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COST SENSITIVE CLASSIFICATION

a1 a2 ... an

x1 r11 r12 r1: r1n

x2 r21 r22 r2: r2n

x3 r31 r32 r3: r3n

x4 r41 r42 r4: r4n

x5 r51 r52 r5: r5n

x6 r61 r62 r6: r6n... r:1 r:2 r:: r1n

xm rm1 rm2 rm: rmn

Batch policy optimization
Assume given complete data

Optimize policy π : X → Δn

π(a |x) = eq(x)a−F(q(x))

F(q(x)) = log∑a eq(x)a

q : X → ℜn neural network

to maximize expected reward on test contexts

Target objective 
• expected reward:  


Done, right?

Not so fast …


This objective has serious problems 
• actually trying to solve:  

• plateaus everywhere

• can have exponentially many local maxima

• nearly impossible to reach a global optima


Also: you already know not to train this way!

max ∑i ri ⋅ π(xi)

max ∑i ri ⋅ f(q(xi))
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Recall: supervised classification

Special case: supervised classification
Target objective 
• expected accuracy:  

But you have never trained with this objective

Instead, you used a surrogate objective


maximum likelihood 



What's going on? 
•  is differentiable, that’s not the issue

• training with  actually achieves


better values of  on the training data


max ∑i ri ⋅ π(xi)

max ∑i ri ⋅ log π(xi)

ri ⋅ π(xi)
ri ⋅ log π(xi)

ri ⋅ π(xi)

a1 a2 ... an

x1 0 1 0 0
x2 0 0 0 1
x3 1 0 0 0
x4 0 0 1 0
x5 1 0 0 0
x6 0 1 0 0
... 0 0 1 0
xm 0 0 0 1

Useful properties of maximum likelihood 
•  is concave in 

• it is also calibrated w.r.t. :





ri ⋅ log π(xi) q(xi)
ri ⋅ π(xi)

∀ϵ > 0∃δ > 0 r ⋅ log π* − r ⋅ log π < δ ⇒ r ⋅ π* − r ⋅ π < ϵ

Target vs surrogate optimization
Misclassification error on MNIST training data

COST SENSITIVE CLASSIFICATION

Definitions
I Data D = {(xi, r i)}Ti=1,

where r i ∈ RK specifies reward for each action in context xi
I True risk of a policy is R(π) = −E[π(x) · r ]
I Empirical risk on data set D is R̂(π,D) = − 1

T

∑
(xi ,r i)∈Dπ(xi) · r i

Note policies normally represented with composition π(x) = f (q(x)) where
f (q) = eq−F (q) with F (q) = log(1 · eq)

Theorem Even for a linear model q(x) = Wφ(x), the function r · f (q(x)) can
have exponentially many local maxima in W

Motivation To get around this problem, need to consider surrogate training
objectives

Calibrated convex surrogate

Definitions
I Minimal risk is

R∗(r , x) = infπ∈PR(π, r , x) = infq∈QR(f ◦ q, r , x)

I Loss L∗(r , x) = infq∈Q L(q, r , x) is calibrated w.r.t. R if:
∃ function δ(ε, x) ≥ 0 s.t. ∀ ε > 0, x ∈ X , r ∈ RK , q ∈ Q:

L(q, r , x)− L∗(r , x) < δ(ε, x)⇒ R(f ◦ q, r , x) < R∗(r , x) + ε

I Smoothed risk is

Sτ(π, r , x) = −r · π(x) + τπ(x) · logπ(x)

I Let π̃τ = arg minπ∈P Sτ(π)

Proposition τ < ε/ logK implies R(π̃τ) < R∗ + ε

Proposition Local smoothed risk is equivalent to

Sτ(π, r , x) = −τF (r
τ ) + τDF

(r
τ‖q(x)

)
Theorem The surrogate objective

L(q, r , x) = τDF

(
q(x) + v

τ

∥∥r
τ

)
+ τ

4

∥∥q(x)− r−v
τ

∥∥2
. is strongly convex in q and

calibrated w.r.t. Sτ(f ◦ q, r − v , x) with δ(ε, x) = ε

Experimental evaluation

Comparing objectives
MNIST CIFAR10

BATCH CONTEXTUAL BANDITS

Coping with missing data

Optimize policy π : X → Δn

Example 
importance corrected expected reward 




where  are proposal probabilities from behavior strategy


We already know this is a poor objective

but what about missing data inference?


Equivalent to  using




That is 
• exaggerate observed values by 

• fill in all unobserved values with 

max ∑
i

π(ai |xi)
βi

ri

β

max ̂r ⋅ π
̂ri = 1ai

ri

βi

1/βi
0
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This is a pretty lame inference principle 
But … its unbiased!


%[ ̂r |x] = ∑a βa1a
ra

βa
= ∑a 1ara = r

a1 a2 ... an

x1 ⌧q11 ⌧q12+�(r1�⌧q12) ⌧q1... ⌧q1n

x2 ⌧q21 ⌧q22 ⌧q2... ⌧q2n+�(r2�⌧q2n)
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x6 ⌧q61 ⌧q62+�(r6�⌧q62) ⌧q6... ⌧q6n... ⌧q:1 ⌧q:2 ⌧q:...+�(r:�⌧q:...) ⌧q:n
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Missing data inference
Improvement 

“douby robust estimation” 
• instead of filling in with s 

• fill in with guesses from a model 


 
Also unbiased 
• as long as 

but still alters observed data


Where should the model come from? 
• could use a separate critic

• train via least squares, then optimize 

• works okay, but not great

Note 
• there is only one action value function


for single-step decision making, 

• actor-critic approaches trivialized

0
q(x)

̂r = τq + λ1a(r − τqa)
λ = 1/βi

π

r(x, a)

Unified approach
Unified approach 
• actor and critic are same model

•  where 

• use logits  to predict rewards





Can combine with previous objectives 
•  where 

• 

• 

these are somewhat sensitive to ranking,

unlike least squares

π = eq−F(q) F(q) = log 1 ⋅ eq

τq(x)
q(x, a) ≈ r(x, a)

τ

KL(π∥p̂) p̂ = e ̂r/τ−F( ̂r/τ)
KL(p̂∥π)
KL(π∥p̂) ≤ KL(p̂∥π) + τ

4 ∥ ̂r/τ − q∥2

Empirical Bayes estimation 
• optimize hyperparameters 


(neural network)

• integrate out parameters 


Example 
marginal likelihood









• essentially least squares regression


Can alternatively use surrogates 
prior posterior 

posterior prior

q

ξ

−log p(r0 |a0, q)
= −log ∫ p(r0 |a0, ξ)p(ξ |q) dξ
= 1

2σ2 (ϕ(a0) ⋅ q − r0)2 + 1
2 log σ2 + c

min KL( ∥ )
min KL( ∥ ) ≈ min I(ξ; r0)

BATCH CONTEXTUAL BANDITS

Reward estimation For x , a, ra, parameters λ(x , a), τ , estimate

full r̂ (x) = τq(x) + 1aλ(x , a)(ra − τq(x)a)

Surrogate objective

Definition Optimal imputed local risk and suboptimality gap

S∗τ (r̂ , x) = infq∈QSτ(f ◦ q, r̂ , x), Gτ(π, r̂ , x) = Sτ(π, r̂ , x)− S∗τ (r̂ , x)

Proposition ∀ q, τ > 0, (x , a, ra) : τDF

(r̂ (x)
τ

∥∥q(x)
)

= Gτ(f ◦ q, r̂ , x)

Theorem ∀q, τ > 0, (x , a, ra), v :

L(q, r̂ , x) ≥ τDF

(
r̂ (x)
τ

∥∥∥q(x) + v
τ

)
= Gτ(f ◦ q, r̂ , x) ≥ 0

L calibrated w.r.t. Sτ(f ◦ q, r̂−v , x)

Optimization Given D = {(xi, ai, ri, βi)}, context, act, reward, prob

minq∈Q L̂(q,D) where L̂(q,D) = 1
T

∑
(xi ,ai ,ri ,βi)∈D L(q, r̂ , xi)

Analysis

Definition Expected smoothed risk quantities we seek to control:

Sτ(π) = E[Sτ(π, r , x)],S∗τ = infq∈QSτ(f ◦ q),Gτ(π) = Sτ(π)− S∗τ

Theorem For any q, r̂ such that E[r̂ |x ] = E[r |x ], and baseline v :

E[L(q, r̂ , x)] ≥ E
[
τDF

(
r̂ (x)
τ

∥∥∥q(x) + v
τ

)]
≥ Gτ(f ◦ q) ≥ 0.

Lemma ∀ τ, δ > 0 ∃ constant C s.t. w.p. at least 1− δ:

E
[
DF

(
r̂ (x)
τ

∥∥q(x)
)]
≤ D̂F(q,D) + C√

T
∀q ∈ H.

Theorem ∀ v , τ, δ > 0, ∃ C s.t. w.p. at least 1− δ:

if L̂(q,D) < τC√
T

for q ∈ H then Gτ(f ◦ q) ≤ 2τC√
T

Experimental evaluation

Comparing objectives
MNIST CIFAR10

Criteo: Est. reward on test

Objectives R̂(π)× 104

Random 43.68± 2.11
Behavior 53.55

DRO R̂(π) 53.07± 2.27
POEM 51.89± 1.73

R̂(π) 51.72± 1.42∥∥q − r−v
τ

∥∥2 52.00± 1.28
DF ∗(p‖π) 52.30± 0.83

Composite 55.09± 2.86

Continuous action MNIST
Sum of squared test error on continuous action MNIST (a ∈ ℜ10)
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