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Abstract
Evaluating the performance of an agent or group of agents
can be, by itself, a very challenging problem. The stochas-
tic nature of the environment plus the stochastic nature of
agents’ decisions can result in estimates with intractably large
variances. This paper examines the problem of finding low
variance estimates of agent performance. In particular, we
assume that some agent-environment dynamics are known,
such as the random outcome of drawing a card or rolling a
die. Other dynamics are unknown, such as the reasoning of a
human or other black-box agent. Using the known dynamics,
we describe the complete set of all unbiased estimators, that
is, for any possible unknown dynamics the estimate’s expec-
tation is always the agent’s expected utility. Then, given a
belief about the unknown dynamics, we identify the unbiased
estimator with minimum variance. If the belief is correct our
estimate is optimal, and if the belief is wrong it is at least un-
biased. Finally, we apply our unbiased estimator to the game
of poker, demonstrating dramatically reduced variance and
faster evaluation.

Introduction
Poker is a game of both skill and chance. As a result, it
can be difficult to distinguish between the effects of skill
and chance on one’s winnings, possibly resulting in disas-
trous losses. If each player actually received their expected
value each hand, it would readily become apparent to a los-
ing player that they should change strategies or stop playing.

Stochastic environments, which combine chance and skill
are pervasive in artificial intelligence. However, AI re-
searchers face the same problem that poker players do: it is
difficult even after a match is over to evaluate a player or al-
gorithm’s performance. The usual solution is repeated inde-
pendent trials. If two stationary poker algorithms are being
compared, then a very large number of hands can be played
and averaged to construct a low variance estimate. When
analyzing the performance of a computer program playing
against a human, the required number of hands to draw a
valid conclusion is simply impractical. In domains where a
single round of evaluation is expensive or time-consuming
(e.g., TAC (Stone & Greenwald 2005) and RoboCup (Ki-
tano et al. 1997)) even program comparisons may require
an impractical number of rounds.
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Two illustrative techniques have been used in the world
of games to address this evaluation problem. The first is
exemplified by duplicate bridge, a game played by four or
more pairs (teams) of players. A set of boards, or deals
of the cards, are generated randomly and each North-South
pairing plays all boards once in the North-South position,
while rotating to face all possible East-West opponents. The
total North-South pairing’s score is then compared to all,
and only, the other North-South pairings. The pairings be-
ing compared have all effectively been dealt the same cards
and played the same opponents. Therefore, the luck due to
the innate value of being dealt a particular hand is reduced,
as well as the variance in the score differences. The prob-
lem is that it requires restructuring the game so that multiple
pairings can see the same opponents and situations. In addi-
tion, a pairing is not evaluated against its actual opponents,
but against pairings playing the same opponents. Although
computer programs can be replicated to play in both seats,
humans are not so easily cloned, nor can they be reliably
made to forget previous games when playing new ones with
symmetric situations. Lastly, this approach only removes
one portion of luck. In poker and other domains, stochastic
events affect more than just the initial situation.

A second method is an intellectual poker exercise where a
player’s performance is compared to how well that player
would have done had she known her opponents’ cards.
This is essentially Sklansky’s Fundamental Theorem of
Poker (Sklansky 1992). However, this metric is unrealis-
tic in that good poker players will never completely reveal
what cards they hold by their actions. Moreover, the tech-
nique is biased in the sense that one will always do better
in expectation if the other player’s cards were face up. For
some games, low variance unbiased estimators exist (Wolfe
2002), but not in general.

This paper focuses on designing an unbiased estimator for
the expected utility of an agent or agents interacting in any
stochastic environment. As we have already discussed, the
simplest unbiased estimator is just the utility of the agent.
However, we will show examples of estimators with lower
variance. In particular, we will show how any value function
from histories to real numbers can be used to form the basis
for an unbiased estimator. The value function can be thought
of as a guess of the agent’s expected utility for each history.
We then show that if the value function is a perfect guess,



our technique results in the unbiased estimator with mini-
mum variance. We also show that “similar” value functions
have similarly low variance. We conclude with experimental
results of how this technique dramatically reduces variance
in the game of poker.

Example: Poker
The theoretical results in this paper are broadly applicable
to both multiagent and single agent settings. Our empirical
results will focus on the game of poker and so we will use it
as a motivating example.

Texas Hold’em
There are many variants of poker. Our results focus on
Texas Hold’em, particularly the two-player limit game. A
single hand is played with a shuffled 52-card deck, and con-
sists of four rounds. On the first round (the pre-flop), each
player receives two private cards. On subsequent rounds,
public board cards are revealed (three on the flop, one on
the turn, and one on the river). After each of these chance
events there is a round of betting, where the players alter-
nately decide to fold, call, or raise.1 When a player folds,
the game ends and the other player wins the pot, without re-
vealing their cards. When a player calls, an amount match-
ing the other player’s wager is placed into the pot. When a
player raises, they match the other players’ wager and then
put in an additional fixed amount. The players alternate until
a player folds, ending the hand, or a player calls, continuing
the game to the next round.

There is a limit of four raises per round, so the betting se-
quence has a finite length. The fixed raise amount in the first
two rounds is called the small bet, which is doubled (a big
bet) in the last two rounds. If neither player folds before the
final betting round is over, there is a showdown. The play-
ers reveal their private cards and the player who can make
the strongest five-card poker hand using any combination of
their private cards and the public cards wins the pot. The pot
is split in the case of a tie.

Luck and Skill
Consider the following hand of limit Texas Hold’em be-
tween Alice and Bob. Alice is dealt J♠J♣ , and Bob is dealt
6♥5♥ . Alice raises, and Bob calls. Then three cards (the
flop) are placed on the board, 6♠6♦3♦. Alice bets, and Bob
calls. In the next round, the T♣ arrives, Alice bets, Bob
raises, and Alice calls. Next the 8♥ is dealt, Alice checks,
Bob bets, and Alice calls. In the showdown, Bob wins, with
three sixes beating two pair.

Consider how much an outside observer might expect Al-
ice to win on a typical hand given what happened on this
hand. One naive assessment is to focus on the final outcome
and conclude that Bob winning nine small bets from Alice
is typical. This conclusion ignores the fact that the outcome
is decided by more than just the players’ decisions – luck
plays a large role. One could instead examine the player’s

1A call or raise when there is no wager by the opponent to match
is called a check or bet, respectively.

decisions alone. In the first round, Alice has a large advan-
tage. If Bob could see Alice’s cards, he would fold, since
that would lose less in expected value. However, his call is
certainly not a bad play in general, and he only lost as much
as one is expected to lose in that situation. Bob then got a
lucky flop to make a very strong hand. By not raising Al-
ice’s bet, he lost a sizable fraction of a bet, but this may have
been a trap – a deliberate deception to gain more later when
the bet size doubles. The turn is rather uninteresting, in that
Alice lost only as much as one would expect to lose with
her strong hand. However, her check and call (as opposed
to the typical bet and call) on the river was insightful, losing
one big bet less than would normally be expected. Overall,
Alice should be considered to have outplayed Bob on this
hand, despite losing a substantial pot, which was the result
of an unlucky flop.

Of course, there is the question of how to assign numerical
values to each of the players’ decisions. We will also want to
do so in a way that is unbiased, so we still are estimating the
true value of the game. In the next section, we will introduce
a formalism that will help us construct unbiased estimators
of a game’s outcome.

Formalism
Before delving deep into the notation, definitions, and the-
oretical results, we begin with a high-level overview of the
next two sections. Our goal is to construct a low variance
estimator for an agent or agents’ performance. We assume
that certain aspects of the domain or agent are known. In
addition we have a belief or guess about all aspects of the
system. We construct an estimator that is provably unbiased
for any domain consistent with our knowledge. We go on to
show that if our guess is (nearly) accurate, the estimator has
(nearly) the minimum variance of all unbiased estimators.

Formally, define the set of all atomic events, either ac-
tions or chance happenings, as the event set E. We define
the sequence of all events that have occurred so far to be the
history h ∈ E∗. Define H ⊆ E∗ to be the set of all reach-
able histories, and O ⊆ H to be the set of terminal histories,
or outcomes. Let us suppose that there is a utility func-
tion u : O → R associating every outcome with a utility.
This could represent points, money earned, or a 1, 1

2 , 0 value
indicating win, tie, and loss respectively.2

In this work, we will think about the probability of the
next event given a sequence of previous events. For all
h ∈ H\O, there is an actual distribution σ : H\O → ∆(E)
over the next event in the sequence, and we will write σ(e|h)
to be the probability that e is the next event given history h.
Now suppose that some of the game or system’s dynamics
are known. So, there exists a set K ⊆ H\O, such that a dis-
tribution k : K → ∆(E) over the next event in the sequence
is known. We will write k(e|h) to be the known probabil-
ity of e being the next event given h. Note that we have
chosen notation such that we can represent the case where
the randomness in the system is known and the agents’ be-
havior is unknown (e.g., humans playing poker) and we can

2In fact, this “utility” could be any real-valued function of the
outcome of the game, even if it was not a metric of performance.



represent the case where the environment is unknown and
the agents’ behavior is known (e.g., a robot in an unknown
environment), or some mixture (e.g., a robot and a human
playing poker).

Define K = ∆(E)K to be the set of all k functions, and
Σ = ∆(E)H\O to be the set of all σ functions. We will say
that k ∈ K and σ ∈ Σ agree if for all h ∈ K, k(h) = σ(h).
Define Σk to be the set of all σ that agree with k. Lastly,
define |h| to be the number of events in the sequence h, hi

to be the ith event in h, and h(i) to be the first i events of h.

Probability, Expectation and Variance
Before discussing performance estimators, we briefly de-
scribe the concepts of variance, expectation, and probability.
For all h ∈ H , the probability of h under σ is:

Prσ[h] = Π|h|
t=1σ(ht|h(t− 1)) (1)

where σ(ht|h(t− 1)) is the probability of the tth element of
h given the first t − 1 elements of h. For simplicity, in this
paper we will assume O is finite (or equivalently that the
game terminates before some number of events T occur).
Therefore, for σ ∈ Σ and a random variable f : O → R,
the expected value of f under σ is:

Eσ[f ] = Eh∈σ[f(h)] =
∑
o∈O

Prσ[o]f(o) (2)

The variance of f under σ is:

Varσ[f ] = Eσ[f2]− (Eσ[f ])2 (3)

For h, h′ ∈ H , we’ll say h v h′ if h is a prefix of h′, or
formally h = h′(|h|). Then, if Prσ[h] > 0, the conditional
probability of h′ given h under σ and the conditional ex-
pectation of f given h under σ are:

Prσ[h′|h] = I(h v h′)
Prσ[h′]
Prσ[h]

(4)

Eσ[f |h] =
∑
h′∈O

f(h′) Prσ[h′|h] (5)

where I(true) = 1 and I(false) = 0. Finally h is possible
under σ if Prσ(h) > 0, h is possible under k if there is a
σ ∈ Σk where h is possible under σ.

Unbiased Estimators
The goal in this paper is to find performance metrics that
are unbiased estimators. Formally, given random variables
û : O → R and u : O → R:

1. For σ ∈ Σ, û is an unbiased estimator of u under
σ if Eσ[û] = Eσ[u].

2. For Σ′ ⊆ Σ, û is an unbiased estimator of u for
Σ′ if for all σ ∈ Σ′, û is an unbiased estimator of u
under σ.

3. û is an unbiased estimator of u for k if û is an
unbiased estimator of u for Σk.

Thus, û is an unbiased estimator if, given what we know,
regardless of rest of the dynamics, it has the same expected
value as u.

In what follows, we will show how to generate an unbi-
ased estimator of u from an informed guess of the expected
value of u given h. Up until this point, we have referred to
our knowledge k and the true dynamics σ. As suggested by
(Harsanyi 1967), instead of considering a situation of incom-
plete information, we will consider the case where we have
imperfect information. In other words we will also consider
our beliefs about what will happen in any given situation. A
belief has the same form as the true dynamics, i.e., it is a
function in Σ which may or may not be equal to the true dy-
namics. However, we will also insist that our beliefs agree
(in the formal sense) with our knowledge.

In our development of unbiased estimators we will make
use of the concept of a value function V : H → R. The
value V (h) will be thought of as an estimate of the condi-
tional expectation of u given h. Although we will consider
all possible value functions in the definitions and main the-
orem, one natural value function can be derived from our
belief about the dynamics. Given our belief ρ ∈ Σ define,

V ρ(h) = Eρ[u|h] (6)

We will show that with any value function we can generate
an unbiased estimator. In addition, we show that a value
function from an accurate belief ρ will generate an unbiased
estimator with low variance.

We can now describe our proposed estimator. Given k ∈
K, and a function V : H → R, define QV,k : K → R such
that:

QV,k(h) =
∑
e∈E

V (h ◦ e)k(e|h) (7)

where h ◦ e is the sequence where e is appended to h.
Therefore, QV,k is a one-step lookahead of the value func-
tion given our knowledge. Now define the advantage sum
ûV,k : O → R to be:

ûV,k(h) = u(h) +
∑

t s.t. h(t)∈K

(QV,k(h(t))− V (h(t + 1))) (8)

We replace the effect of every known random event on the
value of u with the known expected effect of that event.3

Theoretical Results
In this paper, we give two sets of theoretical results. The first
gives a characterization of the set of unbiased estimators for
some given knowledge of the system, which we present in
Theorems 1 and 2. The second establishes how to construct
unbiased estimators with low variance, which we present as
Theorems 3 and 5.

Characterization of Unbiased Estimators
First, we show that a value function can form the basis for
an unbiased estimator.

3We use the term advantage sum to emphasize the similarity
to advantages in reinforcement learning, which have been shown
to be useful in measuring the suboptimality of a policy (Kakade
2003). This work generalizes the idea beyond the knowledge and
beliefs commonly used in reinforcement learning, as well as going
on to analyze the resulting variance reduction.



Theorem 1 For any V : H → R and k ∈ K, ûV,k is an
unbiased estimator of u for k.

Proof: Given σ ∈ Σk. We will prove that every addend in
the advantage sum has an expected value of zero. By adding
noop events, without loss of generality, assume that for all
h ∈ O, |h| = T for some T . By linearity of expectation:

Eh∈σ

u(h) +
∑

t s.t. h(t)∈K

(QV,k(h(t))− V (h(t + 1)))


= Eh∈σ[u]+

T∑
t=1

Eh∈σ

[
I(h(t) ∈ K)

(QV,k(h(t))− V (h(t + 1)))

]
Focusing on a particular summation element t:

Eh∈σ[I(h(t) ∈ K) (QV,k(h(t))− V (h(t + 1)))]

=
∑

h′∈K

Eh∈σ[I(h(t) = h′) (QV,k(h(t))− V (h(t + 1)))]

Focusing on a particular summation element t and h′ ∈ K:

Eh∈σ[I(h(t) = h′) (QV,k(h(t))− V (h(t + 1)))]

=
∑
e∈E

Eh∈σ

[
I(h(t + 1) = h′ ◦ e)

(QV,k(h′)− V (h′ ◦ e))

]
=

∑
e∈E

Prσ[h′ ◦ e] (QV,k(h′)− V (h′ ◦ e))

=
∑
e∈E

Prσ[h′]k(e|h′) (QV,k(h′)− V (h′ ◦ e)) (9)

Where Equation 9 follows from the fact that σ and k agree.
Since

∑
e∈E k(e|h′) = 1:

Eh∈σ[I(h(t) = h′) (QV,k(h(t))− V (h(t + 1)))]

= Prσ[h′]

(
QV,k(h′)−

∑
e∈E

k(e|h′)V (h′ ◦ e)

)
By the definition of QV,k(h′), the right side is zero. There-
fore, the summation is in expectation zero, implying ûV,k is
an unbiased estimator of u.

Moreover, we can characterize any unbiased estimator
with a value function.
Theorem 2 Given any unbiased estimator û, there is a V :
H → R, such that for all h ∈ O possible under k, û(h) =
ûV,k(h).

Proof Sketch: We prove the remainder of the theorems in a
separate technical report (Zinkevich et al. 2006) and merely
sketch the reasoning here. The basic argument is that for any
unbiased estimator, for any history h ∈ H possible under k,
there is a particular bias for that h, which is independent of
the unknown dynamics. Formally, for any σ, σ′ ∈ Σk such
that Prσ[h] > 0 and Prσ′ [h] > 0:

Eσ[û− u|h] = Eσ′ [û− u|h] (10)

We then use these biases and some of their basic properties
to calculate the value function.

Unbiased Estimators of Low Variance
In the previous section we considered the case where we
have knowledge of the dynamics of the system, k. We may
also have a belief, ρ, about the complete dynamics of the
system, which is in agreement with k. We can show that if
our belief is correct, i.e., ρ is the same as the true dynamics
σ, we can construct a minimum variance unbiased estimator.
Formally, given k ∈ K, σ ∈ Σk, û∗ is a minimum variance
unbiased estimator for k under σ if û∗ is an unbiased es-
timator for k and for any unbiased estimator for k, û:

Varσ[û∗] ≤ Varσ[û] (11)

Theorem 3 For any k ∈ K, any σ ∈ Σk, ûV σ,k is a mini-
mum variance unbiased estimator for k under σ.

Proof Sketch: The first part of the argument involves a
non-constructive proof that an unbiased estimator of mini-
mum variance exists. Once this is done, we can prove lo-
cally that, for any h possible under k, regardless of the value
of V on the remainder of H , having V (h′) = V σ(h′) for all
h′ ∈ H where |h′| = |h|+1 and h v h′ minimizes variance.
Thus, having V = V σ everywhere minimizes variance.

Thus, if our knowledge of the dynamics is correct, then
we know our estimator is unbiased (Theorem 1), and if our
beliefs are correct, it minimizes variance (Theorem 3). How-
ever, what if our beliefs are not perfectly accurate? For in-
stance, in poker, we can’t perfectly predict the play of all the
players. However, we might expect that in most situations
the expected value under a belief and under the actual dy-
namics would be similar. We now show if we use a value
function that is close to the true value function, then we get
a random variable that is close to the minimum variance un-
biased estimator.

Lemma 4 For any k ∈ K, σ ∈ Σk, and V, V ′ : H→R:

Eh∈σ [|ûV,k − ûV ′,k|] ≤ 2
∑
h∈H

Prσ[h]|V (h)− V ′(h)|.

(12)

Moreover, this closeness directly translates into a closeness
in variance.

Theorem 5 For any k ∈ K, σ ∈ Σk, and V, V ′ : H →R,
define umax = maxh∈O [max(ûV,k(h), ûV ′,k(h))]. It is the
case that:

Varσ(ûV,k)−Varσ(ûV ′,k)

≤ 4umax

∑
h∈H

Prσ[h]|V (h)− V ′(h)|.

Thus, if on the histories we visit most we have a reason-
ably good estimate of the true value, and there is some triv-
ial bound on how accurate we are on all possible histories,
then we can be close to the optimal variance. In summary,
if our knowledge of the dynamics is correct, then we know
our estimator is unbiased, and if our beliefs are nearly cor-
rect, we’ll have an estimator that has nearly the minimum
variance.



Empirical Results
In the previous section we showed that knowledge of some
portion of the system’s dynamics as well as an accurate be-
lief over the complete dynamics can lead to a low variance
unbiased estimator. In this section we apply these results to
the game of poker. Our knowledge consists of the rules of
the game, i.e., we know the true distribution over the dealing
and revealing of cards. Our belief must specify a guess of
the expected outcome of the hand from any history. We’ve
shown that one method for constructing such a function is to
define a belief about the players’ policies. The value func-
tion is then the expected value of the game if the players
followed the chosen policies.

This is the approach of the Ignorant Value Assessment
Tool (DIVAT) invented by the last author for assessing the
value of poker decisions (Billings & Kan 2006). DIVAT
makes use of an expert-defined policy for determining an
appropriate amount players will wager in an arbitrary poker
situation, called the DIVAT policy. The value function of
this policy is then used in the advantage sum to make an
unbiased estimator for poker called the DIVAT difference.

The DIVAT policy is based on a game-theoretic bet-for-
value strategy. For example, if Player 1 holds a hand in
the 70th percentile of strength and Player 2 holds a hand
in 90th percentile, then the bet-for-value betting sequence
would be bet, followed by a raise, followed by a call, indi-
cating that each player should invest two bets on that betting
round. The specific bet and raise thresholds are based on
expected value equilibrium values, relative to a similarly de-
fined game-theoretic equilibrium folding policy.

Implementation Details. To compute the estimator, one
must compute the expected value of the DIVAT policy from
various non-terminal histories. From a post-flop history, it
requires a fraction of a second to compute the value, but
from a pre-flop history, this computation can take over an
hour. Therefore, we pre-compute and cache the value of all
of the pre-flop histories, and then for later histories, we com-
pute this value on the fly. On an AMD64 2.2Ghz machine,
the analysis takes 0.418 seconds per hand on average.

Experiments. To evaluate our unbiased estimator in prac-
tice, we performed two experiments.4 In both experiments
we compare the DIVAT advantage sum estimator to the
money estimator, based on averaging the player’s per hand
winnings. The first experiment was a self-play match with
an experimental version of the advanced pseudo-optimal
player (Billings et al. 2003). The particular program did
not adapt to its opponent, so the expected winnings is zero.
However, because of the stochasticity of poker, many hands
are required to safely conclude this.

In our experiment evaluating seventy thousand hands, the
money estimate has a standard deviation of 4.9 sb/h (small
bets per hand). The DIVAT advantage sum estimator’s stan-
dard deviation is 2.1 sb/h. In general, this means we would
need 5.7 times the number of hands to have a money esti-
mator with the same accuracy as the DIVAT estimator when

4Further experiments and poker analysis of DIVAT can be
found in the technical report (Billings & Kan 2006).

evaluating this program in self-play. In Figure 1(a) we show
both the estimated small bets per hand for the money and
DIVAT estimators over the first two thousand hands of the
experiment. The bars denote the 95% confidence interval
given the sample standard deviation. The DIVAT advantage
sum very quickly converges toward zero, while the money
estimate is far less certain.

Our second experiment is a match between an expert
poker player and the program that was used in the previ-
ous experiment. The expert used a fixed strategy he knew
from prior experience would beat the program. For the ten
thousand hands in the experiment, the money estimate had
a standard deviation of 5.5 sb/h compared to DIVAT’s 2.0
sb/h, resulting in 7.2 times fewer hands needed for similar
accuracy. In Figure 1(b) we plot the same graph of estima-
tors as in the self-play experiment. The money estimator
requires approximately 800 hands before the break-even ex-
pected value is outside of its 95% confidence interval. It
takes only 100 hands using the DIVAT advantage sum esti-
mator to draw the same conclusion.

Hypothesis Testing. A common question in evaluation is
simply, “On average, will Alice win money from Bob?” Or,
“On average, will Alice win more from Bob than Charlie
wins from Bob?” Given the results of an unbiased estima-
tor this can be answered using hypothesis testing. Consider
experiment two above, where we’ve seen just the first 500
hands and we want to ask, “On average, will the expert win
money from the program?” A one-sided t-test using the DI-
VAT advantage sum estimator results in rejecting the null
hypothesis that the human will break-even or lose to the pro-
gram with a p-value less than 0.0001 (i.e., with a confidence
level as high as 99.99%), which is extremely significant. Us-
ing the money estimate, we cannot reject the null hypothesis
(p-value of 0.23) even with 90% confidence.

Similarly, suppose the observer does not know anything
about the first program (A) in the first experiment, but knows
that the second program (B) was the same one playing in ex-
periment two. Now consider the question, “On average, will
the expert win more from program B than program A will
win from B?” Using the money estimator, after 500 hands,
the null hypothesis that program A will win at least as much
as the human cannot be rejected (p-value of 0.43). How-
ever, using the DIVAT estimator, the null hypothesis can be
rejected with very high confidence (p-value of 0.002). In
summary, the low variance of the DIVAT estimator results
in more dramatic statistical conclusions.

Conclusion
We examined the problem of finding low variance unbiased
estimators for evaluating agents in stochastic domains. We
showed how to construct an unbiased estimator using ad-
vantage sums that exploits both partial knowledge about the
system dynamics and a belief about the unknown dynam-
ics. After giving a complete characterization of the space of
unbiased estimators, we showed that if the belief is (nearly)
accurate the estimator is (nearly) the minimum variance un-
biased estimator. We then demonstrated the use of advantage
sum estimators in the context of poker showing that the DI-
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Figure 1: Unbiased estimators of performance over 2000 hand experiments. Vertical bars show the 95% confidence intervals
for the estimators. (a) A static poker program in self-play. (b) An expert player against the static poker program.

VAT estimator has reduced variance and allows statistically
significant conclusions to be drawn with much less data.

The advantage sum estimator has many applications, of
which evaluating agents in stochastic multiagent scenarios
is only one. Advantage sum estimators can also be used
for policy evaluation or policy gradients in reinforcement
learning (Kakade 2003). In this case, the domain knowl-
edge actually consists of the agent’s policy, and the unknown
dynamics come from the environment’s transition probabil-
ities. Our results show that given a belief about the transi-
tion probabilities, a minimum variance unbiased estimator
can be constructed. In addition, we can very naturally in-
clude additional knowledge about transition probabilities to
improve the variance of this estimator. Unbiased estimators
are also critical for online decision making algorithms. For
example, Exp4 (Auer et al. 2002) is an algorithm for choos-
ing among a set of suggested policies or experts. On each
round, it selects a policy and observes a utility estimate. Its
online guarantee does not require any assumptions of sta-
tionarity, but it does depend upon unbiased estimators of the
chosen policy. More importantly, its practical performance
depends critically on the variance of the estimators (Kocsis
& Szepesvri 2005): the lower the variance, the stronger the
performance.
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