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Abstract
Web recommender systems anticipate the information needs of on-line users and provide them with recom-
mendations to facilitate and personalize their navigation. There are many approaches to build such systems.
Among them, using web access logs to generate users’ navigational models to build a web recommender sys-
tem is a popular approach, given its non-intrusiveness. However, using only one information channel, namely
the web access history, is often insufficient for accurate recommendation prediction. We advocate the use
of additional information channels available to better model user navigational behavior. In this paper, we
investigate a novel hybrid web recommender system, which combines the access history, the content of visited
pages, as well as the connectivity between web resources in a web site to model users’ concurrent information
needs and then generate users’ navigational patterns. Our experiments show that the combination of the
three channels in our system significantly improves the quality of the web site recommendation, and each
additional channel used contributes to this improvement. In addition, we discuss cases on how to reach a
compromise when not all channels are available.

Key Words: Web Recommender System, Web Usage Mining, Web Content Mining, Web Structure Mining,
Navigational Pattern

1. Introduction

A web recommender system is a web-based interactive software agent. It attempts to predict user preferences
from user data and/or user access data for the purpose of facilitating users’ information needs by providing
them with recommendation lists of suggested items. The recommended items could be products, such
as books, movies, and music CDs, or on-line resources such as web pages or on-line activities. A web
recommender system is composed of two modules: an off-line module and an on-line module. The off-line
module pre-processes data to generate user models, while the on-line module uses and updates the models
on-the-fly to recognize user goals and predict recommendation lists.

In this paper, we investigate the design of a hybrid recommender system to recommend on-line resources,
with the emphasis of the presence of concurrent information needs. Pursuing more than one goal simulta-
neously (i.e. concurrent information needs) is fairly common for on-line users, but this fact has so far been
ignored by web usage-based recommender systems.We call these simultaneous goals “missions” and we use
different information channels to identify them, namely the web access usage, the web content, and the web
connectivity. Unfortunately, these channels are not all always available and we need to find compromises
depending upon the application at hand. Our system has been designed for and tested on both a generic web
server log (University of Alberta Department of Computing Science web server log) and an idiosyncratic log
created by VIVIDESK, a commercial desktop application that integrates user accesses to multiple on-line
applications and resources for health care providers.

One of the earliest and widely used technologies for building recommender systems is Collaborative
Filtering (CF) [19] [9]. CF-based recommender systems aggregate explicit user ratings or product preferences
in order to generate user profiles, which recognize users’ interests. A product is recommended to the current
user if it is highly rated by other users who have similar interests to the current user. The CF-based



techniques suffer from several problems [18]. First of all, they rely heavily on explicit user input (e.g.,
previous customers’ rating/ranking of products), which is either unavailable or considered intrusive. With
the sparsity of such user input, the recommendation precision and quality drop significantly. The second
challenge is related to the system scalability and efficiency. For a CF-based recommender system, user profile
matching has to be performed as an on-line process. For very large datasets, this may lead to unacceptable
latency for providing recommendations.

In recent years there has been an increasing interest in applying web usage mining techniques to build web
recommender systems [20] [8] [12] [22]. Web usage recommender systems take web server logs as input, and
make use of data mining techniques such as association rule and clustering to extract implicit, and potentially
useful navigational patterns, which are then used to provide recommendations. Web server logs record user
browsing history, which contains plenty of hidden information regarding users and their navigation. They
could, therefore, be a good alternative to the explicit user rating or feedback in deriving user models. In
web usage recommender systems, navigational patterns are generally derived as an off-line process.

However, a web usage recommender system which focuses solely on web server logs has its own problems:

• Incomplete Information Problem: One restriction with web server logs is that the information in them
is very limited. Thus, a number of heuristic assumptions have to be made to identify individual users,
visit sessions, and transactions in order to apply any data mining algorithm. One such assumption is
that user information needs are fulfilled sequentially while in practice they are often in parallel.

• Incorrect Information Problem: When web site visitors are lost, the clicks made by them are recorded
in the log, and may mislead future recommendations. This becomes more problematic when a web site
is badly designed and more people end up visiting unsolicited pages, making them seem popular.

• Persistence Problem: When new pages are added to a web site, because they have not been visited yet,
the recommender system may not recommend them, even though they could be relevant. Moreover,
the more a page is recommended, the more it may be visited, thus making it look popular and boost
its candidacy for future recommendation.

To address these problems, we proposed a hybrid web recommender system [11], which attempts to use
three information channels to model user navigational behavior: web access logs, the structure of a visited web
site, and the content of visited web pages. In particular, the approach uses the terms within visited web pages
to partition visit sessions into overlapping sub-sessions, called missions. Our preliminary experiments [11]
demonstrate that combining the different information channels has great potential to improve the quality of
recommendation. In this paper, we build upon our previous work to further test and compare the performance
of using information from different channels, and from different channels in combination. The experiment is
done on a dataset provided by a generic web site. Moreover, our approach in [11] makes the assumption that
all channels are available, which is true only when the recommendation is done on the web server itself and
when web pages are static. In many cases, web pages are generated dynamically and their content changes;
or content pages are not always realistically accessible by the recommender agent. In this paper we expand
our approach and discuss cases on how to reach a compromise when not all channels, content in particular,
are available. The new approach is tested on a different dataset with different channels available.

A few combined or hybrid web recommender systems have been proposed in the literature [13] [14]. The
work in [13] adopts a clustering technique to obtain both site usage and site content profiles in the off-line
phase. In the on-line phase, a recommendation set is generated by matching the current active session and
all usage profiles. Similarly, another recommendation set is generated by matching the current active session
and all content profiles. Finally, a set of pages with the maximum recommendation value across the two
recommendation sets is presented as recommendation. This is called a weighted hybridization method [3].
In [14], Nakagawa and Mobasher use association rule mining, sequential pattern mining, and contiguous
sequential mining to generate three kinds of navigational patterns in the off-line phase. In the on-line phase,
recommendation sets are selected from the different navigational models, based on a localized degree of
hyperlink connectivity with respect to a user’s current location within the site. This is called a switching
hybridization method [3]. Whether using the weighted method or the switching method, the combination
in these systems happens only in the on-line phase. Our approach, however, combines different information
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channels in the off-line phase, and therefore, possesses the advantage of high efficiency. There is other work
which also discusses the combination of different channels, albeit they were not proposed for recommender
systems. In [6], Chi et al. develop a system that combines multiple data features of each web page to
construct user profiles. The user profile in [6] is mainly built upon the content of web pages, represented by
keyword vectors, while the web access log is used to provide weights to individual keywords, giving keywords
appeared in more frequently visited pages higher weights. Our approach, on the other hand, makes use of
content information to identify missions from usage sessions, to better model users’ concurrent information
needs and navigational patterns. In [15], Nasraoui et al. define a web session similarity that takes web site
structure into account, hence implicitly fuses structure information to the usage clustering process.

The contributions of this paper are as follows: First, we propose a novel web recommender system, which
investigates combining and making full use of distinctive information channels available, such as usage data,
content data, and structure data, to improve recommendation quality. Second, we propose a novel notion,
mission, to capture users’ concurrent information needs during on-line navigation, and discuss different ways
to identify missions. Based on the notion of mission, a new on-line navigational model – a mission-based
model – is proposed. The mission-based model has been proved to better capture users’ on-line behavior for
the purpose of fulfilling information needs.

This paper is organized as follows: Section 2. presents the off-line module of our system, which pre-
processes available usage and web site data to generate users’ models, as well as our on-line module, which
generates the recommendation list. Section 3 presents experimental results assessing the performance of our
system on two real datasets. Finally, Section 4 concludes the paper.

2. Architecture of a Hybrid Recommender System

As most web usage recommender systems, our system is composed of two modules: an off-line component,
which pre-processes data to generate users’ navigational models, and an on-line component which is a real-
time recommendation engine. Figure 1 depicts the general architecture of our system. Generally, entries in
a web log are used to identify users and visit sessions. Then visit sessions are scrutinized in order to identify
what we call missions. A mission is a sub-session with a consistent goal. These missions are in turn clustered
to generate navigational patterns. These patterns are then augmented and improved with link information,
when available. The (augmented) navigational patterns are provided to the recommendation engine. When
a visitor starts a new session, the session is matched with these clusters to generate a recommendation list.
The details of the whole process are given below.



2.1 User and Visit Session Identification

For any web access log data, several pre-processing tasks have to be performed before applying data mining
techniques for pattern generation. The pre-processing tasks usually include user identification, visit session
identification, and transaction identification. We distinguish two types of web access logs as depicted by our
experiments in Section 3: generic web access logs, and session-based access logs. For generic logs, we use
similar pre-processing techniques as in [7] to identify individual users and sessions. To sessionize log entries,
we chose an idle time of 30 minutes. Session-based access logs, however, have entries identified by users since
the users have to login, and sessions are already identified since users have also to logout.

The last data pre-processing step proposed in [7] is transaction identification, which divides individual
visit sessions into transactions. Two transaction identification approaches are proposed: Reference Length
approach and Maximal Forward Reference approach, both of which have been widely applied in web mining.
Rather than dividing sessions into arbitrary transactions, we identify sub-sessions with coherent information
needs. We call these sub-sessions missions. We assume that a visitor may have different information needs
to fulfill during a visit, but we make no assumption on the sequence in which these needs are fulfilled. In the
case of transactions in [7], it is assumed that one information need is fulfilled after the other. A mission would
model a sub-session related to one of these information needs, and would allow overlap between missions,
which would represent a concurrent search in the site.

The first approach we proposed to identify missions is based on web content [11]. While in the transaction-
based model, pages are labeled as content pages and auxiliary pages, and a transaction is simply a sequence
of auxiliary pages that ends with a content page, in the mission-based model we proposed, the identified
sequence is based on the real content of pages. Indeed, a content page in the transaction-based model is
identified simply based on the time spent on that page, or on backtracking in the visitor’s navigation. We
argue that missions could better model users’ navigational behavior than transactions. In our model, users
visit a web site with concurrent goals, i.e., different information needs. For example, a user could fulfill
two goals in a visit session: a, b, c, d, in which pages a and c contribute to one goal, while pages b and d
contribute to the other. Since pages related to a given goal in a visit session are generally supposed to be
content coherent, whether they are neighbouring each other or not, we use page content to identify missions
within a visit session.

All web site pages are clustered based on their content, and these clusters are used to identify content
coherent clicks in a session. Let us give an example to illustrate this point. Suppose the text clustering
algorithm groups web pages a, b, c, and e, web pages a, b, c, and f, and web pages a, c and d into three
different content clusters (please note that our text clustering algorithm is a soft clustering one, which allows
a web page to be clustered into several clusters). Then for a visit session: a, b, c, d, e, f, our system identifies
three missions as follows: mission 1: (a, b, c, e) ; mission 2: (a, b, c, f); and mission 3: (a, c, d). As seen
in this example, mission identification in our system is different from transaction identification in that we
can group web pages into one mission even if they are not sequential in a visit session. We can see that
our mission-based model subsumes the transaction-based model, since missions could become transactions
if visitors fulfill their information needs sequentially.

To cluster web pages based on their content, we use a modified version of the DC-tree algorithm [21],
in which each web page is represented as a keyword vector. Originally, the DC-tree algorithm was a hard
clustering approach, prohibiting overlap of clusters. We modified the algorithm to allow web pages to belong
to different clusters. Indeed, some web pages could cover different topics at the same time. In the algorithm,
each web page is represented as a keyword vector, and organized in a tree structure called the DC-tree. The
algorithm does not require the number of clusters to discover as a constraint, but allows the definition of
cluster sizes. This was the appealing property which made us select the algorithm. Indeed, we do not want
either too large or too small content cluster sizes. Very large clusters cannot help capture missions from
sessions, while very small clusters may break potentially useful relations between pages in sessions.

The mission identification approach above relies on the availability of textual content of web pages,
which could not always be satisfied. The purpose of identifying missions, however, is to identify users’
concurrent information needs in the same visit. With some other specific application access logs, this goal
can be achieved by other means. For instance, the URLs recorded in the VIVIDESK access logs come from
different web sites, and a large number of them are dynamically generated. This makes the access to page



content for mission identification close to impossible. The alternative, however, is that since VIVIDESK
integrates the simultaneous accesses to multiple on-line applications, it records in its logs the application
attached to each given access. Therefore, we use the application identifier as an indicator of a mission. Our
preliminary experiments (see Section 3) show that this is a good approach to identify missions for VIVIDESK
data. Moreover, this generalizes our notion of mission. In addition, this highlights the importance to have
application related logs rather than just relying on information poor web server logs.

VIVIDESK (www.vividesk.com) is a commercial system developed by the Centre of Health Evidence
at the University of Alberta as a gate to a multitude of applications and on-line resources, and is used by
hospital personnel. It has its specific session-based activity log which records details about user accesses to
on-line pages via different applications. The log entries encompass more specific details than typical web
server logs and pertain to different web sites rather than just one.

2.2 Navigational Pattern Discovery

According to how missions are identified, we propose two ways to discover navigational patterns from dis-
covered missions. If missions are identified based on content coherence, we could therefore discover content
coherent navigational patterns which are sets of web pages that are frequently visited together and that
have related content. These patterns are used by the recommender system to recommend web pages, if
they were not already visited. To discover these navigational patterns, we simply group the missions we
uncovered from the web server logs into clusters of sub-sessions having commonly visited pages. Each of the
resulting clusters could be viewed as a user’s navigation pattern. In this scenario, the patterns discovered
from missions possess two characteristics: usage cohesive and content coherent. Usage cohesiveness means
the pages in a cluster tend to be visited together, while content coherence means pages in a cluster tend to
be related to a topic or concept. This is because missions are grouped according to content information.
Since each cluster is related to a topic, and each page has been represented in a keyword vector, we are
able to easily compute the topic vector of each cluster, in which the value of a keyword is the average of
the corresponding values of all pages in the cluster. The cluster topic is widely used in our system, in both
the off-line and on-line phases (see below for details). In the case where we discover missions in the absence
of textual content, the navigational patterns discovered hold only usage cohesion characteristic and do not
guarantee content coherence. Thus, no cluster topic vector is computed.

The clustering algorithm we adopted for grouping missions is PageGather [17]. This algorithm is a soft
clustering approach allowing overlap of clusters. Instead of trying to partition the entire space of items, it
attempts to identify a small number of high quality clusters based on the clique clustering technique [17].

2.3 Navigational Pattern Improved with Connectivity

The missions we extracted and clustered to generate navigational patterns are primarily based on the sessions
from the web server logs. These sessions exclusively represent web pages or resources that were visited. It
is conceivable that there are other resources not yet visited, even though they are relevant and could be
interesting to have in the recommendation list. Such resources could be, for instance, newly added web pages
or pages that have links to them not evidently presented due to bad design. Thus, these pages or resources
are never presented in the missions previously discovered. Since the navigational patterns, represented by the
clusters of pages in the missions, are used by the recommendation engine, we need to provide an opportunity
for these rarely visited or newly added pages to be included in the clusters. Otherwise, they would never
be recommended. To alleviate this problem, our general system model expands the clusters to include the
connected neighbourhood of every page in a mission cluster. The neighbourhood of a page p is the set of
all the pages directly linked from p and having similar content of p, and all the pages that directly link to
p also with similar content. Figure 2(A) illustrates the concept of neighbourhood expansion, and Figure 2
(B) shows the process of the augmentation. Cluster expansion is only possible when content and structure
channels are available. This approach of expanding the neighbourhood is performed as follows: we consider
each previously discovered navigational pattern (i.e., a cluster of content coherent and visitation cohesive
missions) as a set of seeds. Each seed is supplemented with pages it links to and pages that link to it as
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well as having similar content. The result is what is called a connectivity graph which now represents our
augmented navigational pattern. This process of obtaining the connectivity graph is similar to the process
used by the HITS algorithm [10] to find the authority and hub pages for a given topic. The difference is
that we do not consider a given topic, but start from a mission cluster as our set of seeds. Moreover, it was
shown in [1] that HITS, using pure connectivity analysis, introduces a problem known as “topic drift”. We
eliminate this problem in our case by computing relevance weights of all supplemented pages. The relevance
weight of a page equals the similarity of the page content to the corresponding mission cluster, which is
represented by the cosine normalization of web pages and mission clusters keyword vectors. We then prune
nodes whose relevance weights are below a threshold from the connectivity graph. For simplicity, we use
Median Weight (i.e. the median of all relevance weights) as the pruning threshold [1]. The pruning process
avoids augmenting the navigational patterns with pages that focus on other topics and guarantees that the
augmented patterns are still coherent and focused. After expanding and pruning the clusters representing
the navigational patterns, we also augment the keyword vectors that label the clusters. The new keyword
vectors that represent the augmented navigational patterns have also the terms extracted from the content
of the augmented pages.

We take advantage of the built connectivity graph by cluster to apply the HITS algorithm in order to
identify the authority and hub pages within a given cluster. These measures of authority and hub allow us
to rank the pages within the cluster. This is important because at real time during the recommendation, it
is crucial to rank recommendations, especially if they are numerous.

Authority and hub are mutually reinforcing [10] concepts. Indeed, a good authority is a page pointed to
by many good hub pages, and a good hub is a page that points to many good authority pages. Since we
would like to be able to recommend pages newly added to the site, in our framework, we consider only the
hub measure. This is because a newly added page would be unlikely to be a good authoritative page, since
not many pages are linked to it. However, a good new page would probably link to many authority pages;
it would, therefore, have the chance to be a good hub page. Consequently, we use the hub value to rank the
candidate recommendation pages in the on-line module.

Some may argue to use the content similarity (if applicable) to rank the candidate recommendations.
However, the success of Google (www.google.com) encourages us to embed web structure analysis into this
task. In Google, PageRank [2] – a pure web linkage analysis algorithm – is combined with the textual content
information of web pages to provide search results. In general, when a user submits a query, Google searches
all pages containing the keyword(s) in the query. The resulting pages are ranked according to their PageRank
scores, which have been pre-computed. The higher its PageRank value, the earlier a page is presented to
the user. Traditionally, a search engine can be viewed as an application of Information Retrieval with the
focus on “matching”: a search engine is supposed to return all those pages that match users’ query, ranked
by degree of match. On the other hand, the semantics of a recommender system is “interesting and useful”
[3]. However, Google blurs this distinction by incorporating PageRank into its ranking, which uses web



structure information to measure the authoritativeness or importance of web pages. From this point, Google
can be viewed as a form of hybrid recommender system combining content and structure analysis with a
one-input interface (By contrast, regular recommender systems have a zero-input interface). Indeed, this
linkage analysis could compensate the possible limitation of our content coherent mission identification to
web pages that are related by the virtue of their functionality rather than content. Ranking recommendation
candidates based on this connectivity analysis could also allow rarely visited or newly added pages to be
include in recommendations.

2.4 The Recommendation Engine

The previously described process consists of pre-processing done exclusively off-line. When a visitor starts
a new session in the web site, we identify the navigation pattern after a few clicks and try to match it on-
the-fly with already captured navigational patterns. If they were matched, we recommend the most relevant
pages in the matched cluster. When page content is not obtainable, the available clusters are based solely
on access history, and we identify navigational patterns by finding the clusters that contain the last page
referenced in the current user’s mission. However, in the presence of content, identifying the navigational
pattern of the current visitor consists of recognizing the current focused topic of interest to the user. A study
in [4] shows that looking on either side of an anchor (i.e., text encapsulated in a href tag) for a window of
50 bytes would capture the topic of the linked pages. Based on this study, we consider the anchor clicked
by the current user and its neighbourhood on either side as the contextual topic of interest. The captured
topics are also represented by a keyword vector which is matched with the keyword vectors of the clusters
representing the augmented navigational patterns. From the best match, we get the pages with the best hub
value and provide them in a recommendation list, ranked by the hub values. To avoid supplying a very large
list of recommendations, the number of recommendations is adjusted according to the number of links in
the current page: we simply make this number proportional to the number of links in the current page. Our
goal is to have a different recommendation strategy for different pages based on how many links the page
already contains. Our general strategy is to give

√
n best recommendations (n is the number of links), with

a maximum of 10. By doing so, we prevent adding noise and providing too many options. The relevance
and importance of recommendations is measured with the hub value already computed off-line.

3. Experimental Evaluation

We evaluate our recommendation framework on both a generic web site dataset with all three information
channels available (the University of Alberta Department of Computing Science web server, or the UofA
CS web server, in short) and an application specific enriched log with only the usage channel available
(VIVIDESK session-based logs). For the UofA CS web server access logs, data were collected for 8 months
( Sept. 2002 – Apr. 2003), and partitioned into months. On average, each monthly partition contains more
than 40,000 pages, resulting in on average 150,000 links between them. The log of each month averaged more
than 200,000 visit sessions, which generated an average of 800,000 missions per month. For VIVIDESK logs,
data were collected for one and a half years (May 2001 – Sept. 2002), totaling 16024 login sessions. Data
are also partitioned into months.

3.1 Methodology

Given the data partitioned per month as described above, we adopt the following empirical evaluation:
one or more months data is used for building our models (i. e., training the recommender system), and
the following month or months for evaluation. The reason why we divide the data based on a time frame
(months) rather than use standard cross-validation on the data set is that we want to measure the prediction
ability of our system for the future rather than merely the past. Moreover, the web site evolves over time.
More specifically, the idea is that given a session s from a month m, if the recommender system, based on
data from month m − 1 and some prefix of the session s, can recommend pages pi that contain some of



the pages in the suffix of s, then the recommendation is considered accurate. Moreover, the distance in the
number of clicks between the suffix of s and the recommended page pi is considered a gain (i. e., a shortcut).
More precisely, we measure the Recommendation Accuracy and the Shortcut Gain as described below.

Recommendation Accuracy is the ratio of correct recommendations among all recommendations, and the
correct recommendation is the one that appears in the suffix of a session from which the prefix triggers
the recommendation. As an example, consider that we have S visit sessions in the test log. For each visit
session s, we take each page p and generate a recommendation list R(p). R(p) is then compared with
the remaining portion of s (i.e., the suffix of s). We denote this portion T(p) (T stands for Tail). The
recommendation accuracy for a given session would be how often T(p) and R(p) intersect. The general
formula for recommendation accuracy is defined as:

Recommendation Accuracy =

∑
s

∣∣⋃
p
(T (p)

⋂
R(p))

∣∣∣∣⋃
p

R(p)
∣∣

S

The Shortcut Gain measures how many clicks the recommendation allows users to save if the recommendation
is followed. Suppose we have a session a, b, c, d, e, and at page b, the system recommends page e; then if we
follow this advice, we would save two hops (i.e., pages c and d). There is an issue in measuring this shortcut
gain when the recommendation list contains more than one page in the suffix of the session. Should we
consider the shortest gain or the longest gain? To solve this problem, we opted to distinguish between key
pages and auxiliary pages. A key page is a page that may contain relevant information and in which a user
may spend some time. An auxiliary page is an intermediary page used for linkage and in which a user would
spend a relatively short time. In our experiment, we use a threshold of 30 seconds as this distinction. Given
these two types of pages, a shortcut gain is measured as being the smallest jump gain towards a key page
that has been recommended. If no key page is recommended, then it is the longest jump towards an auxiliary
page. The set of pages in the session we go through with the assistance of the recommender system is called
the improved session s’. For the total S visit sessions in the test log, Shortcut Gain can be computed as:

Shortcut Gain =

∑
s

|s|−|s′|
|s|

S

In addition, we compute the Coverage of a recommender system, which measures the ability of a system to
produce all pages that are likely to be visited by users. The concept is similar to what is called Recall in
information retrieval. Coverage is defined as:

Recommendation Coverage =

∑
s

∣∣⋃
p
(T (p)

⋂
R(p))

∣∣∣∣⋃
p

T (p)
∣∣

S

3.2 Experimental Results

3.2.1 Experiments on the UofA CS Web Server Dataset

We first evaluated the performance of our system on the UofA CS web server dataset. Three distinctive
information channels, usage, content, as well as structure, are provided to and used in our system, which
is therefore referred to as Hybrid123. For the purpose of comparison, we also implemented an association
rule-based usage recommender system (referred to as Usage), as well as a web recommender system purely
based on content similarity (referred to as Content). The Usage system works as follows: an efficient
association rule algorithm [5] is applied to the access logs to generate a set of rules. Whenever the pages
in the antecedent of an rule have appeared in the user’s current session, those pages in its consequence are
recommended. For the Content system, all pages in the web site are extracted and grouped into clusters
solely based on their textual content similarity, using a high-quality content clustering algorithm [16]. If one
or more pages in a cluster have been visited, the pages in the same clusters are selected to be recommended.
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Figure 3. Hybrid123, Usage, and Content. (A): Recommendation Accuracy (B): Shortcut Gain

The Recommendation Accuracy and Shortcut Gain of the three systems are depicted in Figure 3. In the
experiment, we varied the Coverage to test the trend and consistency of the system quality.

Figure 3 (A) shows the Recommendation Accuracy of the three contenders. As expected, the accuracy
decreases when we increase Coverage. However, Hybrid123 is consistently the best among the three systems,
superior to Usage by at least 30% – while Usage always ranks second.

From Figure 3 (B), we can see that in the low boundary, the Shortcut Gain of Content is the best of
the three systems, and the other two are close. With the increase of Coverage, the Shortcut Gain of all
three systems continues to improve, but in different degrees. Hybrid123 can achieve an increasingly superior
Shortcut Gain to that of Usage, and exceeds Content after Coverage is larger than about 10%. The major
reason that the Shortcut Gain improvement of Content is lowest is that with the increase of Coverage, more
and more pages containing only the same terms, but without any logical relationship are selected to be
recommended.

In our next experiment, we illustrated the advantage of incorporating web content and web structure
information in our system. To do so, we implemented additional two recommender prototypes. The first is
similar to Hybrid123 but is stripped from its connectivity information channel. That is, we do not make
use of linkage information to augment and improve the navigational patterns built on usage and content
information. We name this hybrid system Hybrid-3. The second is also a similar system to Hybrid123 but
does not make use of content information to identify a mission. Rather, the navigational patterns in the
system is built upon traditional transactions identified according to the approach in [7]. Then, the patterns
are improved with structure information, as with Hybrid123. This hybrid system is called Hybrid-2. The
Recommendation Accuracy and Shortcut Gain of the three systems are depicted in Figure 4.

Figure 4 (A) shows the Recommendation Accuracy of the three systems. The consistent best performance
of Hybrid123 illustrates the validity of content and connectivity information to improve recommendations in
our hybrid system, and also indicates that content is more useful for recommendation accuracy improvement.
The Shortcut Gains of the three systems are depicted in Figure 4 (B). We notice that with the increase of
Coverage, Hybrid123 can achieve an increasingly superior Shortcut Gain compared to both Hybrid-3 and
Hybrid-2, while the two systems keep similar performance in terms of Shortcut Gain. This figure verifies our
justification for using distinctive information channels in building a hybrid recommender system, and shows
that content and structure information make a similar contribution to the improvement in Shortcut Gain in
our system.

In a summary, this experiment shows that our system can significantly improve the quality of web site
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Figure 4. Hybrid123, Hybrid-3, and Hybrid-2. (A): Recommendation Accuracy (B): Shortcut Gain

recommendation by combining the three information channels, usage, content, and structure, while each
channel included contributes to this improvement.

3.2.2 Experiments on the VIVIDESK Log

We then tested our system on VIVIDESK log data. As explained before, the visited page content information
is not available and we used a more general definition of mission, namely the applications used during a
VIVIDESK session. However, VIVIDESK also records in its logs keystrokes made by users. These text
data, while not the real content of pages, can be associated with the visited resources and used to separate
sessions into missions. Thus, we implemented two recommender systems: one using the simple definition of
mission by means of the applications (App-Mission), and one using the extra text data to generate missions
(Text-Mission). In addition, we implemented the same system but using transactions as defined in [7] to
verify the advantage of missions over transactions. In our reported experiment, we also varied the Coverage
to see the tendency of the Recommendation Accuracy and Shortcut Gain.

As depicted in Figure 5, we notice that App-Mission could achieve a higher Recommendation Accuracy
than simple transaction identification, but lead to a lower Shortcut Gain. However, because we can get
a much higher Recommendation Accuracy with a slight loss of Shortcut Gain, we can be confident that
mission identification is a better model for user navigational behaviour. The reason why App-Mission lead
to a lower Shortcut Gain is that we identify missions solely based on invoked applications with the absence
of content. However, users may need more than one application to fulfill one information need. Thus,
identifying missions based on applications may break some interrelationship between web resources across
applications. However, bigger jumps are achieved when we used the text entered by the users as means to
identify missions. This text is the text entered for instance in HTML form input fields. The Shortcut Gain
achieved by Text-Mission is even higher than the transaction-based approach.

4. Conclusion and Future Work

In this paper, we present a framework for a mission-based web recommender system, which takes advantage,
when possible, of the content and connectivity of web pages in addition to the usage history. These three
channels are combined to identify missions: users’ concurrent information needs. The mission model does
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Figure 5. Performance Comparison on VIVIDESK Data. (A): Recommendation Accuracy (B): Shortcut
Gain

not assume sequentiality in the browsing behaviour and better represents navigational patterns for recom-
mendation purposes. Our preliminary experiments show that the potential of mission-based recommender
systems to improve the quality of the recommendation is significant. Although the availability of web con-
tent and connectivity is not always possible, using other means to identify missions can still be beneficial
and improves recommendation quality. However, the optimal way to combine these distinctive information
channels is not evident yet. We would also like to include a user-centred way for more objective evaluation.
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