
Solving Heads-up Limit Texas Hold’em

Oskari Tammelin,1 Neil Burch,2 Michael Johanson2 and Michael Bowling2

1http://jeskola.net, ot@iki.fi
2Department of Computing Science, University of Alberta

{nburch,johanson,mbowling}@ualberta.ca

Abstract
Cepheus is the first computer program to essen-
tially solve a game of imperfect information that
is played competitively by humans. The game
it plays is heads-up limit Texas hold’em poker, a
game with over 1014 information sets, and a chal-
lenge problem for artificial intelligence for over
10 years. Cepheus was trained using a new vari-
ant of Counterfactual Regret Minimization (CFR),
called CFR+, using 4800 CPUs running for 68
days. In this paper we describe in detail the en-
gineering details required to make this computa-
tion a reality. We also prove the theoretical sound-
ness of CFR+ and its component algorithm, regret-
matching+. We further give a hint towards under-
standing the success of CFR+ by proving a track-
ing regret bound for this new regret matching algo-
rithm. We present results showing the role of the al-
gorithmic components and the engineering choices
to the success of CFR+.

Introduction
Game theory provides a framework for thinking about deci-
sions in the presence of other agents with applications in se-
curity [Tambe, 2011] and robust decision making [Chen and
Bowling, 2012]. Extensive-form games describe a large class
of such problems where multiple agents must make decisions
with imperfect information about the state of the world. A
common approach to computing policies in such games is to
solve the game by finding a Nash equilibrium: a strategy for
each player where each individually maximises their utility
against the opponent strategies.

Recently, we announced that heads-up limit Texas hold’em
poker (HULHE) is essentially solved [Bowling et al., 2015].
The resulting program Cepheus is the first computer program
to solve a non-trivial imperfect information game played
competitively by humans. Unlike perfect information games
where it is easy to compute an exact solution, imperfect infor-
mation solutions are usually approximated. Essentially solv-
ing a game involves computing an approximation of a Nash
equilibrium along with an argument that the approximation is
of a sufficient quality relative to the inherent stochasticity in
the game. Cepheus is close enough to a Nash equilibrium of

the game of HULHE that a lifetime of human play cannot be
used to distinguish Cepheus from an exact Nash equilibrium
with high confidence.

HULHE has over 1014 information sets (i.e., decision
points where a player must act). Even after removing strate-
gically identical suit isomorphisms [Billings et al., 2003;
Gilpin et al., 2007], the game has over 1013 information sets,
one thousand times larger than any previously solved im-
perfect information game. Solving an imperfect information
game at this scale poses two challenges: computation and
space. Solution techniques generally require space at least
on the order of the size of the resulting strategy. For this
reason, space-efficient algorithms like Counterfactual Regret
Minimization (CFR) [Zinkevich et al., 2007], and its family
of algorithms, are a popular choice for large games [Jackson,
2013; Brown et al., 2015]. Even with space efficient CFR al-
gorithms, HULHE would require 262 TiB (assuming 4-byte
values) to store the strategy and regret during computation.
A second challenge is computation time. The running time
of CFR also grows with the size of the game, and so solving
HULHE with traditional CFR variants is also infeasible.

Cepheus overcame these limitations using a new algorithm,
CFR+ [Bowling et al., 2015; Tammelin, 2014]. While our
original work demonstrated the scalability of CFR+ to solve
HULHE, it provided no proof of correctness and no theo-
retical explanation for its improvements. Furthermore, there
was little discussion of the engineering choices required to
scale to large problems, and no exploration of the technique
in other games. In this paper we provide these missing pieces.
We prove that CFR+ is sound, with the same asymptotic
convergence rate as traditional CFR. However, in practice it
results in a drastic reduction in computation time. We ex-
plore the nature of this empirical performance improvement
on smaller toy games, and prove a tracking regret property
on its component algorithm regret-matching+, which hints
at a reason for its success. We also describe the details
behind our space efficient and massively distributed imple-
mentation of CFR+, using streaming compression, which re-
duces the space requirement for HULHE from 262 TiB to a
manageable 10.9 TiB. These algorithmic and engineering ad-
vances enabled Cepheus’s 900 core-year computation to be
distributed on a high-performance cluster using 4800 CPUs
and completed in 68 days. The resulting strategy reached an
exploitability of 0.986 mbb/g (or less than one thousandth of

a big-blind per game).

Background
An extensive-form game is a formal model of the sequen-
tial interactions between one or more players. Let P be the
set of players. Let H be the set possible game states, repre-
sented as the history of actions taken from the initial game
state ∅. We call the state h · a ∈ H a child of its parent
state h. Furthermore, we will say h is an ancestor of descen-
dant state h′ or h v h′ when h is a prefix of h′. Let Z be
the set of all terminal states. For each non-terminal state h,
A(h) gives the set of legal actions, and p(h) 7→ P ∪ {c}
gives the acting player, where c denotes the “chance player”,
which represents stochastic events outside of the players’
control. σc(h, a) is the probability that chance will take ac-
tion a ∈ A(h) from state h, and is common knowledge. For
every z ∈ Z, up(z) ∈ < gives the payoff for player p when
the game ends in state z. HULHE is a two player zero-sum
game, so P = 1, 2 and u1(z) + u2(z) = 0 for all z ∈ Z.

In an imperfect information game, the game specifies an
information partition. Let Ip be a partition of all of the states
with player p to act. For any information set I ∈ Ip, any two
states h, j ∈ I are indistinguishable by player p. Let I(h) be
the information set which contains h, let Z(I, a) be the set of
all z ∈ Z such that h · a v z for some h ∈ I , and let z[I]
be the state h ∈ I such that h v z. HULHE is a game where
players have perfect recall, which means that any two states
h and j in an information set I ∈ Ip have the same sequence
of player p information sets and actions. Informally, perfect
recall means that a player does not forget their own actions or
any information observed before making those actions.

A behaviour strategy σp ∈ Σp is a function σp(I, a) 7→ <
which defines a probability distribution over valid actions for
every information set I ∈ Ip. For simplicity, we will say
σp(h, a) to mean σp(I(h), a). A strategy profile σ ∈ Σ is a
tuple of strategies, one for each player. Given σ, it is useful
to refer to certain products of probabilities. Let πσ(h) =∏
j·avh σP (j)(j, a) be the joint probability of reaching h if

all players follow σ. We use πσ−p(h) to refer to the product of
terms where P (h) 6= p, and πσp (h) to refer to the product of
only the terms where P (h) = p. In games with perfect recall,
πp(h) = πp(h

′) for all states h, h′ in I ∈ Ip, so we can also
speak of πp(I). We also use πσ(j, h) to refer to the product
of terms only from j to h.

The expected utility uσp to player p if all players follow σ
is
∑
Z π

σ(z)up(z). The expected utility uσp (I, a) of taking
an action at an information set is

∑
z∈Z(I,a) π

σ(z)up(z). We
also use an alternative utility function called counterfactual
value: vσp (I, a) =

∑
z∈Z(I,a) π

σ
−p(z)π

σ
p (z[I] · a, z)up(z).

Informally, the counterfactual value of information set I and
action a for the player acting at I is the expected value as-
suming the player plays to reach I and choose a.
σp is a player p best response to an opponent strategy σ−p

if σp maximises u〈σp,σ−p〉
p . A Nash equilibrium is a strategy

profile where all strategies are simultaneously best responses
to each other, and an ε-Nash equilibrium is a profile where the
expected value for each player is within ε of the value of a best

response strategy. We use the term exploitability to refer to a
profile’s average loss to a best response across its component
strategies. A Nash equilibrium has an exploitability of zero.

Counterfactual Regret Minimization
Consider a repeated decision making problem where we have
acted T times in the past by choosing between actions in a
set A. Let σt(a) be our probability of selecting action a at
timestep t. Regret is the measurement of how much addi-
tional utility might have been gained by following some al-
ternative strategy instead in hindsight. One popular notion,
external regret, considers only static actions as the alternative
strategies: RT (a) =

∑T
t=1 (vt(a)−

∑
b∈A σ

t(b)vt(b)). The
overall regret is then RT = maxaR

T (a).
Regret-matching [Blackwell, 1956] defines a policy

σt(a) = Rt−1(a)+/
∑
b∈AR

t−1(b)+ given observed regret
prior to the current time, where x+ = max (x, 0). An im-
plementation of regret-matching will generally store the re-
grets Rt(a) for each action, incrementally updating the val-
ues using ∆Rt(a) = vt(a) −

∑
b∈A σ

t(b)vt(b) to compute
Rt(a) = Rt−1(a) + ∆Rt(a). Blackwell showed that if the
values are drawn from a bounded interval of width L and we
use the regret matching policy, we can bound the overall re-
gret RT ≤ L

√
|A|T for any sequence of values vt. This

implies that the average regret RT /T approaches zero as T
approaches infinity. Such an algorithm can then be used to
approximate an equilibrium in two-player zero-sum games,
since if both players have at most ε average regret, their aver-
age strategies form a 2ε-Nash equilibrium.

Regret-matching alone is intractable for extensive-form
games, since it would require storing regrets for the exponen-
tial number of deterministic strategies. CFR [Zinkevich et al.,
2007] overcomes this challenge by independently minimizing
regret at each information set. It uses regret-matching over
the available actions A(I) at an information set I , computing
the regrets Rt(I, a) using the counterfactual value v(I, a) of
an action a. Its regret with respect to the exponential num-
ber of deterministic strategies can be bounded by the sum of
the regrets at the linear number of information sets. When
employed in self-play, the average strategy of the players are
then guaranteed to converge to a Nash equilibrium.

Poker
From the beginning, poker has had an important role in
the development of game theory [Borel, 1921; von Neu-
mann, 1928; von Neumann and Morgenstern, 1947; Nash
and Shapley, 1950; Kuhn, 1950]. Full-scale poker has been
a challenge problem for artificial intelligence, operations re-
search, and psychology, with work going back more than 40
years [Billings et al., 2002]. We examine two variants of
poker in this paper: HULHE, which is played by humans, and
Rhode Island hold’em, a synthetic game created for research.

HULHE is a two player poker game that consists of four
betting rounds, called the pre-flop, flop, turn, and river. Be-
fore each game of poker, both players put in some number of
chips, called the blinds, into a community pot. One player
puts in the small blind, and the other player puts in the big
blind, which is twice as many chips as the small blind. In the

pre-flop and flop all bets are the size of the big blind, and in
the turn and river all bets are twice the size of the big blind.
These fixed ratios mean that instead of using chips, we can
describe all outcomes in terms of fractions of a big blind.

Each player gets two private cards at the beginning of the
game. As the game progresses, public cards are dealt out:
three cards on the flop, one card on the turn, and another card
on the river. These public cards are also called board cards.

Rhode Island hold’em is a synthetic two-player poker
game constructed for artificial intelligence research [Shi and
Littman, 2001]. It is a smaller game than HULHE, with three
shorter betting rounds, one private player card, and a single
public card dealt on each of the last two rounds. Rhode Island
hold’em has around 4× 106 information sets, and was solved
in 2005 [Gilpin and Sandholm, 2005].

A New Scalable Approach
Cepheus needed both algorithmic and engineering advances
to make the solving of HULHE possible. Each are discussed
in-depth below.

The CFR+ Algorithm
Cepheus uses a new variant of CFR, called CFR+, which
we will later show converges dramatically faster than CFR.
CFR+ involves four changes. First, CFR+ uses a weighted
average strategy σ̄Tp = 2/(T 2 + T)

∑T
t=1 tσ

t
p, rather than

the uniform average used by CFR. Second, many CFR
implementations use sampling techniques to speed conver-
gence [Lanctot et al., 2009], whereas CFR+ uses no sam-
pling. Third, CFR as described in the original paper simulta-
neously updates regret for both players, while CFR+ does al-
ternating updates. Fourth, and most importantly, CFR+ uses
regret-matching+ in place of regret-matching.

Regret-matching+ is a regret-minimizing algorithm that
operates very similarly to regret-matching. Where regret-
matching ignores actions that have an accumulated nega-
tive regret, regret-matching+ actively resets any accumulated
negative regret back to zero. Formally, regret-matching+

does not store the regrets Rt(a), but instead tracks a regret-
like value: Qt(a) =

(
Qt−1(a) + ∆Rt(a)

)+
, and bases its

policy on these values σt(a) = Qt−1(a)/
∑
b∈AQ

t−1(b).

Theorem 1 Given a set of actions A, and any sequence of
T value functions vt : A 7→ < with a bound L such that
|vt(a) − vt(b)| ≤ L for all t and a, b ∈ A, an agent acting
according to the regret-matching+ algorithm will have regret
of at most L

√
|A|T .

The proof of all of the theorems in this paper are in the
appendix. So, regret-matching+ has the same regret bound
as regret-matching, and therefore CFR+ has the same regret
bound as CFR. However, in the next section we show in prac-
tice CFR+ dramatically outperforms CFR.

This empirical difference has a partial explanation. In-
tuitively, one might expect regret-matching+ to outperform
regret-matching when the best action suddenly changes.
Regret-matching must wait for the previously poor action to
prove itself, overcoming all of its accumulated negative re-
gret. Regret-matching+, though, will start playing the new

best action immediately since its accumulated negative regret
is forgotten. This intuition can be captured by examining the
algorithms in terms of tracking regret. Tracking regret [Herb-
ster and Warmuth, 1998] considers the hindsight performance
of a larger set of alternatives, e.g., strategies that change their
action at most (k − 1) times. Regret-matching has very poor
tracking regret properties, possibly having linear regret even
against strategies with a single switch (k = 2). In contrast,
regret-matching+ is the first regret-matching based algorithm
with sublinear tracking regret.

Theorem 2 Consider alternative sequences of strategies that
can change up to k − 1 times, then regret-matching+ has a
regret bound of kL

√
|A|T .

The final change in CFR+ is to use a linearly-increasing
weighted average strategy.

Theorem 3 Let σt be a sequence of T behaviour strategy
profiles from running CFR+ for T iterations, in an extensive-
form game where max |vp(l) − vp(l′)| ≤ L for all players p
and terminal histories l, l′. Then the linearly weighted av-
erage strategy profile where σ̄Tp = 2/(T 2 + T)

∑T
t=1 tσ

t
p

is a 2(|I1| + |I2|)L
√
k/
√
T -Nash equilibrium, where k =

maxI∈I |A(I)|.
This result guarantees that linear weighting CFR+ achieves
the same asymptotic guarantees as uniform weighting with
CFR or CFR+. Theorem 3 does not apply to CFR, and in
contrast to CFR+ where linear weighting improves perfor-
mance, CFR performance decreases with linear weighting. In
the next section we give an experimental comparison of uni-
form and linear weighting. We also show that in practice the
current strategy in CFR+ often achieves a close approxima-
tion to the Nash equilibrium, so this aggressive weighting can
further speed convergence.

Engineering Details
CFR+ is space efficient, and improves on the speed of CFR,
but using CFR+ to solve a game the size of HULHE still
poses a challenge both in terms of computation time and
space. The 262 TiB of regret values and average strategy is
unlikely to fit in RAM, and may not even fit on available disk.
900 core-years of computation time [Bowling et al., 2015] is
too long for a single machine. The approach used by Cepheus
is to compress and store the values on disk, and distribute the
CFR+ computation across a cluster of compute nodes. Both
parts of this approach have a number of important technical
considerations that we discuss below.

Compressed Values on Disk Because CFR+ updates all
values in the game at each iteration, rather than updating
randomly selected locations, CFR+ is particularly suited for
use with compression. The algorithm amortizes the compres-
sion/decompression overhead by doing a full and exact CFR
update. For the same reason, CFR+ can efficiently load and
save this compressed data to disk. Taking advantage of this
to store compressed values on disk still requires attention to
a few implementation details. Any compression method used
to reduce the storage requirements must simultaneously be

good enough to reduce the data to a manageable size, and fast
enough that the compute nodes are not excessively waiting on
loading and storing the values. In a similar vein, it is critical
that disk I/O be serialized and data pre-fetched to minimize
the CPUs waiting on the disk. Finally, because space is tight,
some care must be taken in managing compressed, uncom-
pressed, and newly compressed data.

We suggest two application specific ideas for combining
CFR+ and compression. The entropy of the original data in
CFR+ can be reduced, and it is possible to take advantage
of game-specific regularity in the data that standard compres-
sion techniques may be otherwise unable to find. Both ideas
were mentioned in our work on solving HULHE [Bowling
et al., 2015], but here we give more detail on these critical
enhancements.

First, the entropy of the regrets and average strategy can be
reduced by storing values as fixed point numbers instead of
floating point numbers. Floating point numbers are an obvi-
ous choice for a large computation involving expected values
across probabilistic outcomes, but storing the floating point
values contain more information than we need for the tar-
geted solution quality. We can instead use floating point num-
bers for all intermediate computation, but scale the values and
truncate them to integers before storing them. By adjusting
the scaling factor, we can trade potentially decreased accu-
racy for fewer significant bits and more easily compressible
data. In our results section, we will further explore the effects
of the scaling factor.

Games may have some regular structure that a generic
compressor has difficulty finding. HULHE has many groups
of cards that are likely to be similar. Given a fixed betting
sequence and board cards, there are private cards where we
would expect to see similar regret values and action proba-
bilities. For some board cards, we would expect values to be
similar for all private cards. By sorting the boards, and then
sorting the private cards, we can use earlier values to predict
the next value. Instead of compressing the values directly, we
can compress the errors in the predicted values. The error
values take advantage of game specific knowledge encoded
in the sorting order, and are more readily compressible. For
HULHE, we suggest sorting the boards by the number of suits
that can make a flush in each round, breaking ties by card
rank, and sorting the private cards by rollout hand strength
– the expected number of times the private cards are ahead
given all possible opponent cards and future board cards.

With compressed data, it becomes necessary to decompress
the data to run the computation, and then re-compress new
results. There are two memory management issues that need
to be handled carefully. First, decompressing all of the data
may require too much space. This can be handled by using
just-in-time decompression and compression, decompressing
only the necessary blocks of values before re-compressing the
data. Second, using separate space for old and newly com-
pressed data doubles the required space. This can be handled
by using a linked list of fixed size chunks to store compressed
data, recycling chunks from old compressed data after they
have been completely consumed by the decompressor.

Distributed Computation CFR+ is a large recursive com-
putation: the counterfactual values used to update regrets at
an information set I are combined with the current policy at
I to produce one of the counterfactual values for the parent of
I . Because of this, the game can be split into a trunk and sub-
games located on separate machines [Johanson et al., 2011],
with probabilities coming in from the trunk, and counterfac-
tual values coming back from the subgames.

If we split the game of HULHE after the second round of
betting there are 63 betting sequences and 1755 possible com-
binations of board cards, for a total of 110, 565 subgames.
There are at most 2 ∗

(
49
2

)
= 2352 probabilities to pass to

each subgame, one for each possible combination of private
cards for each player. Each subgame passes the same number
of counterfactual values back to the trunk. This is only 1 GiB
of communication in each direction per iteration, even using
8-byte floating point values. With full unsampled CFR+ iter-
ations, the cost for 2 GiB of network communication is neg-
ligible.

The architecture for Cepheus has one node processing the
trunk, sending probabilities for subgames to worker nodes,
and then waiting on subgame values from the worker nodes.
Each worker node has one thread receiving subgame proba-
bilities from the trunk node and reading the necessary com-
pressed subgames off disk to fill a buffer of subgames to
process. Worker nodes have another thread which empties
a buffer of processed subgames by writing them to disk. Fi-
nally, worker nodes have multiple threads which remove sub-
games from the common pool of unprocessed subgames, do
the CFR+ update, send values to the trunk node, and add the
updated subgame to the buffer of processed subgames.

Empirical Results
In this section, our experiments will demonstrate the empir-
ical advantages of CFR+ over CFR, and highlight the engi-
neering decisions that must be made for large-scale imple-
mentations. Our domain for these experiments is Rhode Is-
land hold’em, a small synthetic poker game with a similar
structure to HULHE. We also demonstrate the strong perfor-
mance of CFR+ is not limited to poker-like games by com-
paring CFR and CFR+ in matrix games.

We begin our empirical analysis by considering the two
key differences between CFR+ and CFR: using regret-
matching+instead of regret-matching, and applying a linear
weight to the average strategy updates instead of a constant
weight. In Figure 1a, we show the convergence of the average
strategies generated by CFR+ and CFR, as well as variants
that make only one of these changes. This result illustrates
that applying regret-matching+alone provides an advantage
over CFR in this game, and also applying the linear weight
gives a further improvement.

In Figure 1b, we compare the convergence of the CFR and
CFR+ average strategies against the exploitability of their
current strategies. The theoretical proofs for CFR and CFR+

guarantee that the average strategy converges towards a Nash
equilibrium. While the CFR current strategy does not con-
verge to a Nash equilibrium in theory or in practice, in this
figure we observe that the CFR+ current strategy appears to

���

���

���

���

���

��� ��� ��� ���

�
�
�
��
���
�
���
��
��
�
�
�
��
�

����������

���������
�������������
�� �

������

��� �
���� �

�������

(a)

���

���

���

���

���

��� ��� ��� ���

�
�
�
��
���
�
���
��
��
�
�
�
��
�

����������

�����������

�����������
��� �

��������

��� �
��������

(b)

���

���

���

��� ���

�
�
�
��
���
�
���
��
��
�
�
�
��
�

����������

����

���
����

(c)

��

��

��

��

��

��

��

�� ��� ��� ��� ��� ��� ���
�
�
�
�
��
��
��
�
��
�
�
��
��
�
��
�

������������������������

���

�

� � �� ��
��

(d)

Figure 1: Empirical results and engineering choices in Rhode Island hold’em: (a) convergence rate of CFR using regret-
matching (RM) and regret-matching+ (RM+) and linear and constant weighting; (b) convergence rate of the average and
current strategies with CFR and CFR+; (c) convergence rate of CFR+ with different scaling factors; and (d) amount of memory
used by CFR+ with different scaling factors.

converge in practice in this game, and at a faster rate than
the CFR average strategy. Cepheus exploited this observation
in solving HULHE, in which the CFR+ current strategy was
used as its solution, ultimately converging more quickly than
the average.

Next, we explore the use of scaling parameters for fixed-
point arithmetic involving regret values in our CFR+ imple-
mentation. Lower regret scaling factors result in less accurate
values, but also enables better compression so that less space
is used. For the HULHE solution, it was necessary to care-
fully tune this parameter so that the computation would reach
the target exploitability of 1 milli-big-blind per game while
remaining within available storage. In Figure 1c, we demon-
strate the first part of this tradeoff in Rhode Island hold’em.
Each curve shows the convergence of the CFR+ average strat-
egy when the regret values use a scaling parameter from the
set: {0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8, 16, 32, 64}. Note that the
chart focuses on iterations 100 through 2000; before iteration
100, all of the curves followed the same trajectory. However,
after iteration 100, we see the curves with low parameter val-
ues diverge in increasing order, with four unable to reach the
goal of 1 milli-big-blind per game within 2000 iterations.

In Figure 1d, we consider the memory required for each of
the parameter choices, at the iteration when they reached an

exploitability of 1 milli-big-blind per game. While conserva-
tive (and therefore large) scaling factors converge reliably in
Figure 1c, they also require more memory than smaller pa-
rameter choices. However, overly aggressively small param-
eters may also require more memory if they converge more
slowly and must store larger regret values accumulated over
additional iterations. Through experiments in small games,
this parameter can be tuned to make a large-scale computa-
tion feasible as was done by Cepheus.

Matrix Games
The strong performance of CFR+ is not limited to a few vari-
ants of poker. We use matrix games to examine the wider
applicability of CFR+ and regret-matching+.

Figure 2a shows the performance of CFR and CFR+ in
the matching pennies game, a two by two matrix game. If
HULHE is at one extreme as a large, complex games, two by
two matrix games are at the other extreme. In the matching
pennies game, each player has a coin with two sides, heads
and tails. Both players secretly place their coin with either
heads or tails facing up. After the coins are placed, both
players reveal their coin. We used skewed zero-sum payoffs,
where the row player wins 1 if both coins were heads, wins 4
if both coins were tails, and otherwise loses 2.

����

����

����

����

����

����

���

���

��� ��� ��� ��� ���

�
�
�
��
���
�
���
��

����������

�����������

������������
�����������

������������

(a)

����

����

����

����

����

����

����

���

��� ��� ��� ��� ���

�
�
�
��
���
�
���
��

����������

�����������

�����������������������������������

(b)

Figure 2: Convergence rate of CFR and CFR+ in: (a) the matching pennies game (b) 1000 by 1000 random matrix games.

While the benefit of CFR+ shown in Figure 2a is not
as large as in HULHE or Rhode Island hold’em, CFR+ is
still producing low exploitability strategies more quickly than
CFR. For example, given a target exploitability of 10−3,
CFR first reaches the target by iteration 3, 539, while CFR+

reaches the same target by iteration 343. The very different
nature of the matching pennies game compared to HULHE
also shows up in the large fluctuations in the exploitability of
the average strategy, compared to the visibly smooth progress
in larger games.

Figure 2b shows results from a game somewhere between
HULHE and the matching pennies game, using 10 randomly
generated, 1000 by 1000 matrix games. Payoffs for each pair
of strategies in a game were identically and independently
sampled from a normal distribution with mean 0 and a stan-
dard deviation of 1. We ran CFR and CFR+ on each of the 10
games, and the exploitabilities in Figure 2b are the average
values across the 10 runs.

The large performance advantage of CFR+ is visible again
in larger matrix games. A target exploitability of 10−3 is
achieved by CFR in 510 iterations and by CFR+ in 83 it-
erations. CFR does not reach a target of 10−4 at all within
10, 000 iterations, while CFR+ requires only 331 iterations
to reach 10−4, and reaches 10−6 by iteration 4, 836.

Conclusion
Good play in imperfect information games like poker re-
quires deception and bluffing, which are not generally con-
sidered to be machine-like traits. HULHE is the first com-
petitively played game of imperfect information to be essen-
tially solved, marking a significant milestone in game the-
ory and artificial intelligence. The computation behind this
result posed both algorithmic and engineering challenges.
Cepheus solved HULHE using a new algorithm CFR+, fast
custom compression to reduce space, careful use of disk to
increase available space, and 4800 CPUs on a high perfor-
mance research cluster. We demonstrate that the CFR+ algo-
rithm outperforms the commonly used CFR algorithm, prove
that CFR+ and its component algorithm regret-matching+
are sound, and show that regret-matching+minimizes a regret
measure where traditional regret-matching does not. This es-

tablishes the new state-of-the-art in solving large extensive-
form games.

Acknowledgements
This research was supported by the Natural Sciences and
Engineering Research Council (NSERC), Alberta Innovates
Centre for Machine Learning (AICML), and Alberta Inno-
vates Technology Futures (AITF). Computing resources were
provided by Calcul Québec, Westgrid, and Compute Canada.

Proofs
Lemma 1 Given a sequence of strategies σ1, ..., σT , each
defining a probability distribution over a set of actions A,
let Qt(a) =

(
Qt−1(a) + ∆Rt(a)

)+
and Q0(a) = 0 for

all actions a ∈ A. The regret-like value Qt(a) is then an
upper bound on the regret Rt(a), and Qt(a) − Qt−1(a) ≥
∆Rt(a) = Rt(a)−Rt−1(a).

Proof For any t ≥ 1 we have

Qt+1(a)−Qt(a) = max (Qt(a) + ∆Rt+1(a), 0)−Qt(a)

≥ Qt(a) + ∆Rt+1(a)−Qt(a) = Rt+1(a)−Rt(a)

This gives us Qt(a) =
∑t
i=1Q

i(a) − Qi−1(a) ≥∑t
i=1R

i(a)−Ri−1(a) = Rt(a) �

Lemma 2 Given a set of actions A, and any sequence of
T value functions vt : A 7→ < with a bound L such that
|vt(a) − vt(b)| ≤ L for all t and a, b ∈ A, after playing
the sequence σt of regret-matching+ strategies, the regret-
like value QT (a) ≤ L

√
|A|T for all a ∈ A.

Proof

(max
a

QT (a))2 = max
a

QT (a)2 ≤
∑
a

QT (a)2

=
∑
a

((QT−1(a) + vT (a)−
∑
b

σT (b)vT (b))+)2

≤
∑
a

(QT−1(a) + vT (a)−
∑
b

σT (b)vT (b))2

=
∑
a

(QT−1(a)2 + (vT (a)−
∑
b

σT (b)vT (b))2

+2QT−1(a)(vT (a)−
∑
b

σT (b)vT (b)))

≤
∑
a

QT−1(a)2 + |A|L2

+2(
∑
a

QT−1(a)vT (a)−
∑
a,b

QT−1(a)vT (b)
QT−1(b)∑
cQ

T−1(c)
)

=
∑
a

QT−1(a)2 + |A|L2

+2(
∑
a

QT−1(a)vT (a)−
∑
b

vT (b)QT−1(b)
∑
c

σT (c))

=
∑
a

QT−1(a)2 + |A|L2

Q0(a) = 0 for all a, so by induction (maxaQ
T (a))2 ≤

T |A|L2, which gives us QT (a) ≤ L
√
|A|T . �

Proof of Theorem 1 From Lemma 2, we have QT (a) ≤
L
√
|A|T . From Lemma 1, we get RT (a) ≤ L

√
|A|T . This

holds for all a ∈ A, so regret RT ≤ L
√
|A|T . �

Proof of Theorem 2 Consider an arbitrary k-partition strat-
egy ~s = s1, ..., sT for T time steps, with si ∈ A, that
switches actions at most k − 1 times. If we played poli-
cies σ1, ..., σT on the T time steps, the regret for ~s is RT~s =∑T
t=1 v

t(st)−
∑
a∈A σ

t(a)vt(a).
For this arbitrary k-partition strategy, we can construct a

partition B of the T time steps into contiguous blocks of time
such that for any B ∈ B we have |B| ≤ k andsi = sj for
any i, j ∈ B. Let f [B] and l[B] be the first and last time step
of any block B ∈ B, and sB be the action chosen by ~s at
all time steps in block B. We can re-write the regret for ~s as
RT~s =

∑
B∈B

∑l[B]
t=f [B] ∆Rt(sB).

Consider the quantity RB(sB) =
∑l[B]
t=f [B] ∆Rt(sB).

From Lemma 1 RB(sB) ≤
∑l[B]
t=f [B] ∆Qt(sB). By

the definition of regret-matching+ we get RB(sB) ≤∑l[B]
t=1 ∆Qt(sB) = Ql[B]. From Lemma 2, RB(sB) ≤

L
√
|A|l[B] ≤ L

√
|A|T .

Because we have a bound onRB(sB) that does not depend
on B, we have RT~s ≤ |B|L

√
|A|T ≤ kL

√
|A|T . Finally,

~s was an arbitrary k-partition strategy, so this bound holds
for all k-partition strategies, including the strategy with max-
imum regret. �

Lemma 3 Call a sequence x1, ..., xT of bounded real values
B-plausible if B > 0,

∑i
t=1 xt ≥ 0 for all i, and

∑T
t=1 xt ≤

B. For any B-plausible sequence,
∑T
t=1 txt ≤ TB.

Proof Consider any B-plausible sequence that max-
imises the weighted sum. That is, let x∗1, ..., x

∗
T =

argmaxx′1,...,x′T
∑T
t=1 tx

′
t. We will show this by proving that

x∗i ≥ 0 for all 1 ≤ i ≤ T .
For any i < T , it can not be the case that for any i <

j that x∗i > 0, x∗j < 0, and x∗k ≥ 0 for all k where i <
k < j. Assume this were true, then let δ = min(|x∗i |, |x∗j |).
Construct a new sequence x′ where x′i = x∗i −δ, x′j = x∗j +δ,
and x′k = x∗k for all k 6= i, j. This new sequence x′ is B-
plausible. For all k where i ≤ k < j we have

∑k
t=1 x

′
t =

−δ+
∑i−1
t=1 x

∗
t +
∑k
t=i x

∗
t ≥ −δ+0+δ = 0. For all k where

k < i or k ≥ j we have
∑k
t=1 x

′
t =

∑k
t=1 x

∗
t . Looking at the

weighted sum of x′, we also have
∑
t tx
′
t ≥

∑
t tx
∗
t , which

contradicts the construction of x∗ as a maximizing sequence.
Further, it can not be the case that x∗j < 0 for any j. As-

sume there is a negative value. Let j be the minimum index
such that that x∗j < 0. Because j is the minimum index,
x∗k ≥ 0 for all k < j. From above, it can not be the case that
x∗i > 0 for any i < j. This means x∗k = 0 for all k < j, so
we have

∑j
t=1 x

∗
t = x∗j < 0, which contradicts x∗ being a

B-plausible sequence. Therefore, we have x∗i ≥ 0 for all i.
Using the fact all values in the sequence are non-negative,∑
t tx
∗
t ≤

∑
t Tx

∗
t = T

∑
t x
∗
t . From the definition of B-

plausible,
∑
t x
∗
t ≤ B, so

∑
t tx
∗
t ≤ TB. �

Lemma 4 Let A be a set of actions, vt : A 7→ < be a se-
quence of T value functions over A with a bound L such that
|vt(a) − vt(b)| ≤ L for all t and a, b ∈ A, and σt be the se-
quence of regret-matching+ policies over T time steps. Con-
struct a new sequence v′t of (T 2 + T)/2 value functions by
using t subsequent copies of vt (i.e., v1, v2, v2, v3, v3, v3, ...)
and a similar sequence σ′t from σt. Then the regret RT (a) of
sequence σ′ is bounded by TL

√
|A|T .

Proof For any action a, consider the regret R′(T
2+T)/2(a)

of the expanded sequences v′ and σ′. We know
R′(T

2+T)/2(a) =
∑(T 2+T)/2
t=1 ∆R′t(a) where ∆R′t(a) =

v′t(a) −
∑
b∈A σ

′t(b)v′t(b). By construction of v′ and σ′,
the sequence ∆R′t(a) is a sequence of t subsequent copies of
∆Rt(a) = vt(a) −

∑
b∈A σ

t(b)vt(b). So R′(T
2+T)/2(a) =∑T

t=1 t∆R
t(a).

Let ∆Qt(a) = Qt(a) − Qt−1(a) be the change in Q
values for action a from using regret-matching+ on the T
time steps with value functions vt. From Lemma 1, we
have ∆Qt(a) ≥ ∆Rt(a). From above, this gives us
R′(T

2+T)/2(a) ≤
∑T
t=1 t∆Q

t(a). ∆Qt(a) is a L
√
|A|T -

plausible sequence, so by Lemma 3 R′(T
2+T)/2(a) ≤∑T

t=1 t∆Q
t(a) ≤ TL

√
|A|T . �

Proof of Theorem 3 From the sequence of T strategy pro-
files σt, construct a new sequence σ′t of (T 2 + T)/2 strat-
egy profiles consisting of t subsequent copies of σt, as in
Lemma 3. From Lemma 4, we know that for any informa-
tion set I and action a, R′(T

2+T)/2(I, a) ≤ TL
√
|A(I)|T .

Because this holds for arbitrary a, we have R′(T
2+T)/2(I) ≤

TL
√
|A(I)|T .

From the original CFR convergence proof [Zinkevich et
al., 2007], we have R

′(T 2+T)/2
p ≤

∑
I∈Ip R

′(T 2+T)/2(I)

for any player p. From above, R
′(T 2+T)/2
p ≤∑

I∈Ip TL
√
|A(I)|T ≤ |Ip|TL

√
kT . Because T 2 + T ≥

T 2, we get the average regret 2R
′(T 2+T)/2
p /(T 2 + T) ≤

2|Ip|L
√
k/
√
T .

From the folk theorem linking regret to an ε-Nash equi-
librium, given a sequence of strategy profiles with player 1
and 2 average regrets of a and b, the strategy profile of the
average strategies is a (a + b)-Nash equilibrium. The aver-
age strategies from the sequence σ′ is therefore a 2(|I1| +
|I2|)L

√
k/
√
T -Nash equilibrium.

Finally, by the construction of σ′, for any player p the
average strategy 2/(T 2 + T)

∑(T 2+T)/2
1 σ′tp = 2/(T 2 +

T)
∑T

1 tσ
t
p = σ̄Tp , which is the linearly weighted average

strategy defined in statement of the theorem. �

References
[Billings et al., 2002] D. Billings, A. Davidson, J. Schaeffer,

and D. Szafron. The challenge of poker. Artificial Intelli-
gence, 134(1–2):201–240, 2002.

[Billings et al., 2003] Darse Billings, Neil Burch, Aaaron
Davidson, Robert Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-
theoretic optimal strategies for full-scale poker. In Pro-
ceedings of the 18th International Joint Conference on Ar-
tificial Intelligence, pages 661–668, 2003.

[Blackwell, 1956] David Blackwell. An analog of the mini-
max theorem for vector payoffs. Pacific Journal of Math-
ematics, 6(1):1–8, 1956.

[Borel, 1921] Émile Borel. La théorie du jeu et les équations
intégrales à noyau symétrique. Comptes Rendus de
l’Académie des Sciences, 173:1304–1308, 1921.

[Bowling et al., 2015] Michael Bowling, Neil Burch,
Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149,
2015.

[Brown et al., 2015] Noam Brown, Sam Ganzfried, and Tuo-
mas Sandholm. Hierarchical abstraction, distributed equi-
librium computation, and post-processing, with applica-
tion to a champion no-limit Texas hold’em agent. In In-
ternational Conference on Autonomous Agents and Multi-
agent Systems, 2015.

[Chen and Bowling, 2012] Katherine Chen and Michael
Bowling. Tractable objectives for robust policy optimiza-
tion. In Advances in Neural Information Processing Sys-
tems 25 (NIPS), pages 2078–2086, 2012.

[Gilpin and Sandholm, 2005] Andrew Gilpin and Tuomas
Sandholm. Optimal Rhode Island hold’em poker. In Pro-
ceedings of the Twentieth AAAI Conference on Artificial
Intelligence, pages 1684–1685, 2005.

[Gilpin et al., 2007] Andrew Gilpin, Tuomas Sandholm, and
Troels Bjerre Sørensen. Potential-aware automated ab-
straction of sequential games, and holistic equilibrium

analysis of Texas hold’em poker. In Proceedings of
the Twenty-Second AAAI Conference on Artificial Intelli-
gence, pages 50–57, 2007.

[Herbster and Warmuth, 1998] Mark Herbster and Man-
fred K. Warmuth. Tracking the best expert. Machine
Learning, 32(2):151–178, August 1998.

[Jackson, 2013] Eric Griffin Jackson. Slumbot NL: Solving
large games with counterfactual regret minimization us-
ing sampling and distributed processing. In Workshops at
the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, 2013.

[Johanson et al., 2011] Michael Johanson, Kevin Waugh,
Michael Bowling, and Martin Zinkevich. Accelerating
best response calculation in large extensive games. In Pro-
ceedings of the 22nd International Joint Conference on Ar-
tificial Intelligence, pages 258–265, 2011.

[Kuhn, 1950] H.W. Kuhn. Simplified two-person poker. In
H.W. Kuhn and A.W. Tucker, editors, Contributions to
the Theory of Games, volume 1 of Annals of mathematics
studies, pages 97–103. Princeton University Press, 1950.

[Lanctot et al., 2009] Marc Lanctot, Kevin Waugh, Martin
Zinkevich, and Michael Bowling. Monte Carlo sampling
for regret minimization in extensive games. In Advances in
Neural Information Processing Systems 22, pages 1141–
1149, 2009.

[Nash and Shapley, 1950] J. F. Nash and L. S. Shapley. A
simple 3-person poker game. In Contributions to the
Theory of Games I, pages 105–116. Princeton University
Press, 1950.

[Shi and Littman, 2001] Jiefu Shi and Michael Littman. Ab-
straction methods for game theoretic poker. In Computers
and Games, pages 333–345. Springer, 2001.

[Tambe, 2011] Milind Tambe. Security and Game Theory:
Algorithms, Deployed Systems, Lessons Learned. Cam-
bridge University Press, 2011.

[Tammelin, 2014] Oskari Tammelin. CFR+. CoRR,
abs/1407.5042, 2014.

[von Neumann and Morgenstern, 1947] John von Neumann
and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, Princeton, 1947.

[von Neumann, 1928] J. von Neumann. Zur theorie der
gesellschaftsspiele. Mathematische Annalen, 100(1):295–
320, 1928.

[Zinkevich et al., 2007] Martin Zinkevich, Michael Johan-
son, Michael Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In
Advances in Neural Information Processing Systems 20,
pages 905–912, 2007.

