
Abstract

Clustering means grouping similar objects into classes. In the result, objects

within a same group should bear similarity to each other while objects in

di�erent groups are dissimilar to each other. As an important component

of data mining, much research on clustering has been conducted in di�erent

disciplines. Clustering is a very popular practical problem in many areas.

This essay presents a taxonomy of the major and recently devised cluster-

ing techniques, and identi�es recent advances in the �eld. Detailed analysis,

implementation and experiments for major clustering methods are given in the

essay. We also addressed the problem of applying clustering techniques in the

context of web mining in particular for grouping web sessions using algorithms

that can handle categorical data eÆciently.
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Chapter 1

Introduction

Clustering is a process of grouping objects into groups (i.e. clusters), so that

objects within one cluster are similar to each other and objects in di�erent

clusters are dissimilar to each other [HK00]. The keywords in this widely

accepted de�nition of clustering are similar and dissimilar: What is \simi-

lar/dissimilar"? How can people tell whether two data objects are similar or

dissimilar to each other? Much of the research in clustering is actually around

these two keywords, i.e. the de�nition of similarity/dissimilarity. In cluster-

ing analysis, a similarity function or dissimilarity function is used to measure

the similarity/dissimilarity between data objects. In some cases, de�nition

of such a function is obvious. For example, in two dimensional spatial data,

dissimilarity between two data objects can simply be de�ned as the distance

between them. However, in most of the real application problems it is usually

not easy to properly de�ne similarity function.

Cluster analysis has been widely used in many application areas which in-

cluding data analysis, image processing, market analysis, pattern recognition,

etc.

In this essay project, we conduct a survey and extensive experiments on

the data clustering techniques, and then concentrate on clustering web trans-

actions to investigate possible similarity measure for web sessions. Possible

applications for this part of the work include web session analysis, clustering

on time series, clustering on DNA sequences, etc.
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Chapter 2

Comparative Study of

Clustering Algorithms

Due to the huge amount of data stored in databases, cluster analysis has

become a very active topic in data mining research. There exist some very

good survey papers [AMP99] [HKT01], but either they are out of date or

only cover part of clustering techniques. Several research papers have been

published in the past few years with di�erent emphasis and ideas. Here we try

to produce an up-to-date summarization and analysis of some known clustering

methods.

2.1 Requirements for Data Clustering

In data mining, people have been seeking for e�ective and eÆcient clustering

techniques in the analysis of large databases. These are the typical require-

ments for a good clustering technique in data mining [HK00]:

� Scalability: The cluster method should be applicable to huge databases.

Techniques which can only be applied to small datasets are practically

useless.

� Ability to cluster di�erent types of attributes: Clustering objects

could be of di�erent types : numerical data, boolean data or categorical

data. Ideally a clustering method should be suitable for all di�erent

types of data objects.
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� Ability to discover clusters with di�erent shapes: This is an im-

portant requirement for spatial data clustering. Many earlier clustering

algorithms can only discover spherical shaped clusters. This ability is

necessary for all the recent clustering techniques.

� Minimal input parameter: This means the method requires mini-

mum domain knowledge for correct clustering. It is one of the main

reasons why most of the clustering algorithms are not practical in real

applications. Some very recent works try to overcome this problem.

� Not sensitive to noise: It is a typical requirement for clustering ability

because noise exists everywhere in practical problems. A good clustering

algorithm should be able to successfully perform clustering upon heavily

noised data.

� Insensitive to the order of input records: The clustering method

should give consistent results. In case the order of input data is changed,

a good method should give the same clustering result.

� Ability to handle high dimensionality: A simple numerical cluster-

ing problem is often in 2-dimensions or 3-dimensions, but a real database

could be in several dimensions. It is very challenging and a practical re-

quirement that a clustering algorithm should be able to handle high

dimensional data.

So far, there is no single algorithm that can fully satisfy all the above re-

quirements (clustering properties of all the studied algorithms are summarized

in Table 2.1 - 2.3 at the end of the chapter), but it is important to understand

characteristics of each algorithm, so that the user is able to select the proper

algorithm depending on di�erent problem. Also recently, there are several new

clustering techniques, some of which have made breakthroughs in their cluster-

ing abilities, thus it is necessary to put all these di�erent clustering methods

together in perspective. This is one of the motivations of this essay.
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2.2 Taxonomy Study on Clustering Techniques

There exist a large number of clustering algorithms. Generally speaking, these

clustering algorithms can be clustered into 4 groups: partitioning methods,

hierarchical methods, density-based methods and grid-based methods. This

section gives a taxonomy analysis and experimental study of representative

methods in each group.

In order to examine the clustering ability of clustering algorithms, we

performed experimental evaluation upon K-means [J.M67], CURE [SG98],

ROCK [GRS99], DBSCAN [EKSX96], CHAMELEON [KHK99], WaveCluster

[SCZ98] and CLIQUE [AGGR98]. The DBSCAN program is from its authors.

CURE and ROCK codes are from the Department of Computer Science and

Engineering, University of Minnesota. K-means, CHAMELEON, WaveClus-

ter, and CLIQUE programs were locally implemented. We evaluate these

algorithms by using two dimensional spatial data sets referenced and used in

the CHAMELEON paper [KHK99] and data sets referenced and used in the

WaveCluster paper [SCZ98]. The reason for using two dimensional spatial

data is because it is easier to evaluate the quality of clustering result. Often

people can intuitively identify clusters on two dimensional spatial data, while

this is usually very diÆcult for high dimensional data sets.

We show the experimental results of each algorithm on the t7 data set from

CHAMELEON paper. The data set is shown in Figure 2.1. This data set has

9 heavily noised clusters of di�erent shapes, and it has clusters inside a cluster.

In all the following clustering result �gures, black points mean noise.

2.2.1 Partitioning methods

Suppose there are n objects in the original data set, partitioningmethods break

the original data set into k partitions (k is the number of clusters required in

output). The basic idea of partitioning is very intuitive, and the process of

partitioning is typically to achieve certain optimal criterion iteratively.

The most classical and popular partitioning methods are k-means [J.M67]

and k-medoid [LP90], where each cluster is represented by the gravity centre of
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Figure 2.1: The test data set t7 which has 10000 data points.

the cluster in k-means method or by one of the \centre" objects of the cluster in

k-medoid method. CLARANS [RJ94] is an improved k-medoid algorithms. It

is more e�ective and more eÆcient than other k-medoid methods, for example

PAM [LP90] and CLARA [LP90], but CLARANS assumes that all the original

data set can be held in the main memory which may not be true for huge

data sets. Another extension of k-means is k-modes method [Hua98], which

is specially designed for clustering categorical data. Instead of \mean" in k-

means method, k-modes method de�ned \mode" for each cluster. It de�ned

dissimilarity measures of two categorical objects as the total mismatches of the

corresponding attribute categories of the two objects. The modes of clusters

are updated using a frequency-based method.

All the partitioning methods have similar clustering quality. The reason for

this phenomenon is because all the partitioning methods use only one centre

object or gravity centre to represent a cluster, and cluster quality is measured

by the distances of all the other points of the same cluster from their centre

point. This is often not enough for representing all the information of a cluster

and not able to truly reect cluster quality for non-spherical clusters or large

clusters. DiÆculties with partitioning methods include: (1) The choice of

the output cluster number k requires some domain knowledge which maybe

not available in many circumstances, (2) diÆculty in identifying clusters with

large variation in sizes, (3) cannot identify clusters with non-convex shape, (4)

5



cannot identify clusters with elongated shapes.

Because this group of methods is relatively earlier than the other groups

of methods, and they usually have similar clustering results, we implemented

only k-means method in this group of methods as representative.

k-means

K-means needs a input parameter k which speci�es the number of output

clusters; the parameter k is common for all the partitioning methods. K-

means uses the mean value of the objects in a cluster as the cluster centre.

The method partitions the input set of n data objects into k clusters, so that

the square-error function following reaches minimal:

E = �k
i=1�x2Ci

kx�mik
2;

where x is the data object, mi is the mean of cluster Ci. However, depends

on the starting mean of clusters, it is also possible that k-means can only

reaches a local minimal.

K-means method works well if the clusters are spherical, well-separated,

and if k is known in advance. K-means' result on a simple testing data set

is shown in Figure 2.2. This data set has �ve simple sphere well-separated

clusters, and we see K-means successes on this simple testing data.

However, the method cannot cluster more complex data. K mean's result

on t7 is shown in Figure 2.3. From here we see K-means still tends to �nd

sphere clusters, so that it is not able to �nd arbitrary shaped clusters. This

is actually a general problem for all the partition methods because they use

only one gravity centre to represent a cluster, and clustering of all the other

points are decided by their relative closeness to the gravity centres of clusters.

Only one point, gravity centre's information is considered. Partition methods

do not consider relative closeness and connection among all the points in one

cluster.
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Figure 2.2: K means' clustering result on C3.dat. number of clusters = 5
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Figure 2.3: K means' clustering result on t7.10k.dat. number of clusters = 9
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K-modes

K-modes [Hua98] is the newest reported method in the group of partition meth-

ods. It is designed for clustering categorical data. K-modes algorithm �rst uses

a simple matching dissimilarity measure for categorical objects; Dissimilarity

between X and Y is de�ned as the total mismatches of the corresponding

attribute of the two objects. Then it de�nes a mode of a set of categorical

objects X = x1; x2; � � � ; xn as a vector Q = [q1; q2; � � � ; qm] that minimizes

D(X;Q) = �n
i=1d(xi; Q)

where d(xi; Q) is the dissimilarity between object xi and the mode Q. Here the

mode Q corresponds to mean in the k-means method. The k-modes method

then uses a frequency-based algorithm to update modes in the clustering pro-

cess to minimize the clustering cost function. In doing this, k-modes algorithm

extends k-means algorithm to categorical domain. This algorithm also has the

similar diÆculty in clustering as k-means has: favouring spherical clusters.

Due to the time limitation, we did not implement k-modes in this work.

2.2.2 Hierarchical Methods

A hierarchical clustering algorithm produces a dendrogram representing the

nested grouping relationship among objects. If the clustering hierarchy is

formed from bottom up, at beginning each data object is a cluster by itself,

then small clusters are merged into bigger clusters at each level of the hierarchy

until at the top of the hierarchy all the data objects are in one cluster. This

kind of hierarchical methods are called agglomerative hierarchical methods.

On the other hand, if the clustering hierarchy is formed from top down, at

beginning all the data objects are in one cluster, then big cluster is cut into

smaller clusters in each level of the hierarchy, until at the bottom level each

data object is a cluster by itself. This kind of hierarchical methods is called

divisive hierarchical clustering methods.

There are many new hierarchical algorithms that have appeared in the past

few years. The major di�erence between all these hierarchical algorithms is

how to measure the similarity between each pair of clusters.
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BIRCH

BIRCH [ZRL96] introduced the concept of clustering features and the CF-tree.

It �rst partitions objects hierarchically using CF-tree structure. This CF-tree

is used as a summarized hierarchical data structure which contains compression

of the data that tries to preserve the inherent clustering structure of the data.

After the building of the CF-tree, any clustering algorithm can be applied to

the leaf nodes of the CF-tree. BIRCH is particularly suitable for large data

set, however BIRCH does not perform well if the clusters are not spherical in

shape or there are big di�erences among cluster sizes. In other words, BIRCH

made breakthroughs on the eÆciency issue, but not on the e�ectiveness issue of

clustering. It has similar clustering results with partitioning methods. For this

reason, and also because of the time limitation, we did not implement BIRCH

in this work, but it is worthwhile to mention BIRCH here as one important

algorithm for clustering large data sets.

CURE

CURE [SG98] tends to solve two problems of partitioning clustering algo-

rithms: (1) Favour clusters with spherical shapes and similar sizes. (2) Fragile

in the presence of outliers. To achieve this, instead of using a single point to

represent a cluster in centroid/medoid based methods, CURE uses a set of

constant number of representative points to represent a cluster. The constant

number of representative points of each cluster are selected so that they are

well scattered and then shrunk towards the centroid of the cluster according

to a shrinking factor. The CURE authors argued that having more than one

representative point per cluster allows CURE to adjust well to the geometry of

non-spherical shapes and the shrinking helps to dampen the e�ects of outliers,

thus this set of representative points keeps shape and size information of the

cluster. The similarity between two clusters is measured by the similarity of

the closest pair of the representative points belonging to di�erent clusters.

Figure 2.4 shows the merging of two clusters in CURE. Representing points

of each cluster are shrunk. The distance between each pair of clusters is mea-

9



sured by the closest distance between representing points from each individual

cluster. Clusters with the closest distance are merged into a new cluster. A

new set of representing point for this new cluster is then selected to represent

the new cluster.

d0

d1
d2

shrink repre points measure closest dist merge

Figure 2.4: CURE's process of merging clusters

With proper parameter selection, CURE partly remedies the problem of

favouring clusters with spherical shape and similar sizes, and it is not sensitive

to outliers. CURE's using of a set of representative points for each cluster

can better represent cluster shape information. However the e�ectiveness of

these representative points highly depends on the the way points are selected,

the number of representative points and the shrinking factor. For example,

when the shrinking factor � is big, the set of representative points are shrunk

too much toward the cluster centre. In this case, the shrunk point set cannot

e�ectively represent the original shape and size of the cluster, and CURE's

cluster e�ectiveness is close to K-means. On the other hand, CURE becomes

sensitive to outliers when the shrinking factor becomes small. Also, notice that

similar to k-means, CURE also does not consider all the points of a cluster in

its clustering process. Compared with partitioning methods, it just improved

the way of representing clusters. Through experiments we found that CURE

has similar problem as k-means: it still tends to �nd sphere clusters, although

now the problem is not as serious as that of k-means'. It is diÆcult for CURE

to �nd an elongated cluster. Figure 2.5 shows CURE's clustering result on t7.
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Figure 2.5: CURE's clustering result on t7.10k.dat. cluster number = 9; � =
0:3; numerber of representative points = 10

ROCK

Another interesting method by the same group of CURE authors is ROCK

[GRS99]. ROCK operates on a derived similarity graph, so that ROCK is not

only suitable for numerical data, but also applicable for categorical data.

ROCK's authors intended to make their method applicable for categorical

data. Instead of using distance to measure similarity between data points

(actually there is no proper distance de�nition for categorical data), ROCK

proposed a novel concept of links to measure the similarity between a pair of

data points. The basic idea of links is shown in Figure 2.6.

In the upper �gure of Figure 2.6, if we want to decide whether the green

point should be in the same cluster with the red point or the blue point just

based on the inter-distances of these three points, it is obvious that the green

one is closer to the blue one, thus it seems the green point should be in the

same cluster with the blue one.

However, if we consider all the other points in the cluster space, the lower

picture tells us that globally it is more reasonable that the green point should

be with the red point. When we look at the di�erence between the two pictures,

we notice that it is because of the existence of the common neighbour points

between the green point and the red point that makes things di�erent. Those

common neighbour points are the links between the red one and the green one.
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Consider their neighbour points, the green point should be in the same cluster with the red.

Should the green point be in the same cluster with the red or the blue?

Figure 2.6: ROCK's idea of links.

Because the green point has more links to the red point than to the blue point,

so it should be in the same cluster with the red point. This idea of links is

the basic idea of ROCK. The concept of links uses more global information of

cluster space compared with the distance similarity measurement which only

consider local distance between two points.

In order to overcome the problem of favouring bigger clusters in the process

of clustering, ROCK argues that the similarity between each pair of clusters

can be measured by the normalized number of total links between two clusters.

The problem of ROCK is that it is not successful in normalizing cluster

links: it uses a �xed global parameter to normalize the total number of links.

This �xed parameter actually reects a �xed modeling of clusters, and it is

not suitable for clusters with various densities. ROCK's clustering result is

not good for complex clusters with various data density. Also, ROCK is very

sensitive to the selection of parameters and sensitive to noise.

ROCK is designed for clustering categorical data, so that its result for

clustering this spatial data set is not good. After adjusting parameters for a

long time, the best clustering result on t7 we can �nd is illustrated in Figure

2.7. Notice that we set the number of clusters to be 1000, then among the

12



resulting 1000 clusters, we got 5 big clusters, all the other 995 are just noise.

This is because ROCK does not collect noise in its clustering process. The

problem causes diÆculty in application: the user cannot know what cluster

number he should give ROCK although he may know that there should be 9

clusters in the data set. For this data set, if we set cluster number to be 9,

then ROCK's result is as shown in Figure 2.8, where most of the points, 9985

points, are in one cluster, and the other 15 points exists in the 8 noise clusters.
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Figure 2.7: ROCK's clustering result on t7.10k.dat. � =
0:975; number of clusters = 1000
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Figure 2.8: ROCK's clustering result on t7.10k.dat. � =
0:975; number of clusters = 9

13



CHAMELEON

A very recent method on clustering is CHAMELEON [KHK99]. The authors

of CHAMELEON claimed that the primary reason why all the previous meth-

ods failed in successfully �nding clusters with diverse shapes, densities or sizes

is because they all use some static models. For example, DBSCAN assumes

that all points within a cluster are density reachable with pre-set density pa-

rameters. ROCK measures the similarity of two clusters by using normalized

interconnectivity which is aggregate inter-connectivity against a static inter-

connectivity model. CHAMELEON performs clustering through dynamic

modeling: two clusters are merged only if the inter-connectivity and close-

ness between two clusters are comparable to the internal inter-connectivity

and closeness within the clusters. CHAMELEON also operates on a derived

similarity graph, so that this algorithm can be applied to both numerical data

and categorical data. Figure 2.9 shows an overview of the CHAMELEON

approach.

Data Set

Construct sparse graph Partition the graph merge partitions

K−nearest Neighbour Graph Graph Partition  Result Final Clusters

Figure 2.9: An overview of CHAMELEON

CHAMELEON operates on a sparse graph in which nodes represent data

items, and weighted edges represent similarities among the data items. The

sparse graph is formed by keeping k-nearest neighbour of each node. The two-

phase clustering process is based on this k-nearest neighbour graph. In phase 1

of the algorithm, it uses the graph partition method to pre-cluster objects into

a set of small clusters. Phase 2 of the algorithm merges these small clusters

based on their relative interconnectivity and relative closeness.

CHAMELEON has been found to be very e�ective in clustering. Major
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shortcomings of this algorithm are: It cannot handle outliers. Another problem

in implementation is that it needs proper setting of several parameters in order

to work e�ectively. The major parameters and their e�ect on clustering follows:

� k is the number of nearest neighbours recorded for each point. When

k is bigger, the memory and computational complexity of the program

will rise; when k is too small, the k-nearest neighbour graph becomes

too sparse, and the process of merging may stop in middle because the

relative connectivity becomes in�nity.

� MINSIZE is used in graph partition to decide the stopping size of graph

partition. When MINSIZE is small, phase 1 will produce a set of large

number of small partitions. This will cause the merging phase start with

large number of partitions, and thus the merging process will be longer.

Since computational complexity of phase 2 is O(n2), while computa-

tional complexity of phase 1 is only O(nlog(n)), for speed consideration,

MINSIZE should not be too small. However, MINSIZE cannot be too

large; when MINSIZE is too large, the clustering precision in phase 2

will decrease.

� � for adjusting relative closeness and relative connection's weight in

merging goodness function. In merging clusters, CHAMELEON con-

siders both relative connectivity and relative closeness. The merging

goodness function of CHAMELEON is of the form:

RI(Ci; Cj) �RC(Ci; Cj)
�;

where RI is the relative interconnection, and RC is relative closeness. �

is used to decide how much weight to give to relative closeness and how

much to give to relative connection. In clustering 2 dimensional spatial

data, we feel that relative closeness should be given more weight.

CHAMELEON's result on test data set t7 is shown in Figure 2.10. This

result is very close to the result in the CHAMELEON paper. We see that
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CHAMELEON does not collect noises: all the noise points are included inside

neighbour clusters.
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Figure 2.10: CHAMELEON's clustering result on t7.10k.dat. k =
10;MinSize = 2:5%; cluster number = 9

The group of hierarchical clustering algorithms is relatively new. The com-

mon disadvantage of hierarchical clustering algorithms is setting a termination

condition which requires some domain knowledge for parameter setting. The

problem of parameter setting prevents clustering algorithms from real appli-

cation. Also typically, hierarchical clustering algorithms have high computa-

tional complexity.

2.2.3 Density-based Methods

The advantages of density-based methods are that they can discover clusters

with arbitrary shapes and they do not need to pre-set the number of clusters.

DBSCAN

DBSCAN [EKSX96] is the most famous density-based method which connects

regions with suÆciently high density into clusters. Each cluster is a maximum

set of density-connected points.

DBSCAN's density de�nition is like this: For each object of a cluster,

the neighbourhood of a given radius (�) has to contain at least a minimum
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number of points (MinPts). The density de�nition of DBSCAN is intuitive.

In practice it works very well in spatial clustering. The problem of DBSCAN

is that it is very sensitive to the selection of � and MinPts, also it cannot

identify clusters with di�erent densities. A simple example of DBSCAN is

shown in Figure 2.11. Notice in this example the discovered cluster is of a

non-spherical shape, and DBSCAN has no diÆculty in �nding this cluster and

identifying other points as outliers.

Figure 2.11: A enlonged cluster discovered by DBSCAN.

When we apply DBSCAN to the testing data set t7, it gives very good

results as illustrated in Figure 2.12. We feel that the only problem of DBSCAN

is that it is very sensitive to the two parameters � and MinPts. For example,

if we change � a little bit from 5:9 to 5:5, then it gives a bad result (see Figure

2.13). If we increase �, the noise will create bridges that cause genuine clusters

to merge.

By the same authors, OPTICS [MMKJ99] is an extension to DBSCAN.

Instead of producing one set of clustering results with one pre-setting radius

(�), OPTICS produces an augmented ordering of the database representing its

density-based clustering structure. This cluster-ordering actually contains the

information about every clustering level of the data set (up to a \generating

distance"), and is very clear for further analysis. Restrictions of OPTICS are
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Figure 2.12: DBscan's clustering result on t7.10k.dat. � = 5:9;MinPts = 4
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Figure 2.13: DBscan's clustering result on t7.10k.dat. � = 5:5;MinPts = 4
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that it is still more suitable for numerical data, and also the user still needs

to set one parameter, MinPts.

With proper parameter setting, DBSCAN and OPTICS are experimentally

very e�ective for spatial data clustering, and they also have very good compu-

tation and memory eÆciency. It is safe to say that DBSCAN/OPTICS is one of

the best algorithms for spatial data clustering. Other density-based clustering

algorithms include DENCLUE, which clusters based on density distribution

functions.

2.2.4 Grid-based Methods

Grid-based methods �rst quantize the clustering space into a �nite number of

cells, and then perform clustering on the gridded cells. The main advantage

of grid-based methods is that their speed only depends on the resolution of

griding, but not on the size of the data set. Grid-based methods are more

suitable for high density data sets with a huge number of data objects in

limited space.

Representative grid-based algorithms include STING [WJR97], CLIQUE

[AGGR98] and WaveCluster [SCZ98]. This group of algorithms are mostly

new. WaveCluster is very important representative in this group of algorithms.

It seems that it has most of the good properties for a clustering algorithm. For

this group of clustering methods, we implemented WaveCluster and CLIQUE.

WaveCluster

WaveCluster is a novel clustering approach based on wavelet transforms. It

is a data clustering method in the spatial data mining problem. WaveCluster

�rst summarizes the data by applying a multi-resolution grid structure on the

data space, then the original multi-dimensional data space is considered as

multidimensional signals and signal processing techniques - wavelet transform

is applied to convert the spatial data into the frequency domain. After wavelet

transform, the natural clusters in the data become distinguishable in a trans-

formed frequency space. Dense regions, i.e. clusters, are easily captured in the

frequency domain.
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WaveCluster's wavelet transform process for one resolution is shown in

Figure 2.14, where HP is high pass digital �lter and LP is low pass digital

�lter. The 2-dimensional space is �rst convolved along the horizontal dimen-

sion and down-sampled by 2, resulting in two images L and H. Both L and

H are then convolved along the vertical dimension and down-sampled by 2,

resulting in four sub-images: LL, LH, HL, HH. After this process, LL has

an average signal for clustering in 2 dimensional signal space. Clustering in

LL is simply connecting signi�cant signal cells in LL to form a cluster. From

the point of clustering, in this signal processing process we only care the LL

signal. However from the point of digital signal processing, all the four signals

form a signal set which lose no information of original signal, and this set of

four signals can be used for recovery of original signal.

The process of cluster is �nding connected strong signal components in LL,

and because Wavelet transform can �lter out noise points, clustering in LL is

usually much simpler than clustering in original 2-dimensional space.

H

L

2

2

2

2

2

2

HH

HL

LH

LL

S0

Along horizontal(x) dimension

Along vertical(y) dimension

HP

LP

HP

LP

HP

LP

Figure 2.14: WaveCluster Transform Process

In the process of WaveCluster, there are two main parameters to be se-

lected: one is the grid resolution; the other one is the signal threshold � for

deciding whether a cell is a signi�cant cell in LL. This parameter is used for

clustering on LL. Because of these two parameters, WaveCluster is still not
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really an unsupervised clustering method. However, it is worthwhile to point

out that usually the signal threshold � on the transformed frequency domain

is easy to select because clusters become distinguished on frequency space.

Often, the wide range of � values result in same cluster result. For the other

parameter of resolution, the WaveCluster's authors argued that we should try

di�erent resolutions, and cluster results on di�erent resolutions gives di�erent

views of the clustering space.

Experimental results on Wavelet transform are shown by a test on one data

set from WaveCluster's authors. The testing data set DS4 is shown in Figure

2.15. This is one of the data sets used in the original WaveCluster paper. After

wavelet transform, the original data space was decomposed into four signals:

an average signal (LL) Figure 2.16 and three detail signals (LH Figure 2.18

, HL Figure 2.19, and HH Figure 2.17). Here LH emphasizes the horizontal

image features, HL the vertical features, andHH the diagonal features. When

we apply wavelet transform on t7, the result LL signal is shown in Figure 2.20

and Figure 2.21. Notice that the clusters become distinctive on the LL signal.

Thus we see wavelet transform can �lter out the noise in the original data. It

becomes much easier for clustering upon the transformed LL signal.

WaveCluster's clustering result on t7 is shown in Figure 2.22. Notice that

WaveCluster can not separate the two clusters connected by a \bridge". This

is because in LL, the bridge connecting the two clusters are still very strong

signal, thus if we want to separate the two clusters, we also should cut other

genuine clusters. Figure 2.23 shows another cluster result of WaveCluster by

adjusting signal threshold � . Now it can separate the bridge-connected two

clusters, but meanwhile it breaks other genuine clusters.

CLIQUE

CLIQUE is speci�cally designed for �nding subspace clusters in high dimen-

sional data. This method is suitable for �nding clusters in very sparse high

dimensional space. Because of time limitation, we did not test CLIQUE with

a high dimensional data. The experiment we did applied 2 dimensional data

on CLIQUE.
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Figure 2.15: testing data set DS4
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Figure 2.16: LL of DS4 after wavelet transform
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Figure 2.17: HH of DS4 after wavelet transform
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Figure 2.18: LH of DS4 after wavelet transform
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Figure 2.19: HL of DS4 after wavelet transform
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Figure 2.20: LL of t7 after wavelet transform (1)
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Figure 2.21: LL of t7 after wavelet transform (2)
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Figure 2.22: WaveCluster's result on t7 when resolution = 5 and � = 1:5
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Figure 2.23: Cluster result of WaveCluster on t7 when resolution = 5 and
� = 1:999397 signal threshold

CLIQUE's clustering process starts with the lower dimensional space. When

clustering for k-dimensional space, CLIQUE makes use of information of (k-

1)-dimension which is already available. CLIQUE's idea is shown in Figure

2.24: if project the 2-dimensional data to 1-dimensional axis, there are only 2

cells in horizontal axis and 3 cells in vertical axis are dense. So, when we check

potential dense 2-dimensional data cells, we just need to check the intersection

of the horizontal dense area and vertical dense area, instead of checking all the

2-dimensional space. From this example we see that using information of 1-

dimensional dense cells, we do not need to study most of the cells in clustering

of 2-dimensional space. This idea saves a lot e�ort in high dimensional data

space.

However, it is worthwhile to point out that CLIQUE is only suitable for

very sparse clustering space. In those cases, CLIQUE saved signi�cant search-

ing time. But, CLIQUE is not suitable for heavy noised clustering space or

dense clustering space. Figure 2.25 gives a counter example where we see

CLIQUE saves nothing in identifying potential dense cells in 2-dimensional
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Figure 2.24: Determine potential 2-dimensional dense cells using 1-dimensional
dense region information

space: in this �gure, when 2-dimensional cells are projected to 1-dimensional

axis, all the 1-dimensional cells are dense. If we use information of dense 1-

dimensional cells to decide potential dense cells in 2-dimensional space, all the

2-dimensional cells are potentially dense, and CLIQUE's process saved nothing

in �nding dense 2-dimensional cells.

CLIQUE's clustering result on t7 is shown in Figure 2.26. From experi-

ments we feel that CLIQUE is not very good in clustering 2 dimensional data.

Its diÆculties include: (1). Sensitive to noise. In heavily noised data sets, it

cannot use high resolution, otherwise it tends to merge genuine clusters to-

gether. (2). If the resolution is not high enough, some \edge" points of clusters

are deemed as outliers.

2.2.5 Turn, Turn* and Other

Besides these four groups of clustering methods, it is worthwhile to mention

some other very recently developed methods.
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Figure 2.25: A counter example for CLIQUE
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Figure 2.26: CLIQUE result on t7.10k.dat when threshold = 0:18 and
resolution = 20
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TURN [FWZ01] is a non-parametric clustering approach which is free of

parameters in application. One common problem of all the above algorithms

is that: they require some input parameters or heuristics that are usually

unknown at the time they are needed. This is a key problem which pre-

vents clustering techniques from many real applications. Aimed at this point,

TURN [FWZ01] is a new algorithm without any parameters. The basic idea of

TURN is to �nd the \turning " point between clusters which represent natural

boundary between clusters. If that is found, then the data points can be easily

assigned to the appropriate clusters. If X and Y are areas of high density of

data points, then somewhere between them the data point density will decline

to a minimum and start rising again. This is the natural cluster boundary and

is an example of a \turning" point in the distribution.

TURN proceeds by iteratively selecting a non-assigned object p and com-

putes the similarity between p and all other non-assigned objects. After sort-

ing the similarities and di�erentiating them 3 times, the algorithm looks for a

change of sign (i.e. turning point) in the di�erentiated numbers. All objects

appear before the turning point are assigned to the same cluster as p and their

direct neighbours are also pulled in. The process repeats until all objects are

assigned. TURN is suitable for clustering categorical data, and experimentally

it outperformed ROCK in clustering web usage data [FWZ01].

Another improved new algorithm TURN* [ZFW02] is designed for spa-

tial data clustering. TURN* �rst clusters spatial data at multi-resolution. In

each resolution, it classi�es the data points into \internal" points and \border"

points. The process of clustering is simply put all the neighbouring internal

points together into one cluster. After this, TURN* uses TURN for the selec-

tion of optimal clustering resolution based on the clustering statistics on each

resolution.

So far some very impressive results show that it is better in speed, scala-

bility and output quality than most available spatial clustering algorithm.

Another very recent method [HK01] developed by Harel and Koren is based

on the deterministic analysis of random walks on a weighted similarity graph

generated from the data. The main concept presented in the work is \separat-
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ing operator", which is applied to the graph iteratively to decrease the weights

of inter-cluster edges and to increase the weights of intra-cluster edges, thus

\sharpen" the distinction between the two kinds of edges and �nally �nd the

natural boundaries between the clusters. This method seems to own most

of the characteristics of a good clustering algorithm: unsupervised clustering

process, applicable to both numerical data and categorical data, not sensitive

to noise and can �nd clusters of arbitrary shape.

2.3 Clustering E�ectiveness Comparison

This section summarizes the clustering e�ectiveness properties of each algo-

rithm implemented. The properties of all the above discussed algorithms are

listed in Table 2.1 - 2.3.

property K-means K-modes DBScan
suitable Yes Yes Yes
for Huge
data set
attributes metric non-metric metric/non-metric
can cluster No No Yes
arbitrary
shape
Parameters cluster NO cluster NO �,

MinPts
Not sensitive Yes Yes Yes
to noise
Insensitive to Yes Yes Yes
order of
input records
handle high Yes Yes Yes
dimensionality

Table 2.1: Clustering Properties of Partition Algorithms and Density-Based
Algorithms

Here is the explanation on each clustering property:

� Suitable for Huge data set. We think that ROCK is not suitable for

huge data set. This is because ROCK's clustering memory complexity
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property CURE ROCK CHAMELEON TURN

suitable Yes No Yes Yes
for Huge
data set
attributes metric non-metric metric/non-metric non-metric
can cluster Not good Yes Yes Yes
arbitrary
shape
Parameters cluster NO, cluster NO, cluster NO,

shrinking factor, similarity threshold. MINSIZE,
number of �,
representative points. k nearest.

Not sensitive Yes No Yes Yes
to noise
Insensitive to Yes Yes Yes Yes
order of
input records
handle high No Yes Yes Yes
dimensionality

Table 2.2: Clustering Properties of Hierarchical Algorithms and TURN

is very high (almost O(n3)). This prevents ROCK from being directly

applied onto huge data set. ROCK's authors suggest to cluster on a

sample set, and then use the clustering result to label all the other data

points.

� cluster attribute. ROCK, CHAMELEON and TURN are suitable

for non-metric data. The reason behind this is that they are based on a

similarity graph of original data, but not on the spatial property and the

clustering space. K-modes is also suitable for categorical data because

its similarity measurement is designed for categorical vector space. Al-

though DBSCAN and WaveCluster can also be applied to some cases of

categorical data, that is only in case those categorical attributes can be

represented using numerical data.

� can cluster arbitrary shape. This is a diÆculty of partitioning

algorithm, and CURE is also not good on this property. Most of the

recent algorithms can handle this problem.
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property WaveCluster Clique TURN*
suitable Yes Yes Yes
for Huge
data set
attributes metric metric metric
can cluster Yes Yes Yes
arbitrary
shape
Parameters resolution resolution

� threshold
Not sensitive Yes No Yes
to noise
Insensitive to Yes Yes Yes
order of
input records
handle high No Yes Yes
dimensionality

Table 2.3: Clustering Properties of Grid-Based Algorithms

� parameters. We see that all the algorithms except TURN and TURN*

have certain input parameters. It is worthwhile to say that WaveCluster

is close to non-parameter clustering: although it need input parameter

for density threshold � , in the wavelet transformed space clusters are

distinctive, selecting of � is easy, and WaveCluster is not sensitive to

this parameter. As to the other parameter for resolution, the original

WaveCluster paper claims that this method is for multi-resolution clus-

tering, so resolution is not a parameter for the method.

� Not sensitive to noise. ROCK is very sensitive to noise. CLIQUE

also cannot handle noise very well: in heavily noised space, it cannot

use high resolution, otherwise noise will form bridges to connect genuine

clusters together. CHAMELEON is not sensitive to noise, but it also

cannot collect noise points; noise points in CHAMELEON are merged

into neighbour clusters.

� Insensitive to the order of input records. All the tested algorithms

are good on this property.
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� Ability to handle high dimensionality. For K means, as long as the

distance between two data points can be de�ned, it can be extended to

high dimensional data. For ROCK, CHAMELEON and TURN, the clus-

tering algorithms do not care whether it is high dimensional data. All

they need is just a similarity graph. So once proper similarity measure-

ment for high dimensional data is de�ned, they are applicable. CLIQUE

is speci�cally designed for high dimensional data. It is suitable for �nd-

ing subspace clusters in sparse high dimensional data. DBScan can use

R*-tree or SR-tree for high dimensional data. CURE and WaveClus-

ter can not be directly applied to high dimensional data because their

clustering processes directly depend on the spatial property of the data

space.

2.4 Clustering EÆciency Comparison

The computational complexity and space complexity of each algorithm is sum-

marized in Table 2.4. From the table we see that hierarchical algorithms typ-

ically have big computation and space complexity, while grid-based methods

have low computation and space complexity.

We recorded the clustering time and memory required for each implemented

algorithm. Although this may somehow relate to the way of programming,

still the results can reect characteristics of each algorithm. The program of

k-means, CURE, DBSCAN, CHAMELEON, WaveCluster and CLIQUE are

tested on a 800MHz Pentium III with 256M memory. Because of high require-

ment of memory, the ROCK code is tested on a 1.5GHz Pentium IV with 1G

memory. The experimental results are shown in Table 2.5. Our implementa-

tion experimental results in Table 2.5 are consistent with the analysis results

in Table 2.4. Notice that although k-means, WaveCluster and CLIQUE are all

O(n) in computational complexity, k-means' experimental clustering time is

obviously higher than the two grid-based methods. This is because grid-based

methods just scan the n input data objects once, and put these data into a

matrix of cells. The real clustering process just need to handle these data
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Algorithm Computational Complexity Space Complexity
K-means O(n) O(n)
CURE O(n2) for low dimention O(n)

O(n2 log n) for high dimention
ROCK O(n2 + nmmma + n2logn) min(O(n2); nmmma)

mm for maximum number
of neighbours
ma for average number
of neighbours

DBSCAN O(nlogn) O(n)
CHAMELEON O(nm+ nlogn+m2logm) O(kn),

m for number of sub-graph k for k-nearest graph
after phase#1.

WaveCluster O(n) O(n)
CLIQUE O(n) O(n)
TURN O(n2) O(n)
TURN* O(n) O(n)

Table 2.4: Computational complexity and space complexity of algorithms

cells, the number of which is usually much less than the number of original

data objects.

Algorithm Clustering time (second) Memory Size (byte)
K-means 8.44 5.5M
CURE 155.59 4.6M
ROCK 526.19 1.145G
DBSCAN 5.02(phase1)+5.51(phase2) 1.4M
CHAMELEON 1667.86 8.6M
WaveCluster 0.82 0.8M
CLIQUE 0.70 0.7M

Table 2.5: Clustering Speed and Memory Size Results upon a data set with
10,000 data points

Comments for each algorithm's eÆciency is following:

� K-means. Techniquely, k-means is the most simple one, and it does

not need complex structure to store data. So k-means has very good

speed and memory eÆciency, but it is not a good clustering algorithm

considering its poor e�ectiveness.
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� CURE. CURE is the quickest among the three hierarchical clustering

algorithms, and it has the smallest memory space. This is because it

has relatively simple similarity measurement and simple data structure

when compared with ROCK and CHAMELEON.

� ROCK. ROCK is slow, and its memory requirement is terrible. The

reason behind this is: it does not throw any noise, and each noise point

tends to be a cluster by itself; thus in most of cluster process, most of

the clusters are not real clusters, but they are there occupying space and

CPU time. Also, each cluster needs to keep a ordered heap of all the

other clusters according to the merging goodness, thus ROCK's memory

requirement is O(n2). One suggested improvement for ROCK would be:

instead of keeping a ordered heap of all the clusters, it can keep only a

heap of top k clusters with top goodness.

� CHAMELEON. CHAMELEON is slow. This is Typical for a hierar-

chical clustering algorithm. Because this program is locally developed,

some part of it may not be eÆcient, but still we cannot expect it to

be much faster than the other two hierarchical algorithms even after

optimization.

� DBSCAN. DBSCAN has very good eÆciency among the tested algo-

rithms. Because of usage of R*-tree, it is eÆcient in both memory and

speed.

� WaveCluster. As a grid-based algorithm, WaveCluster is very eÆcient

in memory and in CPU, because its computational complexity and mem-

ory complexity only depend on the resolution selected, while the clus-

tering process has nothing to do with the number of input data points.

Among all the tested algorithms, WaveCluster is the one which has top

clustering quality, memory and computational complexity.

� CLIQUE. CLIQUE has very similar memory and computational com-

plexity with WaveCluster since they are both grid based algorithms.
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However, CLIQUE directly cluster upon the data space while WaveClus-

ter cluster in the wavelet-transformed space. Although CLIQUE has very

good eÆciency, it does not give good cluster quality as WaveCluster does.
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Chapter 3

Cluster Web Sessions

The previous chapter presents a thorough survey on di�erent known clustering

methods. This chapter studies a real application of clustering techniques {

clustering web sessions. The diÆculty in clustering web sessions lies in that

the session data are not numerical. Most of the algorithms we discussed in the

last chapter are proven e�ective in clustering numerical data, however so far

there is no e�ective similaritymeasurement on session data and no e�ective real

clustering example on web sessions has been reported. This chapter suggests a

new session similarity measurement and it clusters session data by using three

di�erent clustering techniques.

3.1 Introduction to the Problem

The problem of clustering web sessions is part of a larger work of web usage

mining. Web usage mining is the application of data mining techniques to

discover usage patterns from Web data [SCDT00]. Generally speaking, web

usage mining has three main steps: 1) data preprocessing; 2) data mining; 3)

mining results visualization. Session cluster discovery is an important part of

web data mining.

For a given raw web-log, algorithms have been developed to clean the web

log, identify user sessions, and create IDs for web pages. The cleaning involves

the removal of entries which contain an error ag, requests for images and

other embedded �les, applets and other script codes, requests generated by

web agents whose function is to pre-fetch pages for caching, requests from
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proxies, and requests reset by visitors. etc.

User sessions have been identi�ed using a 25-minute timeout threshold.

Web page IDs are constructed based on assigning an ID to each component of

the URL so two web page IDs can be compared for similarity or \closeness".

After cleaning the raw web log data, two data �les are provided which

contain the cleaned data. The format of one data �le is like this:

01000102 962 945458058

01000102 962 945458060

01000102 483 945458060

01000102 484 945458060

01100001 965 937344265

01100001 963 937340669

01100001 964 937340670

01100001 964 937341439

Each column of this �le represents session number, page number, and

time stamp respectively. Another �le has this format:

7 : 0060 : /Courses/TECH142/TeachingStaff/index.html

8 : 007 : /Courses/TECH142/index.html

9 : 008 : /Courses/TECH142/side.html

10 : 01 : /Courses/TECH150

11 : 0100 : /Courses/TECH150/CourseDescription/index.html

12 : 0110 : /Courses/TECH150/Evaluation/index.html

Each column of this �le represents page number, page ID and URL

respectively. page ID is a unique string used to represent a web page; each

letter in this string represents one level of URL path.

Our problem of web session clustering is based on these two session �les.

The results of clustering can give insight to the user's behaviour in a web site

and have signi�cant applications in personalization, recommendation system,

adaptive sites, etc.
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3.2 Survey on clustering web sessions

Most of the studies in the area of web usage mining are very new, and the

topic of clustering web sessions has recently become hot in the �eld of real

application of clustering techniques. Shahabi et al. [SZAS97] introduced the

idea of Path Feature Space to represent all the navigation paths. Similarity

between each two paths in the Path Feature Space is measured by the de�ni-

tion of Path Angle which is actually based on the Cosine similarity between

two vectors. In this work, k-means cluster method is utilized to cluster user

navigation patterns. Fu et al. [FSS99] cluster users based on clustering web

sessions. Their work employed attribute oriented induction to transfer the

web session data into a space of generalized sessions, then apply the clustering

algorithm BIRCH [ZRL96] to this generalized session space. Their method

scaled well over increasing large data. However, problems of BIRCH include

that it needs the setting of a similarity threshold and it is sensitive to the

order of data input. The paper does not discuss in detail how they measure

the closeness between sessions and how they set the similarity threshold which

are very important for clustering. Mobasher et al. [MCS99] used clustering

on a web log using the Cosine coeÆcient and a threshold of 0.5. No detail is

mentioned of the actual clustering algorithm used as the paper is principally

on Association Rule mining. One recent paper which bears some similarity

to our work is by Banerjee and Ghosh [BG01]. This paper introduced a new

method for measuring similarity between web sessions: The longest common

subsequences between two sessions is �rst found through dynamic program-

ming, then the similarity between two sessions is de�ned through their relative

time spent on the longest common subsequences. Applying this similarity def-

inition, the authors built an abstract similarity graph for the set of sessions

to be clustered, then the graph partition method was applied to \cut" the ab-

stract graph into clusters. Our method has a similar basic idea on measuring

session similarity { consider each session as a sequence and borrow the idea of

sequence alignment to measure similarity between sequences. However we look

into more detail of each web page by �rst de�ning a similarity between each
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two pages, then instead of simply �nding the longest common subsequence,

our method utilizes dynamic programming to �nd the \Best Matching" be-

tween two session sequences. In our method, similarity between sessions are

measured through their Best Matching.

Other works indirectly related to the topic of web session clustering include:

Pitkow et al. [JP99] explored predictive modeling techniques by introducing a

statistic Longest Repeating Subsequence model which can be used for model-

ing and predicting user sur�ng paths. Spiliopoulou et al. [ML99] built a mining

system, WUM, for the discovery of interesting navigation patterns. In their

system, interestingness criteria for navigation patterns are dynamically speci-

�ed by the human expert using WUM's mining language MINT. Mannila and

Meek [HC00] presented a method for �nding partial orders that describe the

ordering relationships between the events in a collection of sequences. Their

method can be applied to the discovery of partial orders in the data set of

session sequences.

3.3 Similarity Measurement for Web Sessions

The �rst and foremost question needed to be answered in clustering web ses-

sions is how to measure the similarity between two web sessions. A web session

is naturally a stream of hyper link clicks. Most of the previous related works

applies either Euclidean distance for vector or set similarity measurements,

Cosine or Jaccard CoeÆcient. Shortcomings for doing this is obvious: (1) the

transfered space could be of very high dimension; (2) The original click stream

is naturally a click sequence which cannot be fully represented by a vector or

a set of URL visiting; (3) Euclidean distance has been proven in practice not

suitable for measuring similarity in categorical vector space.

Here we propose to consider the original session data as a set of sequences,

and apply sequence similarity measurement to measure similarity between ses-

sions. Sequence alignment actually is not a new topic; there exist several al-

gorithms for solving sequence alignment problem [KJD00]. Our method for

measuring similarity between session sequences borrows the basic ideas from
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these algorithms.

There exist two steps in our de�nition of session similarity. First we need to

de�ne similarity between two web pages because each session includes several

web pages; the second step is to de�ne session similarity using page similarity

as a inner function.

3.3.1 Similarity Between Web Pages

We noticed that there exist similarities between many di�erent web pages.

One example is like the following two URLs:

URL#1: http://www.cs.ualberta.ca/labs/database/current.html

URL#2: http://www.cs.ualberta.ca/labs/database/publications.html

Similarity between these two URLs is obvious: They are very similar pages

with similar topic about the research work in the DataBase group of the Uni-

versity of Alberta.

In another example, the similarity between the two URLs is not that ob-

vious, but there de�nitely exists some similarity:

URL#1: http://www.cs.ualberta.ca/labs/database/current.html

URL#3: http://www.cs.ualberta.ca/theses/

URL#1 is about the current research work in the database lab of the De-

partment of Computing Science at the University of Alberta; URL#3 is about

the theses �nished in the recent years in the Department of Computing Science

with the University of Alberta. We feel that there is some similarity between

URL#1 and URL#3, but the similarity is not as strong as the similarity be-

tween URL#1 and URL#2. We need a systematic method to give numerical

measurement for the similarity between two URLs.

In order to measure the similarity between two web pages, we �rst represent

each level of a URL by a token; the token string of the full path of a URL

is thus the concatenation of all the representative tokens of each level. This

process corresponds to marking the tree structure of a web site as shown in
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Figure 3.1. Notice here we assume that the URL path can fully reect the

content of URL, also we assume that the URL connection is tree structured

and there is no loop exists. These assumption can be often true for intranets

of certain organizations. For example, the tele-learning company's intranet in

our project application.

course

TECH142 TECH150

TeachingStaff

index.html

index.html side.html help.html

Evaluation

index.html

description.html
21

0

0

0

0

3

1

0

1

1

Figure 3.1: Labeling a tree structure of a web site

In Figure 3.1, the web page \/course/TECH142/index.html" is represented

by the token string \001 ", the webpage \/course/TECH150/description.html"

is represented by the token string \010". The computation of web page simi-

larity is based on comparing the token string of web pages.

Our web similarity computation works in two steps:

� Step1: We compare each corresponding token of the two token strings

one by one from the beginning, and this process stops at the �rst pair

of tokens which are di�erent. For example, let us compare the web

page \/course/TECH142/TeachingStu�/index.html" and the web page

\/course/TECH142/side.html". The token string of the �rst web page is

\0000", and the second web page's token string is \001". Now compare

the two token strings in Figure 3.2:

From Figure 3.2 we see that the two token strings have two same cor-

responding tokens. Notice that if we compare the token string \0111"
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Compare corresponding tokens:

"/course/TECH142/TeachingStuff/index.html"

"0        0                0             0"

"0        0            1"

"/course/TECH142/side.html"

same same different

represented by token string

represented by token string

Figure 3.2: Compare token strings

and \0101", they have only two same corresponding tokens because the

comparing process stops at the �rst pair of di�erent tokens.

� Step2: compute the similarity of two web pages. The similarity between

two web pages are computed in this way: suppose the length of the

�rst token string is length1, and the length of the second token string is

length2, select the the longer string's length longer length = (length1 >

length2) ? length1 : length2, then we give weight to each level of the

longer token: the last level is given weight 1, the second to the last level

is given weight 2, the third to the last level is given weight 3, and so on

and so forth, until the �rst level which is given weight longer length. For

the given example, the length of token string \0000 " is 4, and length

of the token string \001 " is 3, thus longer length = 4, and weight for

each level is shown in Figure 3.3

token string1:   0   0   0   0

token string2:   0   0   1

Weight of each token:  4   3   2   1

Figure 3.3: Weight each token level

Next, the similarity between two token strings is de�ned as the sum of
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the weight of those matching tokens divided by the sum of the total

weights. For the given example, we see that their similarity is thus:

(4 + 3)=(4 + 3 + 2 + 1) = 0:7

For any pair of URLs, using this similarity measurement, the two pages'

similarity is between 0.0 and 1.0. If the two pages are totally di�erent,

i.e. no same corresponding token, their similarity is 0.0. If the two pages

are exactly same, their similarity will be 1.0.

The reason for giving higher weight to higher level of web pages is because

we think that higher path level usually more important than lower level. For

example, people will think that the URL

http://www.cs.ualberta.ca/research/labs/database/current.html

and the URL

http://www.cs.ualberta.ca/research/labs/database/publications.html

are very similar although their last path level are di�erent. By our simi-

larity measurement, the similarity between this two web pages is 0.93. This

reects the truth that the two URLs are very similar, but they are not iden-

tical.

3.3.2 Similarity Between Sessions

Using the similarity de�nition in the web page level, now we can de�ne the

similarity between two web sessions.

Our basic idea of measuring session similarity is to consider each session as

a sequence of web page visiting, and use dynamic programming techniques to

�nd the best matching between two sequences. In this process, web similarity

technique discussed in the previous section serves as a page matching goodness

function. The �nal similarity between the two sequences is based on their

matching goodness and the length of the sequences.
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One di�erence between our similarity measurement and many of the previ-

ous works is: we consider session as a sequence, while many of previous results

measure session similarity in either Euclidean space or sets, for example Jac-

card CoeÆcient is widely used. The de�nition of Jaccard CoeÆcient is like

this:

sim(T1; T2) =
T1 \ T2
T1 [ T2

By this de�nition, if two sessions contain no common web page, their sim-

ilarity is 0; if two sessions contain same set of web pages, their similarity is

1.

We argue that a URL sequence can better represent the nature of a session

than a set. For example, using Jaccard CoeÆcient similarity measurement

there is no di�erence between the session \abcd", \bcad" and \abdc". Using

our session sequence similarity measurement, it can tell you that the three are

di�erent, and \abcd' is more similar to \abdc" than to \bcad".

There are many papers [SC70] [TM81] in the area of bioinfomatics area

talking about sequence alignment. Their objects are DNA or protein sequences

instead of web page sequences. One di�erence between web page sequences and

DNA sequences is: Each DNA sequences contains a sequence of amino acids,

and there are tens of di�erent amino acids; However for web session sequences,

each sequence contains a sequence of web pages, and there can be thousands of

di�erent web pages. Another di�erence between our web page sequences, i.e.

web sessions and their protein sequences is that a protein sequence is typically

hundreds of elements, while a session sequence is usually much shorter than

a protein sequence. In our real session data set, the average session length

is about 11.371 web pages. We don't need to consider some typical problems

such as the tradeo� between memory eÆciency and computational eÆciency

in protein sequence alignment.

We use a scoring system which helps �nding the optimal matching be-

tween two session sequences. An optimal matching is an alignment with the

highest score. The score for the optimal matching is then used to calculate

the similarity between two sessions. These are the principles in matching the
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sequences:

� The session sequences can be shifted right or left to align as many pages

as possible. For example, session#1 includes a sequence of visiting to

URLs 1, 2, 21, 22, here each web page is represented by its token string

as described in the web page similarity part. Suppose session#2 includes

a sequence of visiting to URLs 2, 21, 22. The best matching between

the two session sequences can be achieved by shifting session#2:

session#1: 1 2 21 22

session#2: - 2 21 22

In our program, each identical matching, i.e. a pair of pages with simi-

larity 1.0, is given a positive score 20; Each mis-matching, i.e. a pair of

pages with similarity 0.0 or match a page with a gap, is given a penalty

score �10. For a pair of pages with similarity �, where 0:0 � � � 1:0,

the score for their matching is between �10 and 20. The �nal score for

the best matching of this example pair of sessions is 50.

� Gaps are allowed to be inserted into the middle, beginning or end of

session sequences. This is helpful for achieving better matching. For

example, for the following two sessions, a inserted gap in session#2 helps

getting the best matching. The �nal score for the best matching of the

following pair of sessions is also 50.

session#1: 1 2 21 22

session#2: 1 2 - 22

� We do not simply count the number of identical web pages when we

are aligning session sequences. Instead, we create a scoring function

based on web page similarity measurement. For each pair of web pages,

the scoring function gives a similarity score where higher score indicates

higher similarity between web pages. A pair of identical web pages is

only a special case of matching { the scoring function return 1:0 which
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means the two pages are exactly the same. One example of matching

non-identical pages is like following:

session#1: 1 2 21

session#2: 1 2 22

URL \21 " in session#1 is matched with URL \22" in session#2, and the

scoring function returns that the similarity between the two web pages

is 0:67. The �nal score for the best matching of this pair of sessions is

also 50.

The problem of �nding the optimal matching can typically be solved using

dynamic programming [KJD00] , and its process can be described by using

a matrix as shown in Figure 3.4. One sequence is placed along the top of

the matrix and the other sequence is placed along the left side. There is a

gap added to the start of each sequence which indicates the starting point of

matching. The process of �nding the optimal matching between two sequences

is actually �nding a optimal path from the top left corner to the bottom right

corner of the matrix. Any step in any path can only go right, down or diagonal.

Every diagonal move corresponds to matching two web pages. A right move

corresponds to the insertion of a gap in the vertical sequence and matches a

web page in the horizontal sequence with a gap in the vertical sequence. A

down move corresponds to the insertion of a gap in the horizontal sequence

and matches a web page in the vertical sequence with a gap in the horizontal

sequence.

In solving the optimal matching problem, the dynamic programming algo-

rithm propagates scores from the matching start point (upper-left corner), to

the destination point (lower-right corner) of the matrix.

The optimal path is then achieved through back propagating from desti-

nation point to starting point. In the given example, the optimal path found

through back propagating is connected by arrows where the numbers in brack-

ets indicate the step number in back propagating. This optimal path tells the

best matching pattern.
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The score of any element in the matrix is the maximum of the three scores

that can be propagated from the element on its left, the element above it and

the element above-left. The score that ends up in the lower-right corner is

the optimal sequence alignment score [KJD00]. One example of our matching

process and its result is shown in Figure 3.4.

− 1 123 126 1 2

−50−40−30−20−10−

−20−10010−101

5152535−2012

3040500−30123

455520−10−40124

453510−2012

65(1)

55(2)

45(3)

30(4)

10(5)

20(6)

0(7)

45250−30−60

−50

22

Figure 3.4: Session matching example

After �nding the �nal score for the optimal session alignment, the �nal

similarity between the two sessions is computed by considering the �nal op-

timal score and the length of the two sessions. In our method, we �rst

get the length of the shorter session - lengthShort, then the similarity be-

tween the two sessions is achieved through dividing the optimal matching

score by 20 � lengthShort because the optimal score can not be more than

20 � lengthShort in our scoring system. For the example in Figure 3.4, the

similarity between the two sessions is 65=(20 � 5) = 0:65.

We argue that our similarity measurement is better than previous set sim-

ilarity measurements, for example Jaccard CoeÆcient. This is due to two

reasons: (1) considering session as sequence of URLs is better than consider-
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ing session as a set of URLs. As mentioned before, Jaccard CoeÆcient cannot

di�erentiate session \abcd" from \bcad" and \abdc", here each token \a, b,

c and d represents a URL. Our method can not only tell the di�erence, but

also precisely measure the cross similarity between each two of them. (2) In

measuring the similarity between sessions, our method considers URL simi-

larity. This has been proven e�ective in reecting session similarity in many

cases. For example, for the following two sessions:

session#1: 12 123 124

session#2: 1 125 126

The two sessions have no common URLs, but they are actually about a

similar topic. Jaccard CoeÆcient will tell us that the similarity between the

two sessions is 0:0, however our method tells that the two sessions still bear

some similarity and their similarity is 0:67. This result better reects the true

connection between the two sessions.

3.4 Web Sessions Clustering

The session similarity measurement method described in the last section can

be applied to compute the similarity between each pair of sessions, and con-

struct a similarity matrix. Proper clustering algorithms will be applied to this

similarity matrix to �nd the session clusters.

For the known clustering algorithms, we tried ROCK, CHAMELEON and

TURN on our testing data set. K-modes is also applicable for categorical

data, but its similarity measurement is tightly based on vector space which

is di�erent from our sequence similarity measurement, also considering the

common problem of k-means family algorithms, we did not try k-mode in

our implementation. DBSCAN and WaveCluster can also be applied to some

special categorical data sets, however they require that any dimension of the

categorical data space can be somehow ordered into numerical order. In this

sense, they are not truly algorithms for general categorical data.

Another important issue is how to evaluate the quality of clusters in the

result. This issue by itself is worth a thesis. It is never a simple problem.
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What people did in the past for 2-dimensional numerical data is to draw the 2-

dimensional data into 2-dimensional pictures, and usually people could easily

decide the correctness of clustering by vision intuition. However it is much

harder to evaluate categorical data, like session data. What we did is to

order the resulting clusters according to their descending sizes, and draw a

three dimensional picture to represent the cross similarity between sessions

in di�erent clusters. For example, suppose for an ideal case we have three

clusters in a 1000 sessions data set, cluster #1 has 500 sessions, cluster #2 has

300 sessions, and cluster #3 has 200 sessions. The cross similarity between

each pair of sessions within a same cluster is 1:0, and cross similarity between

each pair of sessions from two di�erent clusters is 0:0. For the 3-dimensional

picture, we use x-axis and y-axis to represent 1000 sessions, z-axis is used to

represent the similarity between the two sessions from x-axis and y-axis. For

this given very simple and special example, if we represent the third dimension

- similarity by colour: golden colour means the similarity is 1:0, white colour

means the similarity is 0:0, we expect to see a 3-dimensional picture like Figure

3.5. For this very special example, we see golden blocks along the diagonal of

the x-y two dimensional space. This tells us the similarities between sessions

within a same cluster are high, and the similarities between sessions which

belong to di�erent clusters are low. For real problems, the cluster result can

rarely be so clear as the given example, but for successful clustering, we should

see higher square areas along the diagonal of x-y space, and all the other areas

should be lower.

Our testing session set has 1000 randomly selected sessions from a real

tele-learning system. Both Jaccard similarity and our Dynamic-Programming-

Based similarity measurement method are used to provide similarity matrix

for the given session set. ROCK, CHAMELEON and TURN are then applied

on the similarity matrices to each produce clustering result. Clustering results

of ROCK, CHAMELEON and TURN are shown in Figure 3.6 through Figure

3.11. From the clustering results, we found that ROCK tends to �nd bigger

clusters with lower average similarity. This is consistent with the testing of

ROCK on 2-dimensional numerical data in last chapter where we see ROCK
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sessions in cluster#1 sessions in cluster#2 sessions in cluster#3

sessions in cluster#1
sessions in cluster#3

sessions in cluster#2

Figure 3.5: session clustering result visualization example

tends to merge several genuine clusters into a bigger cluster. CHAMELEON

and TURN can �nd clusters with high internal cross similarity. The di�erence

between CHAMELEON and TURN is that TURN can identify outliers while

CHAMELEON cannot.

In this work, we cannot compare the cluster quality between clusters using

Jaccard CoeÆcient similarity measurement and using Dynamic-Programming-

Based similarity measurement, however, we found that Jaccard CoeÆcient

measurement tends to give more clusters than Dynamic-Programming-Based

measurement. This is because in Jaccard CoeÆcient similarity computation,

similarities between sessions are concentrated into certain values due to the

way Jaccard CoeÆcient is computed. However in Dynamic-Programming-

Based measurement, similarities are not concentrated.
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Figure 3.6: ROCK's clustering result on Jaccard CoeÆcient similarity matrix

Figure 3.7: CHAMELEON's clustering result on Jaccard CoeÆcient similarity
matrix
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Figure 3.8: TURN's clustering result on Jaccard CoeÆcient similarity matrix

Figure 3.9: ROCK's clustering result on Dynamic-Programming-Based simi-
larity matrix
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Figure 3.10: CHAMELEON's clustering result on Dynamic-Programming-
Based similarity matrix

Figure 3.11: TURN's clustering result on Dynamic-Programming-Based simi-
larity matrix
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Chapter 4

Conclusion and Further Work

This work started with a survey and implementation on major and recently

devised clustering algorithms, then it paid attention to the practical problem

of clustering web sessions. A new similarity measurement for session data

based on dynamic programming is presented. Three algorithms applicable for

categorical data are applied to the real session data.

Through the survey and implementation, we achieved deeper understand-

ing of the major clustering algorithms. In conclusion, we feel that there is still

not a single method which can claim fully satisfying all the requirements for

a good clustering method. However, in experiments we see that WaveClus-

ter, DBSCAN/OPTICS, CHAMELEON and TURN* have better e�ectiveness

and eÆciency in clustering 2 dimensional spatial data than other methods. For

this part, further work includes applying more testing data sets, especially high

dimensional data sets to the algorithms.

In the web session clustering section, through analysis and examples, we in-

troduced a new session similarity measurement: Dynamic-Programming based

session similarity measurement. In the experiment, we can compare the clus-

tering characteristics of the three algorithms (TURN, ROCK and CHAMELEON)

on one session similarity measurement (Jaccard CoeÆcient or Dynamic Pro-

gramming Based measurement), however we cannot compare the clustering

goodness between the two similarity measurements because we don't know

what is the correct clustering result for this randomly selected real session set.

For this part, further work includes more precisely evaluating the clustering
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results. This includes comparing the clustering results between using Jaccard

CoeÆcient similarity measurement and using Dynamic-Programming-Based

similarity measurement. Also we wish to more precisely evaluate the cluster-

ing results of ROCK, CHAMELEON and TURN. This can be achieved only

if we synthetically create one testing session data set. If we exactly know

which session should belong to which cluster, then precise measurement of the

quality of clustering can be achieved.
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