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Abstract
This report presents a survey of data warehouse technology and an introduction of a
framework for the implementation of virtual data warehouse. In the first par of survey,
we briefly give a background of data warehouse and related concepts, and in the second
part, we investigate query model and query language of data warehouse. Then we
presented our virtual data warehouse with system design and implementation. One
contribution of our work is proposed a new data warehouse query language XMDQL
(XML Multidimensional Data Query language) that is in XML format.

1. Introduction and Data Warehouse Background

This essay is based on DIVE-ON (Datamining in an Immersed Virtual Environment Over
Network) project, which is a system that utilizes virtual reality, databases, distributed
computing to visualize data mining. The complete system consists of three parts: Virtual
Data Warehouse(VDW), Visualization Control Unit (VCU) and User Interface manager
(UIM). VCU and UIM provide data cube handling and interactive virtual mining tools to
the user. And our work is mostly in VDW part, which is responsible for data warehouse
management and query execution.

In this section, we will explain some basic concepts in data warehouse area, and data
warehouse architecture plus multidimensional data model.

1.1 Data Warehouse

The data warehousing market is growing tremendously. According to a Surey.com report,
“the worldwide spending was expected to rise from $37.4 billion 1999 to $148.5 billion
by 2003. Also by 2003, the average amount of data that can be used for warehousing is
expected to increase to 1.1 TB”[Hammond99]. Data warehouse technologies have been
successfully deployed in many industries: manufacturing (for order shipment and
customer support), retail (for user profiling an inventory management), financial services
(for claims analysis, risk analysis, credit card analysis, and fraud detection),
transportation (for fleet management), telecommunications (for call analysis), and
healthcare (for outcomes analysis)[Chaudhuri97].

What is a data warehouse?

Ralph Kimball in his book “The Data Warehouse Toolkit”[Kimball96] states that a data
warehouse is “a copy of transaction data specifically structured for query and analysis”.
Data warehouse is informational and analysis and decision support oriented, not
operational or transaction processing oriented.

William Inmon, who coined the term “data warehouse” in 1990, defined a data
warehouse as a “subject oriented, integrated, time-variant, non-volatile collection of data
that is used primarily in organizational decision making.”[Inmon92]
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• Subject oriented. Subject-oriented in decision-support system is compared to
application oriented in operational systems. In operational systems, data is organized
to support specific business process, thus, the same data might be organized
differently in different system. For examples, customer may be presented by different
tables in traditional databases, but in data warehouse, we only have one customer
object across the whole system. In other words, captures the basic nature of the
business environment.

• Integrated. Integration is the most important aspect of the data warehouse
environment, and it means data found within the data warehouse is integrated, or has
been cleaned. It may appear in consistent naming conventions, in consistent
measurement of variables, in consistent encoding structures, in consistent physical
attributes of data, and so forth.

• Time-variant . Time variant has two issues. First, informational data as a time
dimension, and it is different in operational environment as in data warehouse. The
informational data is accurate when you access it, but data warehouse contains history
data for last 5 to 10 years in most common siuations.

Another point is that data warehouse data represents data over a long time horizon –
from five to ten years, while the time horizon represented for the operational
environment is much shorter - from the current values of today up to sixty to ninety
days. That’s because operational applications must do lots of transaction processes, so
for performance they have to carry as few amount of data as possible. Therefore
operational application data has a short time horizon as designed.

• Nonvolatile. We know the typical operational system only keeps data for a short
period of time, e.g., 3 to 6 months, as it is only interesting for the daily business
during this time span. And data is changing all the time. However, in a data analysis
situation, data is kept or a pretty longer period, and after the data is in the data
warehouse, there are no modifications to be made to this information, or very rare
midiications.

Operational data vs. informational data

To compare data warehouse and operational databases, we also need to distinguish two
kinds of data, operational data and informational data. Operational data is the data you
use to run your business, and is typically stored in relational databases, but may be stored
in legacy hierarchical or flat file formats as well.

Informational data is the data stored in data warehouse, and it’s typically in a format that
makes analysis much easier. Analysis can be in the form of decision support, report
generation, executive information systems, and more in-depth statistical analysis.
Informational data comes from operational data, after some preprocessing, like data
cleaning, integrating.
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OLTP vs. OLAP

Not only data are different in data warehouses and in operational systems, but also the
tools. The data warehouse supports on-line analytical processing (OLAP), which requires
quite different functions from the on-line transactional processing (OLTP) applications.

OLTP applications typically automate structured and repeated data processing tasks for
day-to-day operations of companies such as sales transactions, banking transactions.
These tasks consist of short, atomic, isolated transactions with detailed, up-to-date data
and often by reading or writing a few records in their relational databases. Consistency
and recoverability of the database are critical, and maximizing transaction throughput is
the key performance issue.

Data warehouses, in contrast, are targeted for decision support, and are maintained
separately from the companies’ operational databases. OLAP tools only handle historical,
summarized and consolidated rather than detailed, individual records.

Advantage of Data Warehouse

[Sakaguchi96] surveyed 456 articles about data warehouse and gave the following
advantage of data warehouse from those articles:

• Simplicity . This is the highest frequently mentioned advantage. Because of its
subject-oriented feature, data warehouses provide a single image of business object
by integrating various operational data sources. So it makes existing legacy systems
still useful and combines inconsistent data from many legacy systems into one
coherent set.

• Quality Data. Data warehouse gives better quality data such as consistency,
accuracy, and documentation.

• Fast Access. Since data warehouses integrate all data from different data sources in
one place, users don’t need to login many systems, and response time should be
reduced.

• Easy to Use. Because data warehouses copy some of the operational data and put in a
separate database, queries from users do not interfere with normal operations, and
with the help of OLAP tools, it’s much easier for decision makers to access business
data.

• Separate decision-support operation from production operation.As we said
before, data warehouses separate operational, continually updated transaction data
from historical, more static data required for business analysis. So managers and
analysts can use historical data in data warehouse for their decision-making activities
without slowing doing down the production operation in operational systems.
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• Gives competitive advantage. Data warehouses help business entities become more
competitive, better understand customers, and more rapidly meet market demands by
providing better-organized information.

• Ultimate distributed database. Data warehouses gather information from disparate
and potentially incompatible locations throughout the company and put it to good use.
And we can use middle-ware or other client/server tools to link hose disparate data
sources to an ultimate distributed database.

• Operation cost.After building a real data warehouse, it becomes easier to integrate
new operational systems, and information-technology group in the company will
generally require fewer resources.

Disadvantage of data warehouse

• Complexity and anticipation in development. You cannot just buy a data
warehouse; you have to build one because each warehouse has a unique architecture
and a set of requirements from the individual needs of the organization. That means
you cannot apply existing data warehouse to new situation; you have to create from
scratch.

• Takes time to build. To build a data warehouse takes time. Maybe after you finished,
the data warehouse was out of date.

• Expensive to build. Data must be moved or copied from existing databases,
sometimes manually, and data needs to be preprocessed into a common format. Data
preprocessing may includes data cleaning, integration, transformation, reduction or
discretization. And these tasks are very expensive.

• Lack of API. Data warehousing software still lack a set of application programming
interfaces (API) like ODBC in relational databases.

• End-user training. Users of data warehouse require training to capitalize on
those data analysis provided by data warehouse.

1.2 Data Warehouse Architectures

The data warehouse can be architected in a variety of ways:

Data mart

Data marts, or localized data warehouses, are small sized data warehouses, and typically
created by individual departments or divisions to provide their own decision support
activities. For example, a data mart can be created for specific products or functions, like
electronics or customer management. In another example, data mart may be created for
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user populations with the same technical environments like Windows system, Unix
system, etc.

These data marts come from operational databases in departments or regions of
companies, and may also pull some data from other departments or divisions. After
finished building them, these data marts are no longer coordinating, because different
data mart has different structure, and user requirements focus in different areas. Maybe
some of them can communicate with each other for consolidation and global reporting,
but they are independent data warehouses.

The purpose to build a data mart is to get prototype as soon as possible without waiting
for a larger corporate data warehouse, because it’s small and easy to develop. Stand-alone
data marts can be used by organizations with very independent and "nonintersecting"
departments as a starting point in an overall strategy for a centralized corporate data
warehouse. But after having several data marts, organizations couldn’t use them
corporately, because they are not consistent with each other. So data marts are only used
before building real data warehouse for fast prototype and evaluation.

Central data warehouse

The centralized data warehouse, popularized by IBM's Information Warehouse, is what
we called data warehouse in common meaning. This central data warehouse copies and
stores all operational and external data and adheres to a single, consistent enterprise data
model. This central data warehouse may be generated from many individual data marts
for better performance and easy accessibility.

Since central data warehouse only has one data model, the data are consistent and
complete to users in this architecture. So users only have one environment to logon,
without worrying about data in different platforms and environments. And most of the
processing is done at the corporate site, therefore it’s very useful or enterprises.

The main drawback of the central data warehouse is that, as we talked before, it is quite
difficult to develop a global data model for most organizations, because finding a single
structure for everything is tough. It is also difficult to agree on a corporate wide level of
detail and naming conventions. Organizations must also carefully manage the
performance and end-user access to centralized warehouses to ensure that the users
continue to rely on the centralized data warehouse

Distributed data warehouse

Like distributed file systems and distributed database systems, data warehouses can be
distributed in an enterprise. These distributed data warehouses (distributed data marts) are
consist of many local data warehouses (data marts) and can be accessed by the end users
through a "warehouse front end". This front end is a kind of software with a global data
image. It also knows the location and format of the needed data and how to send the
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queries to the final destination. When user asks for something, this software will find the
local data warehouse to perform the query and get the result back.

With the benefits of distribution, distributed data warehouses may be more flexible, have
higher performance and load balancing. Besides, it can be designed to match the topology
of many organizations, such as a corporate data warehouse at the corporate site and
regional data warehouses (the data marts) at the branch offices. So corporate queries will
go to corporate ones, and local queries will go to regional ones. And different
technologies can e applied to different data warehouses to better match their subjects.

Distributed data warehouse still need a global data model, which is, like central data
warehouse, hard to develop. Besides, global dictionary and topological information make
it even more complicated. Another disadvantage is performance. If the data warehouses
are widely distributed, significant performance degradation and service outages can
occur. So it requires considerable trade-offs in data distribution and query optimization.”

Middle-ware approach: Virtual Data Warehouse

All above three architectures need creating real data warehouse systems, that is, you have
to get system requirements, analyze existing database or legacy systems, develop data
warehouse model for the local divisions or the whole enterprise. This is a very time
consuming task and existing systems are outside of the new data warehouse. How to
build a data warehouse connected with run-time database or legacy systems becomes an
interesting topic in the early 1990s, and middleware approach provides an alternative to
traditional data warehousing, called virtual data warehouse.

Generally, virtual data warehouses use middleware to build direct connections among
disparate applications, whereas traditional data warehouse provides a central repository
for enterprise data. Middleware is software acting as data hubs and allowing access to the
corporate data stored in heterogeneous data sources, like relational databases, legacy
systems.

The most popular approach of virtual data warehouse is “wrapper” or “surround’ data
warehouse, that is the old legacy operational data sources are “wrapped” or “surrounded”
by middleware where there are no changes made to the underlying operational systems.
Ideally, no preprocessing is required to old system; no programs need be coded to
transform legacy data; no integrating and cleaning. Instead, you just buy some software
packages that can “wrap” your legacy systems to read data from them, very cheap and
fast. And like distributed data warehouse, virtual data warehouse still relies on the
creation of an independent meta-data definition of the corporate data, or global data
model, and therefore, as the same easy-of-use advantages without the complexity of
building a traditional data warehouse system.

However, this approach was criticized by Inmon in the “Virtual Data Warehouse: The
Snake Oil Of The Nineties”[Inmon96]. “…[Snake oil] was pleasing at the moment it was
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consumed. But it had no real curative effects, and ultimately was a disappointment to
those who bought it in the hopes that it would do something real.”[Inmon96]

Inmon indicated virtual data warehouse approach failed in several fundamental ways:

• Performance. Operational systems are running for transaction tasks, but OLAP
tools may ask for 10,000,000 rows of data in the middle of the on-line transaction
processing, and no good database designer wants to design databases for that.

• Historical data. Time-variant of data warehouse means a rich amount of
historical data, typically 5 to 10 years worth, which providesa foundation for
analysis and slicing_and_dicing data. But operational systems under virtual data
warehouse only contain a minimal amount of history – 30 to 60 days typically. As
such it cannot organize and manage the historical data because no historical data
there.

• Data structure. The structures in the operational systems are designed to suit the
needs of operational processing, without any idea of data analysis, and the
“wrapper” software around them can do nothing for optimizing the structure of
the data for OLAP.

• Integration . The middleware generally will give you access only to data in its
raw form. There is no integration in the legacy systems beneath the virtual data
warehouse, so OLAP tools that accesses the old legacy data must do the
integration by their own.

• Aggregation. Data warehouse contains summary data, while operational system
does not.

Those significant disadvantages impeded the development of virtual data warehouse.

Hybrid Virtual Data Warehouse

However, virtual data warehouse techniques are still attracting to us. So we considered
mixing distributed data warehouse and pure virtual data warehouse to hybrid virtual data
warehouse. According to the name, hybrid virtual data warehouse also works like
middleware, but the data sources may be data marts or legacy systems. In our approach,
historical data is stored in local data warehouses or corporate data warehouses, and we
can also connect to operational system for fresh data.

Since most data comes from data marts, only small part of it is pulled from legacy
system, the performance is not a big issue. We may still have the problem of data
structure, integration, thus the middleware has to be designed carefully, and we can use
the functionality in the OLAP model to do data cleansing.

1.3 Multidimensional Data Model and OLAP operations

Measures and dimensions
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The most popular conceptual model for OLAP is the multidimensional view of data in the
warehouse[Chaudhuri97]. For example, we want to build a data warehouse for a grocery
store company, the everyday transaction records contain which customer bought which
product at what time. The goods price and soled item amounts are called numeric
measuresthat are the objects of analysis in a multidimensional data model. The
categorical attributes like product, date, and customer are calleddimensions. Each of the
numeric measures depends on a set of dimensions and the dimensions together are
assumed to uniquely determine the measure. Thus the multidimensional data views a
measure as a value in the multidimensional space of dimensions.

Dimensions usually have associated with hierarchies, for example, the Store dimension
may consist of five aggregation levels: store name, city, region, country, and continent.
And the attributes or levels of this dimension may be related via a hierarchy of
relationship, as above figure 1.1 showed.

Time is a special dimension that is of particular significance to decision support, because
time dimension has partial order. So it is often treated differently. As in figure 1.2, Time
dimension have Year, Quarter, Month, Week and Day levels. But the year can be divided

All Stores

North America Europe Continent

Country

Region

U.S.

West
Central

East

Seattle Denver

B.C.
Alberta Ontario

City

Canada

Boston Vancouver Edmonton Toronto

Store

Store1 Store2 Store4Store3 Store5 Store6

Figure 1.1 Store Hierarchy
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into weeks, then days, or quarters, months then days. So we may have multiple routes
from one level to another.

Multidimensional data cube

Now we have the concept of data cube. The OLAP data cube can be conceptually viewed
as a multi-dimensioned cube representing any number of descriptive categories
(dimensions) and quantitative values (measures) as following figure 1.3. The OLAP data
cube contains summaries of selected detail information from your existing database and
saves it as a multi-dimensional array, rather than the common 2-dimension relational
tables.

OLAP operations

Having multidimensional data cube, an analyst might want to see a subset of it with some
attributes and restricted values. Or he/she might need other interactive data querying.
These operations, which are part of decision support, are called On-Line Analytical
Processing (OLAP).

Year Quarter Month Day

Week

Figure1.2 Time Dimension Partial Order
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Figure 1.3 Multidimensional data cube
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To rotate the data cube to show a particular face is calledpivoting. This operation is often
supported by the multidimensional spreadsheet applications. For example, we may select
tow dimensions Store (in tore level) and Time (in year level) for pivoting, and aggregate
sales measure. So the aggregated values are displayed in the two dimensional
spreadsheet, with store names as row headers and years as column headers. The value in
the grid (x,y) coordinate corresponds to the aggregated sales value of store x and year y.

Other operators related to pivoting arerollup or drill-down. Rollup corresponds to
aggregating current data on one of the dimensions, for example, aggregating the sales
data in Store dimension from city to region. The drill-down operation is the converse of
rollup. Thus, drilling-down the Store dimension from region to city gets the sales value
for each city, and further drill-down will get the sales or each individual stores.

Slice_and_dicecorresponds to reducing the dimensionality of the data, i.e., selecting
some subset of the cube. For example, if we slice_and_dice data cube in figure1.3 for a
specific product, we can get a table with dimensions store and month.

Database design

Database designers in OLTP environment often use Entity Relationship (ER) diagrams
and normalization techniques. However, the database schemas created by ER diagram
are not suitable for decision support systems, where querying and loading aggregated
data need more efficient structure. Most data warehouses use astar schemato represent
the multidimensional data model. The database consists of a single fact table and a single
table for each dimension. Each tuple in the fact table consists of a pointer (foreign key) to
each of the dimensions that provide its multidimensional coordinates, and stores the
numeric measures for those coordinates. Each dimension table consists of columns that
correspond to attributes of the dimension. Figure 1.4 shows an example of a star schema.

Date
StoreID
ProductID
CustomerID
Unit_sales
Store_cost

Date
Month
Year

SoreID
City
Region
Country
Continent

Date

Store

ProductID
ProductName
SubCategory
Category

Product

CustomerID
CustomerName
City
Country

Customer

Fact Table

Figure 1.4 Star Schema
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Implementation Architectures

There are two main approaches used to build multidimensional databases. One approach
maintains the data as k-dimensional matrix based on a non-relational specialized storage
structure, and stores into Multidimensional OLAP (MOLAP) servers. And while building
the MOLAP, the database designer also compute all useful aggregations for roll-ups, so
roll-ups and drill-downs are answered in the interactive time.

Another approach implements data warehouse on a relational backend, called Relational
OLAP (ROLAP) servers. These ROLAP servers support extensions to SQL and use
indexes built on materialized views to efficiently do operations.
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2. Data Warehouse Query Language

To end users, the data in data warehouse is in multidimensional status, no matter
physically stored in ROLAP or MOLAP servers. On one hand, decision makers want to
do OLAP operations by graphical user interface tools. On the other hand, sophisticated
users may need a declarative, igh-level query language to perform complex queries.
Many extended SQL languages or multidimensional query languages are proposed in
recent years. Here we will introduce Cube operator and two other query models.

2.1 SQL and Data Cube Operator

Gray et al. [Gray95] first proposed an extension to SQL with aCubeoperator to support
multidimensional query.

SQL aggregation function

Data warehouse usually refers to huge amounts of data, and data analysis applications
look for usual patterns in those data, so they can extract relevant data from the
warehouse, aggregate it and analyze the results.

Data extraction and aggregation are common in SQL statements. The SQL standard
provides five functions to aggregate the values in a table:COUNT(), SUN(), MIN(),
MAX() , and AVG(). In addition, SQL allows aggregation over distinct values by
DISTINCT . In many SQL systems, even more functions are provided, such as statistical
functions (median, standard deviation, variance, etc.), physical functions (center of mass,
angular momentum, etc.), financial analysis (volatility, Alpha, Beta, etc.), or even user-
defined functions.

Problems with GROUP BY

The GROUP BY relational operator partitions a table into disjoin tuple sets and then
aggregates over each sets as illustrated in following figure 2.1[Gray95]:

Grouping Values

Partitioned Table

Aggregated Values

Figure 2.1 GROUP BY Operator
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There are three common difficulties in data analysis:

1. Histograms. The standard SQLGROUP BYoperator does not allow a direct
construction of histograms (aggregation over computed categories).

2. Roll-up Totals and Sub-Totals for Drill-downs. You have to store each level
i.e. subtotal of the aggregation.

3. Cross Tabulations. Building a cross-tabulation with SQL is even more daunting
since the result is not a really relational object.

Data Cube operator

Jim Gray et al. [Gray95] proposed an extension to SQL with a new operator, Cube, to
generalize the N-dimensional group-by function.

The data cube operator builds a table containing all the aggregate values. The total
aggregate is represented as the tuple:

ALL , ALL, ALL, …, ALL, f(*)
Wheref(*) is an aggregation function.

The original SQLGROUP BYsyntax is:
GROUP BY
{<column name> [collate clause] , …}

And the extended SQL GROUP BY operator becomes:
GROUP BY

{ (<column name> | <expression> )
[ AS <correlation name> ]
[ <collate clause]
, …}
[ WITH (CUBE | ROLLUP)]
)

For example, we have a relational table of SALES of cars (example comes from
[Gray95])

Table 1 SALES
Model Year Color Sales
Chevy 1990 red 5
Chevy 1990 white 87
Chevy 1990 blue 62
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 blue 49
Chevy 1992 red 31
Chevy 1992 white 54
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Chevy 1992 blue 71
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 blue 63
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 blue 55
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 blue 39

And the SQL statement is:
SELECT Model, Year, Color, SUM(sales) AS Sales
FROM Sales
WHERE Model in {‘Ford’, ‘Chevy’}

AND Year BETWEEN 1990 AND 1992
GROUP BY Model, Year, Color WITH CUBE

The result DATA CUBE table is like this:

Table 2 Data Cube
Model Year Color Sales
Chevy 1990 blue 62
Chevy 1990 red 5
Chevy 1990 white 95
Chevy 1990 ALL 1554
Chevy 1991 blue 49
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 ALL 198
Chevy 1992 blue 71
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 ALL 156
Chevy ALL blue 182
Chevy ALL red 90
Chevy ALL white 236
Chevy ALL ALL 508
Ford 1990 blue 63
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 ALL 189
Ford 1991 blue 55
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 ALL 116
Ford 1992 blue 39
Ford 1992 red 27
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Ford 1992 white 62
Ford 1992 ALL 128
Ford ALL blue 157
Ford ALL red 143
Ford ALL white 133
Ford ALL ALL 433
ALL 1990 blue 125
ALL 1990 red 69
ALL 1990 white 149
ALL 1990 ALL 343
ALL 1991 blue 106
ALL 1991 red 104
ALL 1991 white 110
ALL 1991 ALL 314
ALL 1992 blue 110
ALL 1992 red 58
ALL 1992 white 116
ALL 1992 ALL 284
ALL ALL blue 339
ALL ALL red 233
ALL ALL white 369
ALL ALL ALL 941

CUBEoperator first aggregates over all the<select list> attributes, such as Model,
Year, Color here, as in a standardGROUP BY. The result is the last record of the above
table. Then it substitutesALL for each aggregation columns with attribute values – super
aggregation of the global cube. If there are N attributes in the select list, there will be

12 −N super-aggregate values. And suppose the different value account of each attributes
are 1C , 2C , …, NC then the cardinality of the resulting cube relation is∏ + )1( iC . For

above example, the table 1 has 18332 =×× rows, while the derived data cube table 2 has
48443 =×× rows. And the respective sets are:

Model.ALL = ALL(Model) = {Chevy, Ford}
Year.ALL = ALL(Year) = {1990, 1991, 1992}
Color.ALL = ALL(Color) = {red, white, blue}

TheALL value is a non-value, likeNULL, andALL becomes a new keyword denoting the
set value.

If the application wants only a roll-up or drill-down report, the full cube is too huge to
compute. It is reasonable to offer another functionROLLUPin addition toCUBE. ROLLUP
produces just the super-aggregates:

(f1, f2, …, ALL),
...

(f1, ALL, …, ALL),
(ALL, ALL, …, ALL).
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After defining theCUBEoperator, they also discussed how to address the data cube and
proposed some ways to compute the data cube.

2.2 Agrawal’s Multidimensional Data Model

SQL extension with CUBE operator cannot solve all difficulties in multidimensional
databases. So several new multidimensional data models and query languages are
proposed. Rakesh Agrawal et al. proposed a data model and few algebraic operations for
multidimensional databases [Agrawal97].

Data Model

Their data model is derived from multidimensional cube model, and has some
outstanding features [Agrawal97]:

• It is a multidimensional cube with a set of basic operations designed to unify the
divergent styles and to extend the current functionality.

• It treats all dimensions and measures symmetrically. The model also is very
flexible in providing support for multiple hierarchies along each dimension and
support for ad hoc aggregates.

• The input of each operator is defined on the cube and output of it is also a new
cube. Thus the operators are closed and can be freely reordered.

• It keeps the operators number minimal. That means no operator can be expressed
in terms of others nor can any one be dropped without sacrificing functionality.

• The modeling framework separates the front-end graphical user interface used by
a business analyst from the backend storage system used by the corporation.

The most interesting part of the model is symmetric treatment to dimensions and
measures. It makes the logical model nice to look at, and operations on the logical model
only need to handle one type of data. However, it might make the cube much larger than
the original one, and harder to implement. The model also provides support for multiple
hierarchies along each dimension, but it’s not clear in the paper.

In the logical model, data is organized in one or more multidimensional cubes. A cube
has the following components:

• k dimensions.A name iD and a domain idom from which values are taken for

each dimension.
• Elements.It is a mapping )(CE from ki domdomdom ×⋅⋅⋅×× 2 to an n-tuple, 0 or

1. The element at ‘position’ kdd ,...,1 of cube C is ),...,)(( 1 kddCE . Therefore, the

model does not require the dimensions to have a ranked, discrete domain.
• An n-tuple of names that describes the n-tuple element of the cube.

In this model, measures are also dimensions, so the data cube elements is different from
traditional cube values, and cube has more logical dimensions than physical one. The
elements of a cube can be 0, 1 or an n-tuple >< nXX ,...,1 . A 0 of the element

corresponding to ),...,)(( 1 kddCE means that combination of dimension values does not
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exist in the database. A 1 indicates the existence of that particular combination. And an n-
tuple indicates that additional information is available for it. 1 and n-tuple cannot be
mixed in one cube, that is if any element is 1, none element canbe n-tuple, and vice-versa.
Empty cube is that all the elements of a cube are 0.

Operators

The operators use a cube C withk dimensions as ki DD ,..., . iD also refers to the domain

of dimension iD or we use )(Cdomi if it’s not clear in the context. The lower case letters

like a, b, c refer to constants.

First tow new function elemf and mergef are specified. elemf , also calledelement combining

function, combine several element values into one value. Andmergef , dimension merging

functions, can merge values along a dimension.

Here are the operators defined in [Agrawal97]:
• Push. The push operation converts dimensions into elements that can then be

manipulated using function mergef . This operator is needed to allow dimensions

and measures to be treated uniformly.
• Pull. The converse of the push operation is pull. Pull creates a new dimension for

a specified member of the elements. The operator is useful to convert an element
into a dimension so that the element can be used for merging or joining.

• Destroy Dimension. This operation eliminates a dimension D that only has one
value in its domain. The presence of a single value implies that for the remaining
k - 1 dimensions, there is a uniquek – 1 dimensional cube. So removing it we get
a uniquek –1 dimensional cube.

• Restriction. This operator removes the cube values of operated dimension that
does not satisfy a stated condition.

• Join. The join operator is used to relate information in two cubes. For example,
joining an m-dimensional cube C1 with ann-dimensional cube C2 onk
dimensions, calledjoining dimensions, will get a new cube aC with m+n-k

dimensions.
• Merge. It is an aggregation operation. Merging elements on one dimension can

probably produce a smaller domain dimension, if multiple elements in the original
cube are mapped to the same eleet in the new cube.

The operators proposed in [Agrawal97] have similarity with relational algebra by design.
The authors wanted to explore how much of the functionality of current multidimensional
products can be abstracted in terms of relational algebra. And by developing operators
that can be translated into SQL, they hope to create a fast path for providing OLAP
capability on top of relational database system.
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2.3 Cabibbo’s Multidimensional data modelMDMDMDMD and Query Language

Another good multidimensional data model isMD proposed by Cabibbo, et al,
[Cabibbo97] [Cabibbo98] [Cabibbo00]. They also introduced three query languageMD-
A, MD-C,, andMD-G based on this data model.

The MDMDMDMD data model

Their main contribution isMD, a logical model for OLAP databases “that, unlike other
multidimensional data models, is independent of any specific implementation and as such
provides a clear separation between practical and conceptual aspects.”[Cabibbo00]

The Multidimensional data model (MD for short) is much different from other data
models we talked before.MD doesn’t use cube to represent multidimensional data, but f-
table, which has more meanings than that in star-schema. Each f-table not only represents
a traditional fact table, but also is a function, from coordinates to measures. So the ‘f’ in
the term f-table stands for “function” and “fact”.

Another main construct inMD is dimension, which is the same in cube models.
Dimensions are the categories we used to analyze business data. Each dimension has a
hierarchy of levels, with descriptions associated. And values of different levels are related
by roll-up functions, soMD also support partial orders.

MD model consists of several concepts [Cabibbo00]:

• Level. An MD level l is a countable set of values. Different levels are associated with
pair wise disjoint sets of values.

• Dimension. An MD dimension is a triple (L, ≤, R) of a finite set of levels; a partial
order on the levels and a family of roll-up functions.

• Scheme. An MD scheme is a triple (D, F, LD) of a finite set of dimensions; a finite
set of f-table schemes and a finite set of level descriptions.

• Coordinate and Instance. Let S=(D, F, LD) be anMD scheme and f[A1,:l1, …,
An:ln]:l 0 be an f–table schema inF. A (symbolic)coordinateover an f-table scheme
f[A 1,:l1, …, An:ln]→ÿM1:l1’, …, M m:lm’ � in F is a function mapping each attribute
name Ai(1≤ i ≤ n) to an element in li. An instance over f is a partial function that maps
coordinates over f to tuples over <M1,:l1’, …, Mm:lm’>.

Example

We continue using a chain grocery store company as an example to explain theMD
model. Suppose the grocery store business data has dimensions liketime, product and
location. The time dimension may be organized in levelsday, month, quarter, year and
week. For instance, April 20, 2000 is an element of the levelday. Elements of levelday
roll-up to elements of levelmonth, but also to elements of levelweek.
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Above figure 2.2 shows theMD scheme, over dimensions time, location and product.
This scheme has two f-tables, named SALES and COSTOFITEM, and one level description,
address. The f-table SALES describes some summary data for the sales transactions,
organized along dimensionstime (at day level),location (at store level), andproduct (at
item level). The measures for this f-table areNSales(the number of items sold) and
Income(the gross income), both having typenumeric. Because the costs of items are
changing from month-to-month, we use the f-table COSTOFITEM to represent. The level
descriptionaddressis used to associate textual information to the elements of the level
store.

A possible instance for this model scheme example is shown in figure 2.3.

year

quarter
week

month

day

Time

country

city

store

Location

item

Product

dimensions

f-table scheme

SALES[Period:day, Product: item, location: store] → ÿNSales: numeric, Income: numeric�

COSTOFITEM[Product: item, Month: month]→ÿCost: numeric�

Level Description

Address (store) : string

Figure 2.2 The Grocery Store Scheme Example

type

category
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Note that two different representations for f-tables are used in the figure. A symbolic
coordinate over the f-table SALES is [day : April 1, 2000, item : milk, location : S
Edmonton]. The actual instance associates with this entry the value 3 for the measure
NSalesand the value 12.98 for the measureIncome. The figure also shows a tabular
representation for the level descriptions address.

It is apparent that the notion of “symbolic coordinate” is related with that of “tuple” in the
relational model. It can also be noted that the notation used for symbolic coordinates
resembles subscripting into a multi-dimensional array (although in a non-position way).

SALES

Period Product Location NSales Income

April 1, 2000 milk S Edmonton 3 12.98

April 1, 2000 egg S Edmonton 10 51.34

April 1, 2000 bread W Edmonton 3 4.67

April 1, 2000 banana W Edmonton 23 4.54

May 1, 2000 milk S Edmonton 3 14.21

May 1, 2000 egg S Edmonton 6 20.11

May 1, 2000 milk Calgary 3 14.21

May 15, 2000 bread Calgary 2 2.56

May 15, 2000 egg W Edmonton 5 25.53

COSTOFITEM

Cost April-2000 May-2000 June-2000

milk 3.99 4.39 4.99

egg 1.99 2.29 2.59

bread 0.99 1.99 2.49

banana 0.39 0.49 0.59

Address
Store

S Edmonton Calgary Trail

W Edmonton Stony Plain Rd

Calgary 23 Ave.

Figure 2.3. Instance of Grocery Store Scheme
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Querying MDMDMDMD database

An MD query is a mapping from instances over an inputMD scheme to instances over an
outputMD scheme. The input and output schemes are defined over the same dimensions
but different f-tables.

[Cabibbo00] introduced three query languageMD-A, MD-C,, andMD-G. Before we
discuss these query languages, we assume there is an f-table EDMONTONSALES (the output
f-table) with scheme:

EDMONTONSALES [Period : day, Product: item, Location: store] →ÿNSales: numeric� ,

This output f-table represents the number of sales for each item in each day, only for the
stores in Edmonton. This sales data can be calculated from the input f-table SALES, having
scheme

SALES[Period: day, Product: item, location: store] → ÿNSales: numeric, Income: numeric�

Algebraic query languageMDMDMDMD----AAAA

Like relational algebra query language,MD-A is an algebra based on a set of operations
over f-tables, manipulating the –tables in procedural way. The operators include
Cartesian Product, Natural Join, Roll-up, Level Description, Selection, Simple Projection,
Aggregation, Abstraction.

Because we want the sales data for stores in Edmonton, we first extend the input f-table
with a new attribute over the levelcity by roll-up operator )(2:2

1:1 FlA
lAρ . Then we perform a

selection over the new attribute city, which equals “Edmonton”, and finally project out
the additional attribute and unneeded measures. The algebra expression is as following:

[ ] ( )( )( )SALEScityCity
storeLocationEdmontonCityNSalesLocationoductPeriod

:
:,Pr, ρσπ =→

Calculus query languageMDMDMDMD----CCCC

The calculus query languageMD-C is a first-order calculus for f-tables, and allows
expressing queries in a declarative way.

An MD-C query whose output f-table has scheme f[A1:l1, …, An, ln] →ÿM1:l1’, …,
Mm:lm’ � can be specified by means of an expression of the following form:

{x 1, …, xn: y1, …, ym | ψ(x1, …, xn, y1, …, ym)}

The query EDMONTONSALES can be specified by means of the following calculus
expression:
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{day, item, store: NSales |
∃income(SALES[ day, item, store]= ÿNSales, Income � ∧

( ) Edmontonstorecity
store =ρ )}

Graphical query languageMDMDMDMD----GGGG

The graphical query languageMD-G provides an interactive way for end-users to query
on a multidimensional database. It describes anMD-G f–table with a graph called f-graph.
For example, the f-graph for SALES is shown in figure 2.4.

The central, rectangular node isf-nodeto represent the f–table. Ovals denote levels of
dimensions and parallelograms denote level descriptions. An arc between two levels
represents a roll-up function, and arc between an f-node and a measure node associates
the f-table with measure.

In MD-G, the query is specified by means of several f-graphs to restructure schema. For
EDMONTONSALES example, the input –graph is in figure 2.4, and the restructuring graph is
shown on the bottom of figure 2.5, and the output f-graph is shown on the bottom of
figure 2.5.

Product

Product:
item

type

category

Location:
store

city

country address

Period:
day

month

quarter

year

week

SALES

NSales Income

Figure 2.4 f-grpah for SALES

location time
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MD model is independent of any specific implementation, but we can note it closely
related to relational model. The f-table can be stored into relational tables, so it’s easy to
implement on the top of RDBMS.

NSales

Product:
item

Product

type

category

Location:
store

City=
Edmonton

country address

Period:
day

month

quarter

year

week

SALES

Income

Figure 2.5 Graphical Query forEDMONTONSALES

location time

Product

Product:
item

type

category

Location:
store

city

country address

Period:
day

month

quarter

year

week

EDMONTON

SALES

NSales

location time
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2.4 Microsoft SQL Server Multidimensional Expressions (MDX)

The two models discussed above come from academic, and no implementation has been
done based on them. Here we will take a look at a commercial software product,
Microsoft SQL Server OLAP Services, which provides fast and efficient responds to user
queries on multidimensional data.

How multidimensional data is stored in MS SQL Server is unclear, but they provide a
query language to access it, full-fledged, highly functional expression syntax:
multidimensional expressions (MDX) [Nolan99].

Since our XMDQL is mostly generated by the idea of MDX, we will discuss MDX in a
lot more details. Before we introduce MDX expressions, the concepts used in MDX are
almost the same as those we talked before, like cube, dimension, measure and level.

The data model is similar to data cube model, multidimensional cube with dimensions to
describe category information and measures to identify the numerical values. Each
dimension also contains a hierarchy of levels to view data granularly -- each level in a
dimension is of a finer grain than its parent. But MDX doesn’t support partial order, so
there is only one way from op level to bottom level. In MDX, measures can be also
viewed as dimension, special dimension.

FoodMart Sales Cube sample

The Microsoft SQL Server OLAP Services include a sample multidimensional database
called FoodMart, and this is the sample data we used in our project, too. There is a Sales
cube designed for the analysis of a chain of grocery stores and their promotions,
customers, and products. Tables 1 and 2 outline the dimensions and measures associated
with this cube.( example data comes from [Nolan99])
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MDX syntax

If we want a table like report for measure values on two cube dimensions, we can write a
simple MDX expression like this:

SELECT axis specification ON COLUMNS,
axis specification ON ROWS
FROM cube_name
WHERE slicer_specification
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Because most queries just want few dimensions projected on return cubes’ axis, so MDX
useCOLUMNSto indicate first dimension,ROWSto state second dimension. If more than
tow dimensions returned, the named axis wouldPAGES, CHAPTERSand, finally,
SECTIONS. If you desire more generic axis terms over the named terms, you can use
the AXIS(index) naming convention, with zero-based index referred to the axis. The
axis specification is used to select members from cube dimensions. The slicer
specification onWHEREclause is used to define the slice of the cube to be viewed.

The simplest form of an axis specification is taking the MEMBERS of the required
dimension, including those of the special Measures dimension. For example, if we want
to get all recorded measures for each store, the MDX expression is:

SELECT Measures.MEMBERS ON COLUMNS,
[Store].MEMBERS ON ROWS
FROM [Sales]

It will display all measure values for the stores hierarchy for each stores and every
defined summery level.

We can also only select a single member of a dimension, like this expression:

SELECT Measures.MEMBERS ON COLUMNS,
{[Store].[Store State].[CA], [Store].[Store State].[WA]} ON ROWS
FROM [Sales]

It queries the measures for the stores summarized for the states of California and
Washington. If we want to query measures for cities in these two states, we would query
the CHILDREN of the required members:

SELECT Measures.MEMBERS ON COLUMNS,
{[Store].[Store Region].[CA].CHILDREN,

[Store].[Store Region].[WA].CHILDREN} ON ROWS
FROM [Sales]

So we have two functions, MEMBERS and CHILDREN. MEMBERS function returns
the members for the specified dimension or dimension level, and CHILDREN function
returns the child members for a particular member within the dimension.

And DESENDANT function can drill down to a lower level within a dimension. Besides,
MDX provides many functions to navigate the hierarchy, to calculate members and to
analysis tie period.

Slicer specifications

In the WHEREclause, the slicer specification summarizes the slice of the cube to be
viewed. And it is often used to select measures to be viewed because measures are
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together another dimension. For instance, we want to get sales average for the stores at
state level, cross-referenced against the store type, the expression is:

SELECT {[Store Type].[Store Type].MEMBERS} ON COLUMNS,
{[Store].[Store State].MEMBERS} ON ROWS
FROM [Sales]
WHERE (Measures.[Sales Average])

Another example, if w only want the sales averages for the year 1999, theWHEREclause
would be written as:

WHERE (Measures.[Sales Average], [Time].[Year].[1997])

It is important to note that slicing is not the same as filtering. Slicing does not affect
selection of the axis members, but rather the values that go into them. This is different
from filtering, because filtering reduces the number of axis members.
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3. Other Related Technologies

3.1 XML

“The Extensible Markup Language (XML) is the universal format for structured
documents and data on the Web.”[W3C00]

The Extensible Markup Language (XML) is descriptively identified in the XML 1.0
W3C Recommendation as “an extremely simple dialect [or ‘subset’] of SGML”[W3C98]
the goal of which “is to enable generic SGML to be served, received, and processed on
the Web in the way that is now possible with HTML,”[W3C98] for which reason “XML
has been designed for ease of implementation, and for interoperability with both SGML
and HTML.”[W3C98]

Inherited from SGML, XML is a method for putting structured data in a text file. The
XML documents are self-described, so both human and machine can understand. And
most important, XML documents are platform independent, language independent, so
once written, they can be used everywhere. That’s why XML is often used for
transferring data between different heterogeneous systems.

3.2 CORBA

CORBA is an acronym for Common Object Request Broker Architecture, defined by
Object Management Group (OMG). CORBA is “an open, vendor-independent
architecture and infrastructure that computer applications use to work together over
networks”[OMG01]. CORBA-based programs from any vendor, on any computer,
operating system, programming language, and network, can communicate with each
other. Because of its vendor-independent feature, CORBA is often chosen as the
middleware for large enterprise.

CORBA applications are composed ofobjects, individual units of running software that
combine functionality and data. IDL (Interface Definition language) is used to define the
interface of the object requests. The created file that defines the object export methods
and is written in IDL does not contain the actual implementation of the algorithms. The
implementation of the interface is defined using Java or other language outside of the
IDL and build on the framework created by some IDL converter.

3.3 SOAP

Remote objects like CORBA objects can give a program almost unlimited power over
network, However, in Internet, most firewalls block non-HTTP request, so we have to
find another way to do distributed computing on Internet.

SOAP (Simple Object Access Protocol) defines the use of XML and HTTP to access
services, objects, and servers in a platform-independent manner. It “provides a simple
and lightweight mechanism for exchanging structured and typed information between
peers in a decentralized, distributed environment using XML.”[W3CSOAP00]
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Like CORBA, SOAP is a protocol that acts as the glue between heterogeneous software
components. If developer can agree on HTTP and XML, SOAP offers a mechanism for
bridging competing technologies in a standard way.

SOAP consists of three parts[W3CSOAP00]:

• The SOAP envelope construct defines an overall framework for expressingwhat
is in a message;who should deal with it, andwhether it is optional or mandatory.

• The SOAP encoding rules defines a serialization mechanism that can be used to
exchange instances of application-defined datatypes.

• The SOAP RPC representation defines a convention that can be used to represent
remote procedure calls and responses.

3.4 Jakarta Tomcat

Jakarta is the name of an project committed to open source development. Apache
Software Foundation currently oversees the project. The group in responsible for
developing a number of deferent produces, one being Tomcat. Tomcat is a web server
extension that implements Sun Microsystems’s Java Servlet 2.2 API specification.
Servlets are written using only the Java programming language. Servlet allows a web
server to be extended such that it can provide additional services. One such service is the
creation of dynamic web pages that are returned to the web browser. Servlets are
associated with a particular URL.

A servlet is used to extend the capability of a web server. The web server receives a GET
connection request from a specific web browser. The GET request can contains a
specific URL and html action request is received by the web server and invokes the Java
servlet code corresponding to the URL and html action request. This provides the web
server extensions. The servlet contains the ability to respond to the request. A service
method within the HttpServlet API is called which hands off the client request according
to the type of the HTTP request.

By extending the HttpServlet Java API, doGet and doPost methods are defined. The
doGet method responds to HTTP GET request, which is normal, a request for a web
page. The doPost method responds to the HTTP POST command, which is produced as a
response of a button press where the button resides on the web pages of the client’s web
browser in order to submit information to the web server.

Servlets allow the web server to create dynamic web pages based on some user input. In
this manner servlets are similar to CGI. The POST and GET HTTP request allows
parameters to be passed from the web client to servlet via the web server, the servlet once
invoked responds to the HTTP request. Using servlets to create dynamic web pages, the



Towards Framework for the Virtual Data Warehouse

Yuan Ji Page 33 6/13/2003

response is a web page generated by the servlet. The web page is written to Java
PrintWriter stream object that hands the servlet generated web page back to the client.

Servlets are written in Java and overcome some of the drawbacks of CGI. Java allows
for the portably of the byte code across many platforms where CGI written in the C, C++
programming language must be recompiled in order to run on various platforms. Unlike
C, C++, the Java language does not suffer as much from the same issues. Java contains a
build in garbage collection method that frees memory still allocated by references that
have gone out of scope. Memory management in C, C++ CGIs could easily contain
memory leaks. C, C++ CGI sometimes provided for possible security breaches because
bounds checking were not done property on the values submitted by the web browser.
This led to root exploits on the system. Java utilizes dynamically allocating objects
(vectors, strings, et) to handle varying sizes of inputs to the servlets.

3.5 Xerces Java Parser

In our implementation, we use Apache Xerces Java parser 1.3 to parse XML documents.
It supports XML 1.0 recommendation and contains advanced parser functionality, such as
XML Schema, DOM Level 2, and SAX 2.0, in addition to supporting the industry-
standard DOM Level 1 and SAX 1.0.

Xerces Java parser provides standard W3C DOM API and javax.xml.parsers API, and we
use it as a standard XML parser, so it can be changed to any other XML parser for Java,
such as those made by SUN, IBM or Oracle.

3.6 Apache SOAP

For SOAP (Simple Object Access Protocol) usage, we choose Apache SOAP
implementation. It is based on the IBM SOAP4J implementation. IBM donated their code
to the Apache Software Foundation, and the open source community quickly embraced
the project and has been working nonstop on bug fixes, enhancements, and new
functionality.

The Apache SOAP service can be running under any servlet containers, and it works very
well with Jakarta Tomcat, although it’s not easy to set up the server and try your first
SOAP program.
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4. Virtual Data Warehouse System Design

4.1 System Architecture

Figure 4.1. Virtual Data Warehouse Architecture
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The Virtual Data Warehouse (VDW) is a conceptualization of a centralized data
warehouse that includes a set of distributed data sources and a shell (DCC-Shell) that is
responsible for managing and querying these sources. The DCC-Shell does not store any
actual transaction data. Instead, these transaction data are left on the distributed sites
containing them while the DCC builds and updates a global multidimensional model of
the available dimensions and measures, hence the name “virtual warehouse”. This
approach provides the VDW clients constantly updated views of any constructed cubiod
in a manner that makes the source distribution transparent to the user. Although the DCC-
Shell does not store raw data, it maintains a pool of meta-data (cube schema) that is
synchronized with all data sources. This global schema is prepared when constructing the
VDW, and if any parts are changed, all sites must be updated to avoid inconsistencies.
Although this approach is hard to maintain, it’s much easier to implement. Besides meta-
data, DCC-Shell also stores a resource allocation table that includes information
pertaining to the location, data organization, and the communication method of each data
sources. All the meta-data and resource allocation data are written in XML format, so it is
easy to understand and maintain, therefore makes the whole system extensible and
flexible.

Virtual data warehouse, like traditional warehouse, or database, must provide services,
and we call them queries. Right now there are three classes of query functions available
to a client.

We classify the query into three kinds, warehouse query, cube schema query and cube
data query.

• Warehouse query: user requests basic info about the warehouse, and results are
warehouse name, description, how many data cubes it has, the size of each cube.
It is useful when a client first accesses the VDW to get brief idea of it.

• Cube schema query: user asks for the meta-data of one specific cube, and results
are cube description, measurement, dimension, etc.

• Cube data query: It is used to obtain an entire N-dimensional cube or any subset
of it. This is particularly useful in applications such as the VCU that handles only
one 3D cube per visualization session. Just like meta-data storage, all query
requests and responds are in XML format.

4.2 Schema Repository

“Data warehouses are based on a multidimensional data model. This model views data in
the form of a data cube.” A cube is defined by dimensions and facts. In our system, a
cube has schema part and fact data part, and how to design cube schema in XML
becomes one important issue.

First, a cube schema has name property and sub elements of measures and dimensions,
which are sets of measures and dimensions:
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<!ELEMENT CubeSchema (Measures, dimensions)>
<!ELEMENT Measures (Measure*)>
<!ELEMENT Dimensions (Dimension*)>

Each Measure element has name, aggregationFunction as properties, and Title, DataType
sub-elements:

<!ELEMENT Measure (Title, DataType)>
<!ATTLIST Measure name NMTOKEN >
<!ELEMENT Title (#PCDATA)>
<!ELEMENT DataType (#PCDATA)>

For example, we have following measures:

<Measures>
<Measure name="Unit_Sales" aggregationFunction="SUM">

<Title>Unit Sales</Title>
<DataType>double</DataType>

</Measure>
<Measure name="Store_Cost" aggregationFunction="SUM">

<Title>Store Cost</Title>
<DataType>double</DataType>

</Measure>
<Measure name="Store_Sales" aggregationFunction="SUM">

<Title>Store Sales</Title>
<DataType>double</DataType>

</Measure>
<Measure name="Sales_Count" aggregationFunction="Count">

<Title>Store Cost</Title>
<DataType>double</DataType>

</Measure>
</Measures>

Next comes the most difficult part, dimensions. “The dimensions of a cube represent
distinct categories for analyzing business data. Categories such as time, geography, or
product line breakdowns are typical cube dimensions.”

Typically, a dimension is organized into a hierarchical data structure, and may has partial
or total ordering. To simplify the problem, we design the dimension with total ordering,
and save partial ordering info as properties of dimension units.

Here we try to define dimension by example of store. The concept hierarchy of store
location can have many levels of categories, such as continent, country, region and city,
as in the following figure:

So we can write down the dimension of store:
<Dimension name=”Store” allLevel="yes" allCaption="All Store">

<Description>The store schema</Description>
<Levels number=”5”>

<Level name=”Continent” Title=”Store Continent”/>
<Level name=”Country” Title=”Store Country”/>
<Level name=”Region” Title=”Store Region”/>
<Level name=”City” Title=”Store City”/>
<Level name=”Store” Title=”Store Name” type=”base”>
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<Property name=”Store_Manager” type=”String”/>
</Level>

<Levels>

<Unit name=”N_America” >
<Unit name=”USA”>

<Unit name=”West”>
<Unit name=”Seattle”>

<BaseUnit name=”Store1” baseID=”1”>
<Property name=”Store_Manager”>Bill Gates</Property>

</BaseUnit>
</Unit>

</Unit>
<Unit name=”Central”>

<Unit name=”Denver”>
<BaseUnit name=”Store2” baseID=”2”/>

</Unit>
</Unit>
<Unit name=”East”>

<Unit name=”Boston”>
<BaseUnit name=”Store3” baseID=”3”/>

</Unit>
</Unit>

</Unit>
<Unit name=”Canada”>

<Unit name=”BC”>
<Unit name=”Vancouver”>

<BaseUnit name=”Store4” baseID=”4”/>
</Unit>

</Unit>
<Unit name=”Alberta”>

<Unit name=”Edmonton”>
<BaseUnit name=”Store5” baseID=”5”/>

</Unit>
</Unit>
<Unit name=”Ontario”>

<Unit name=”Toronto”>
<BaseUnit name=”Store6” baseID=”6”>

<Property name=”Store_Manager”>Stockwell Day</Property>
</BaseUnit>

</Unit>
</Unit>

</Unit>
</Unit>
<Unit name=”Europe”>
</Unit>

</Dimension>

We can also write down another dimension for product:

<Dimension name=”Product” allLevel="yes" allCaption="All Product">
<Description>The product schema</Description>
<Levels number=”3”>

<Level name=”Category” Title=”Product Category”/>
<Level name=”Type” Title=”Product Type”/>
<Level name=”Product” Title=”Product Name” type=”base”/>

<Levels>

<Unit name = “Office” >
<Unit name = “Computer”>

<BaseUnit name = “IBM” baseID = “0”/>
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<BaseUnit name = “Compaq” baseID = “1”/>
<BaseUnit name = “Apple” baseID = “2”/>

</Unit>
<Unit name = “Fax”>

<BaseUnit name = “Panasonic” baseID = “3”/>
<BaseUnit name = “Brothers” baseID = “4”/>

</Unit>
<Unit name = “Copier”>

<BaseUnit name = “Cannon” baseID = “5”/>
<BaseUnit name = “Xerox” baseID = “6”/>

</Unit>
</Unit>
<Unit name = “Appliance”>

<Unit name = “Kitchen”>
<BaseUnit name = “Brown” baseID = “7”/>
<BaseUnit name = “Sharp” baseID = “8”/>

</Unit>
<Unit name = “House”>

<BaseUnit name = “GE” baseID = “9”/>
</Unit>

</Unit>
<Unit name = “Entertainment”>

<Unit name = “TV”>
<BaseUnit name = “27” baseID = “10”/>
<BaseUnit name = “37” baseID = “11”/>

</Unit>
<Unit name = “Stereo”>

<BaseUnit name = “100W” baseID = “12”/>
<BaseUnit name = “500W” baseID = “13”/>

</Unit>
</Unit>

</Dimention>

Above two examples are common dimensions, and we also have some special
dimensions, such as time. Time’s concept hierarchy can be presented as partial ordering
or total ordering.

In figure 1.2, day has two ways to roll up, either to month or to week, so this hierarchy
cannot be presented by tree structure. But if we put week into day level as a property, we
will make it a total order. Here is an example of Time dimension schema in XML:

<Dimension name="Time" special="time"
allLevel="no" allCaption="All Level">

<Description>Time dimension for Cube</Description>
<Levels number="3">

<Level name="Year" Title="Year"/>
<Level name="Quarter" Title="Quarter"/>
<Level name="Month" Title="Month"/>
<Level name="Day" Title="Day" type="base">

<Property name="Day_of_Week" type="String" />
</level>

</Levels>
<Unit name="1997">

<Unit name="Q1">
<Unit name="January">

<Unit name="1" baseID="367"> <Property>Wednesday</Property></Unit>
<Unit name="2" baseID="368"> <Property>Thursday</Property></Unit>
<Unit name="3" baseID="369"> <Property>Friday</Property></Unit>

………
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</Unit>
</Unit>

</Diemnsion>

4.3 XML Multi-Dimensional Query Language (XMDQL)

We propose an XML-based query language, XMDQL, to interact with the VDW in order
to manage and access the available data. The concept of a special multidimensional query
language was first proposed (still not finalized) by Pilot software [16] as an industry
standard. In OLAP terminology this type of query is equivalent to slicing and dicing the
data cube. The result of executing an XMDQL query is a cell, a two-dimensional slice, or
a multidimensional sub-cube. XMDQL provides functionality similar to that of
Microsoft’s MDX (Multidimensional Expressions), but it is formatted in XML and the
result is also XML document.

basic format

To specify a cube, XMDQL must contain information about following subject:
• The virtual cube that query is on.
• Dimensions projected in result cube.
• Slices in each dimension to present and sort order.
• The members from a nonprojected dimension on which data will be filtered for

members from projected dimensions.

XMDQL has this basic forms:

<XMDQL>
<SELECT>

project dimensions and slices
</SELECT>
<FROM>

witch cube to query
</FROM>
<WHERE>

filtering constrains
</WHERE>

</XMDQL>

examples

For example, we have a virtual cube with four dimensions, Store, Time, Product,
Customer, and we want to see sales for USA for office product and for each quarter in
1997.

Table 5. Sales for USA
Computer Fax Copier

Quarter Q1 4356 342 56456
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Quarter Q2 556 945 234
Quarter Q3 8754 656 3324
Quarter Q4 456 786 4334

In this example, the product and time dimension are projected dimensions, and each has
one slice. Store dimension is used in WHERE part as filter.

<XMDQL>
<SELECT>

<Measure name=”Store_Sales”>
<Axis dimension=”Product”>

<Slice type=”mono” title=”${name}”>
<Path>Office.*</Path>

</Slice>
</Axis>
<Axis dimension=”Time”>

<Slice type=”mono” title=”Quarter ${name}”>
<Path>1997.*</Path>

</Slice>
</Axis>

</SELECT>
<FROM>

<Cube name=”AllElectronics”/>
</FROM>
<WHERE>

<Condition dimension=”Store”>
<Path>N_America.USA</Path>

</Condition>
</WHERE>

</XMDQL>

In XMDQL, we introducepath in Slice, to indicate how to retrieve data. The
path=”Office.*” means show all children of Office, so the generated set is
{Computer, Fax, Copier}. Therefore, in the axis of dimension Product, only the sales of
computer, fax and copier are presented. In time axis,path=”1997.*” , and below
1997, there are 4 children, Q1, Q2, Q3 and Q4. In WHERE part, the condition has one
dimension filter, meaning only sales in USA stores are retrieved.

The path is a dot separated dimension unit name stream, and shows a route in the concept
hierarchy. The ‘*’ means all children of the unit. If we want to see sales on all product,
we set path=”*”. Path uses ‘{}’ to query on level. For example, if we want to see sales on
each product type, the path is set to “{Type}”, so the return set of dimension Product is
{Computer, Fax, Copier, Kitchen, House, TV, Stereo}. SeePath Syntaxfor formal
definition of path.

The Slice element sets the member or members of dimension to project on axis. We can
select more than one slice in one dimension. For example, we want the time axis has
these units:
January, February, March, Q2, Q3, October, November, December.
The query can be as following:

<Axis dimension=”Time”>
<Slice type=”mono” title=”1997 ${name}” >
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<Path>1997.Q1.*</Path>
</Slice>
<Slice type=”mono” title=”1997 Quarter %{name}” >

<Path>1997.Q2</Path>
<Path>1997.Q3</Path>

</Slice>
<Slice type=”mono” title=”1997 ${name}” >

<Path>1997.Q4.*</Path>
</Slice>

</Axis>

We can also customize new units in slice. For example, we want see total sales of USA
and Canada, so Slice is:

<Slice type=”sum” title=”USA and Canada”>
<Path>N_America.USA</Path>
<Path>N_America.Canada</Path>

</Slice>

Thetype attribute ofSlice can bemono, sum, etc.sum means aggregating the total
data in all paths and displaying as one projected unit.

Path syntax

Path is used to indicate the units projected on one axis. We define a path is consisted of
several path nodes separated by “.” Tokens.

Path ::= PathNode ( SEPARATE_TOKEN PathNode ) *
SEPARATE_TOKEN ::= ‘ . ’
PathNode ::= ( ‘ { ‘ LevelName ‘ } ’ )? ( UnitName )? ( ‘ [ ‘ Condition
‘ ] ’ )?
LevelName ::= name string of level.
UnitName ::= name string of unit.
Condition ::= Boolean expression on properties of unit.

Examples:
1997.{Day} : see data of each day of 1997.
1997.{month}.13 : see data of each month’s 13.
1997.{month}.13[day_of_week=”Friday”] : see data of each 13 Friday in 1997.
{Store}[manager=”Tom”] : see data of stores whose manager is Tom.

XMDQL DTD

<!ELEMENT XMDQL (SELECT, FROM, WHERE?)>
<!ELEMENT SELECT (Measure+, Axis+)>
<!ELEMENT FROM (Cube)>
<!ELEMENT WHERE (Condition+)>

<!ELEMENT Measure EMPTY>
<!ATTLIST Measure name CDATA>

<!ELEMENT Axis (Slice+)>
<!ATTLIST Axis dimension CDATA>
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<!ELEMENT Slice (Path+)>
<!ELEMENT Slice type “mono|sum” “mono”

title CDATA >

<!ELEMENT Path (#PCDATA)>

<!ELEMENT Cube EMPTY>
<!ELEMENT Cube name NMTOKEN>

<!ELEMENT Condition (Path+)>
<!ATTLIST Condition dimension CDATA

type “include|exclude” “include” >

4.4 Query Distribution and Execution

According to figure 2.1, the query is received by DCC-Shell interface, and sent to Data
Cube Constructor, then sent to Query Distributor. The Query Distributor analyzes the
query and finds which data marts contain the cube data, then distributes the query to
them.

The question is how to store the cube data distribution information so distributor can
easily figure out the Data Marts to communicate.

Because we assume the cube schema is stored in each site with same copies, only fact
data are distributed. And another assumption is that we distribute data on only one
dimension. For example, the sales data of USA stores are in Data Mart 1, and Canada in
Data Mart 2.

So we can save the distribution info in XML like:

<Distribution dimension=”Store”>
<Component path=”N_America.USA”

mart=”DataMart1”>USA sales data</Component>
<Component path=”N_America.Canada

mart=”DataMart1”>Canada sales data</Component>
</Distribution>

Suppose we have distribution component set Ddist = {C1, C2, …, Cn }, each Ci related to a
branch of concept hierarchy tree, and there is no overlap between them. And we can also
define dimensions in SELECT or WHERE part of XMDQL as set Dquery, for each
dimension, Dj={sj1, sj2, …, sjmj}, s is slice. For Dj=Ddist, we check if Ci embrace one slice,
add the data source i. If no Dj equals to Ddist, add all data sources.

In the distribution algorithm, we should also consider function slice and complex
WHERE conditions.
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Assume the XMDQL query has no function slice and no complex condition in WHERE,
and the projected dimensions are sliced into display units. For each unit, let set U include
all base unit ID below it, so we get :

PD1 : U 11, U 12, U 13, …, U 1m1

PD2 : U 21, U 22, U 23, …, U 2m2
…
PDn : U n1, U n2, U n3, …, U nmn

So every cell in result cube has baseID set {U}. And for conditions, we also have:
CD1 : U’ 11, U’ 12, U’ 13, …, U’ 1m1

CD2 : U’ 21, U’ 22, U’ 23, …, U’ 2m2
…
CDn : U’ n1, U’ n2, U’ n3, …, U’ nmn

Then scan through fact table with each record. If one record’s dimension baseIDs belong
to one cell’s baseID set, and obey the condition, add the measure value to this cell.

Here we suppose local data marts store cube fact data as tables. The fact tables maybe
saved in database, such as DB2, Oracle. So we can create some stored procedures to
retrieve data.

The algorithm for this query engine needs more study in the future.
Combining cubes from distributed data marts into result cube may be as easy as sum cell
values of each cube if there is no function slice.

The returned cube should include axis information and measure data. Following example
in table 5, we can write cube as this:

<CubeData>
<Measure name=”Store_Sales”>
<Axis>

<Dimension name=”Time”>
<Unit path=”1997.Q1”/>
<Unit path=”1997.Q2”/>
<Unit path=”1997.Q3”/>
<Unit path=”1997.Q4”/>

</Dimension>
<Dimension name=”Product”>

<Unit path=”Office.Computer”/>
<Unit path=”Office.Fax”/>
<Unit path=”Office.Copier”/>

</Dimension>
</Axis>
<Data>

<D1>
<D2>43 45 567</D2>
<D2>56 44 77</D2>
<D2>22 87 345</D2>
<D2>45 76 34 234</D2>

</D1>
</Data>

</CubeData>
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4.5 Implementation interface

Finally, we implemented the XMDQL query engine by Java language, and set up a
CORBA server as Virtual Data Warehouse. For time limit, we only set up one SOAP
server as data source to store transaction data. The fact data was saved as local files and
organized in a special format so XMDQL query engine could get the data quickly.

Because DIVE-ON system was not ready then, we used Jakarta Tomcat to create a web
site to provide XMDQL query tools by a simple interface. User can visit the web page of
this site to input XMDQL string, in XML format, and submit the query. The query was
posted to servlet inside Tomcat web server, then the servlet sent the query string to our
virtual data warehouse ORB server. The DCC-Shell did the query distribution and
forwarded query string to another SOAP server.

Now the interface only lets users do multidimensional data query on two dimensions, and
the return values are displayed in a table format. But the VDW can handle any XMDQL
query with unlimited number of dimensions (not exceeding cube dimension number). The
response time is pretty good, almost as good as MS SQL OLAP server.

Figure 4.2 XMDQL Query Interface
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5. Conclusion and Future Work

In this report, we discussed the concept of data warehouse as well as data model and
query language of multidimensional databases. We also designed and implemented a
virtual data warehouse with java language and CORBA, SOAP techniques. The main
contributions of our work are applying XML technology to data warehouse and a new
multidimensional data query language XMDQL.

There are many areas of this work that offer opportunities for future work. We didn’t
have enough time to investigate how to implement different wrapper for different data
source, such as many legacy systems, so translating XMDQL to local system query
language is a big issue for further study. And many interesting topics will appear like run-
time data cleaning, integration and performance. Another opportunity will be efficiently
passing cube data between DCC-Shell and data sources, for right now cube data are
formatted in XML document, and the size is too big for ordinary queries.
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