention to further

test and verify the effectiveness and applicability of our recommender system.

However, there is no favorable content and structure information available in

the system. On the other hand, it has a specific session-based activity log

which records details about user accesses to on-line resources via different ap-

plications pre-included in the system. Based on this idiosyncratic data set, we

extend our previous work, in particular to identify missions to build the user

profile. We discuss this in detail in the following sections.

5.1 VIVIDESK Data

First, we will give a brief introduction concerning this data set, and discuss

the difference between it and the generic Web server access logs.

The VIVIDESK system is a new and powerful tool provided by the Cen-

tre of Health Evidence (CHE), University of Alberta Faculty of Medicine and

1http://www.vividesk.com/
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Figure 5.1: A Snapshot of the VIVIDESK Desktop

Dentistry, to assist health care providers to fulfill their knowledge acquisition

needs. In a hospital, many unusual medical situations occur, some of which

will be beyond the practitioner’s knowledge. Ultimately, a decision about the

best care for the patient must be made. Faced with such a situation, health

care providers traditionally would rely upon their own acquired knowledge

and experience, try to find the information in a pocket reference book, or con-

sult with a colleague or superior to obtain the information needed to make

a sound decision. These methods are quite common and will continue to be

used in health care settings. The CHE electronic desktop, VIVIDESK, how-

ever provides another efficient and effective alternative. A VIVIDESK desktop

is a set of pre-selected applications which are believed to be useful for help-

ing physicians and nurses to make their decisions in the clinical environment.

The applications are selected and assembled into the VIVIDESK desktop by

an editorial committee, composed of experienced physicians, librarians, and

nurses. The editorial committee evaluates existing and potential resources ac-

cording to their usefulness to health professionals. The application could be

bibliographic databases such as MEDLINE, Microsoft Office package, or a hub

of a collection of Web resources for a special hospital task. Figure 5.1 shows a

snapshot of a VIVIDESK desktop.

When health care providers use the desktop, it tracks their on-line activities
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and requests, and records how the individual applications are used and which

web pages are visited in the so called VIVIDESK logs.

The VIVIDESK log is similar to the Web server access log in terms of some

basic information recorded in both systems, such as client address and request

date and time, but it has its own distinct properties:

• VIVIDESK records both application usage and Web access usage, and it

records the latter within the former. VIVIDESK records how individual

applications which have been pre-organized are used. When utilizing

such an application, a user can access the Internet, either by following

the links, or launching a browser, both provided within the application.

This Web access is also recorded. Moreover, the relationship between

applications and visited Web resources – that is, which resources are

visited from which particular application – is also recorded.

• A Web server access log records only users’ requests to a particular Web

server, but VIVIDESK records all Web requests from users, not limited

to any specific Web site.

• In the VIVIDESK system, any users are required to login and logout.

Thus, the VIVIDESK log is a session-based access log, having entries

identified by users. As a result, there is no need to identify user and ses-

sion for this access log. Please note that although users login and logout

information is recorded in the log, user privacy is still protected when

this dataset is used to build our recommender system, as our system

never refers to a specific user when giving recommendations.

5.2 Mission Identification on VIVIDESK Data

The mission identification approach discussed in Section 3.2.2 relies on the

availability of the textual content of web pages, which could not always be

provided. For instance, no content information about the pages visited in the

VIVIDESK system are available to us. In fact, the Web pages recorded in

the VIVIDESK system come from different Web sites, and a large number of
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them are dynamically generated, which makes retrieving page textual content

difficult or even impossible. Can we identify missions in the absence of textual

content? In this section, we answer the question by investigating alternative

approaches to identifying missions from the VIVIDESK access log.

We recognize that in the VIVIDESK system, all Web pages are requested

in individual applications, while these applications are carefully selected and

assembled in the system. A common usage of the VIVIDESK desktop is as

follows: a medical professional logs into the system to look for some resources

to aid in making a decision, and logs out when the necessary information

has been found. During a log-in session, the physician clicks to open one

or more applications on the desktop. Within each application, the physician

could follow the link(s) to access a Web resource, or start an on-line search

– both provided in the application – in case the expected information is not

available in the application. More often than not, physicians open more than

one application at the same time. The following example illustrates a typical

log of a session in the VIVIDESK system:

Application 1: a-b-a-d-e

Application 2: f-g

Application 2: h-a-i

Please note that the log in the VIVIDESK system is organized in Application-

Web Resource format. That is, the system tracks and records the sequence

of applications in a log-in session, and the sequences of Web pages invoked

within individual applications. In a typical Web server log, the same session

would be recorded as: a-b-f-a-g-d-h-a-i-e.

Although there is no textual content available for us to identify the con-

tent coherent missions as we desired, we work out another approach to iden-

tify missions which would portray users’ concurrent information needs in the

VIVIDESK log-in session. We argue that all Web pages invoked within an

application could be highly related by virtue of their functionality, because

each application is carefully scrutinized and selected by experts to fulfill a

specific information need of health care providers. We therefore identify and

organize all Web pages invoked within an application as a mission. Thus, for
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Figure 5.2: Generalized System Architecture

the example above, our system identifies three missions as follows:

Mission 1: a-b-a-d-e

Mission 2: f-g

Mission 3: h-a-i

Our preliminary experiments (see Section 5.3) show that this is a good

approach to identifying missions for VIVIDESK data; moreover, it generalizes

our notion of mission. In fact, the notion of mission is proposed to identify

concurrent information needs during visit sessions. Generally, the mission can

be discovered based on the content similarity among pages visited during that

session. However, this concept is suitable and applicable in a context with-

out such information, to sites containing pages that are not content-rich, or

pages that are highly related by the virtue of their functionality rather than

content (e.g., a sequence of steps that is part of an on-line dynamic appli-

cation). Here, our work on the VIVIDESK data highlights the importance

of having application-related logs for mission identification. Admittedly, how

to identify missions in different environments should be further discussed and

expanded. With this understanding of mission, the architecture of our recom-

mender system can be generalized as depicted in Figure 5.2. User and Session

Identification as well as Profile Improvement in the architecture, are optional,

depending on the data available. For instance, since there is no structure in-

formation available in the VIVIDESK data, we do not include the user profile

improvement sub-system when we apply our system to the VIVIDESK data.

In addition, we found that the VIVIDESK system records in its logs

keystrokes made by users, along with access information, within individually
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invoked applications. For example, the system records the text entered by the

user in HTML form input fields. These text data, while not the real content

of Web resources, can also be associated with the visited pages and used to

separate sessions into missions. Specifically, we attempt to merge our former

identified missions (referred to as App-Mission), solely based on application,

if they are “content” similar. The “content” similarity is judged by the text

body input in the individual applications. Using this approach, we can identify

another type of mission, which we name Text-Missions. With the two differ-

ent missions, we can build two variations of our system for the VIVIDESK

desktop, referred to as App-Mission and Text-Mission, respectively.

5.3 Experiments on VIVIDESK Data

In this session, we test and evaluate the performance of our system on the

VIVIDESK data, with the emphasis on verifying the advantage of our mission-

based model in the absence of content information. In the experiment, we use

the same metrics – that is, Recommendation Accuracy and Shortcut Gain –

to test the performance of both App-Mission and Text-Mission; and we also

vary the Coverage to reveal the performance tendency. For the purpose of

comparison, we also implemented another variation of our system which uses

traditional transactions, as defined in [21], to build user profiles (referred to

as Tran).

The experimental results are depicted in Figures 5.3 and 5.4. We see that

App-Mission is able to achieve a higher Recommendation Accuracy than is

simple transaction identification, but leads to a lower Shortcut Gain. However,

because we can achieve a much higher Recommendation Accuracy with a slight

loss of Shortcut Gain, we can be confident that mission identification is a

better model for user navigational behavior. The reason App-Mission leads

to a lower Shortcut Gain is that we identify missions based solely on invoked

applications, with the absence of content. However, users may need more

than one application to fulfill one information need. Thus, identifying missions

based on applications may break some interrelationship between web resources
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Figure 5.3: System Performance on VIVIDESK Data: Recommendation Ac-
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across applications. However, this can be offset when we use the text entered

by the user to merge the mission identification, as we do in Text-Mission. In

fact, the Shortcut Gain achieved by Text-Mission is even higher than that

achieved by the transaction-based approach. However, the Recommendation

Accuracy of Text-Mission is slightly lower than App-Mission.

5.4 Novice vs. Pragmatic Users in the VI-

VIDESK System

All our experiments presented so far (for both the VIVIDESK data and the

UofA CS Department Web site data) are based on month-by-month partitions;

that is, the data collection is partitioned by month. One or more months’

data is used for training the system, and the following month or months for

evaluation. We notice that the VIVIDESK log is a session-based access log,

which also records the log-in number of each login-in session for individual

users. Thus, we know how many times a user had logged in and used the

system before the current login. This gives us some hints about what type

of user s/he is – a pragmatic user, or a novice one. A doctor who has logged

into the VIVIDESK desktop more than 100 times would be much more familiar

with the system than a new user. As a result, the former would likely be better

informed as to where the resources are to fulfill a specific information need, and

be able to reach them faster, with fewer mistakes than the latter. Arguably,

selecting only the portion of the VIVIDESK log belonging to the pragmatic

user, to train our recommender system could further improve recommendation

quality, in particular for the novice user. To verify this point, we perform

another experiment. In this experiment, rather than dividing the dataset

by time, we divide it into two parts, according to the login numbers. More

specifically, we rank all the log-in sessions in the VIVIDESK log decreasingly,

according to their login numbers. We then cut this ranked dataset in the

middle. We consider that log-in sessions in the first group are performed by

pragmatic users, while log-in sessions in the second group are records of novice

users. We use the first part of the data to train our system, and the second part
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Figure 5.5: Accuracy: Month-by-Month vs. Expert-Novice

for testing (referred to as Expert-Novice). We assume here that novice users

will eventually reach the resources they are looking for, and our recommender

system would then provide them with shortcuts. Figures 5.5 and 5.6 show the

results, when the same approach used in App-Mission is adopted for mission

identification. For the purpose of comparison, we re-depict the experimental

results of App-Mission which are originally presented in Figures 5.3 and 5.4

(here App-Mission is referred to as Month-by-Month).

Both figures justify our argument to exclusively use the access history of

the pragmatic user to achieve better recommendation. Indeed, both Recom-

mendation Accuracy and Shortcut Gain show improvement.

This experiment could also be done using the UofA CS Web site data, by

considering that users of month m are more Pragmatic than users of month

m− 1, if these users are the same.
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Chapter 6

Conclusion and Future Work

In this thesis, we present a framework for a hybrid web recommender system,

which utilizes, when possible, the content and connectivity of Web pages, in

addition to usage history. These different information channels are used and

combined in several ways and stages. First, we propose a novel mission-based

navigation model. The notion of mission is proposed in order to identify Web

users’ concurrent information needs during their on-line navigation, and we

make no assumption concerning the sequence in which these needs are ful-

filled. Thus, this mission-based model is better and more practical than the

traditional, widely used transaction-based model in describing the navigational

behavior of the real on-line user. In our framework, we use the textual content

of Web pages to identify missions from the Web access history; we then use the

PageGather algorithm to cluster the mission file. Each of the resulting clus-

ters possesses two characteristics: it is usage cohesive and content coherent.

These clusters are, therefore, suitable to be used as the user’s navigational

profile, to aid in fulfilling their information needs regarding a specific topic.

We then combine the linkage information and content information to augment

and then prune the mission clusters, to include those pages neighboring nodes

in the individual clusters and still having the same focused topic. Thus, our

system provides an opportunity for these rarely visited or newly added pages

to be recommended. The Web structure information is also used to compute

the Hub and Authority scores of pages, according to the HITS algorithm, in

individual clusters. These scores are used to rank the recommendation candi-
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date, with the more important items being recommended. Our experiments

show that the combination of usage, content, and structure of data in a Web

recommender system has the potential to improve the quality of the system, as

well as to keep the recommendations up-to-date. Indeed, our framework has

provided an initial attempt and demonstration of combining these channels for

recommendation improvement. In addition, we emphasize using and combin-

ing these distinct information channels off-line, which provides our framework

with another benefit: recommendation efficiency, i.e., reducing low latency for

recommendation.

However, there are various ways to use and combine these different infor-

mation channels to improve system quality, either in the on-line module or

the off-line module of a Web recommender system. We discuss several cases

which take advantage of structure information in a recommender system, as

examples. We have concluded that, according to our experiments, Recom-

mendation Accuracy is inversely proportional to the Shortcut Gain for a Web

recommender system. Therefore, these two metrics should be adjusted and

balanced for any specific Web recommender system, in order to achieve the

maximum benefit. The Web site structure as well as linkage information,

would be helpful in accomplishing that goal. Generally speaking, for a Web

site hierarchy such as that of the UofA CS Web site, the upper layers are

more deliberately designed than are the lower layers. In addition, users are

generally familiar with how to reach the pages they are looking for in these

upper layers and, as a result, they would prefer a recommendation with high

Shortcut Gain. On the other hand, in the lower layers, where Web resources

may not be well-organized and there are fewer user visits, users would be more

likely to prefer a recommendation with high Recommendation Accuracy. In

addition, when a user stays on a page with high link density and needs advice,

s/he usually favors a recommendation with high Recommendation Accuracy;

otherwise, a recommendation leading to a big jump is preferred. Thus, the

structure information could be used to adjust and balance Recommendation

Accuracy and Shortcut Gain dynamically for the purpose of maximizing user

trust. Furthermore, the Web site structure information could be used to pro-
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vide better parameter adjustment in the system. For example, existing usage-

based Web recommender systems using the association rule algorithm make

use of the same Support and Confidence score on all visit sessions to generate

rules to be used for recommendation. As we have discussed, different layers

of a Web site have diverse visit frequency and, generally speaking, hierarchies

tend to get more hits near the root, while pages in lower layers are more likely

to concentrate on a specific topic. Thus, we would like to provide different

rules in which items from different layers have different Support and Confi-

dence thresholds. The simplest situation might be to increase Support but

decrease Confidence to generate rules for sessions in which items belong to the

upper layers of the site hierarchy; but lower Support and raise Confidence for

the sessions involving items in the lower layers. From this discussion, we can

conclude that there are many possible and potential ways available to utilize

the distinct information channels in a recommender system; unfortunately, the

best one is not yet evident. It is possible to combine the channels in a different

but more effective way than is done in our system, and our future work in this

area will include investigating and comparing the different methods.

We would also like to utilize the user-centred method to further validate

our previous simulation-based evaluation. Data Mining technology was ini-

tially proposed to help people deal with the sea of data available; therefore, a

fully automatic system was always more preferred. Until recently, it has been

accepted that it is virtually impossible for a fully automatic system to fulfill

the necessary tasks based on the current development of science and technol-

ogy. To provide for the most effective data mining, the user must be allowed

to be front and centre in the mining process. A proper division of labour be-

tween computers and humans is a new topic and challenge in the Data Mining

field. In our Web recommender system evaluation, we have recognized (Sec-

tion 4.1.2) that user-centred evaluation is a superior way to evaluate a Web

recommender system. To make full use of the advantages of automatic data

mining, we would combine the user-centred and simulation-based evaluations

in building and evaluating a recommender system. The simulation-based eval-

uation is used to select the best parameters to be used and to pre-test the

100



performance of the system. When we are confident with the lab results of the

system, real users will be invited to further test and evaluate it.
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