
Particle Filtering for Dynamic Agent Modelling in Simplified Poker

Nolan Bard and Michael Bowling
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{nolan,bowling}@cs.ualberta.ca

Abstract

Agent modelling is a challenging problem in many modern
artificial intelligence applications. The agent modelling task
is especially difficult when handling stochastic choices, de-
liberately hidden information, dynamic agents, and the need
for fast learning. State estimation techniques, such as Kalman
filtering and particle filtering, have addressed many of these
challenges, but have received little attention in the agent mod-
elling literature. This paper looks at the use of particle fil-
tering for modelling a dynamic opponent in Kuhn poker, a
simplified version of Texas Hold’em poker. We demonstrate
effective modelling both against static opponents as well as
dynamic opponents, when the dynamics are known. We then
examine an application of Rao-Blackwellized particle filter-
ing for doing dual estimation, inferring both the opponent’s
state as well as a model of its dynamics. Finally, we exam-
ine the robustness of the approach to incorrect beliefs about
the opponent and compare it to previous work on opponent
modelling in Kuhn poker.

Introduction
Agent modelling is the problem of building a predictive
model of another agent’s future decisions from, possibly
incomplete, observations of past behavior. The rise of ap-
plications requiring interaction between independent agents
— human, robotic, and software — has made coping with
the presence of other decision makers a key challenge for
artificial intelligence. Agent modelling is one approach
to this challenge. With accurate predictive models of the
other agents, an effective response can be planned and ex-
ecuted. Applications as diverse as assistive technologies,
autonomous driving, electronic commerce, and interactive
entertainment all require or would benefit significantly from
accurate models of other agents, artificial or human.

There are many factors that complicate the agent mod-
elling task. Models often need to be constructed from very
few observations. The environment may involve stochastic
events or hidden information only known to the agent be-
ing modelled. The agent itself may, in fact, make stochas-
tic choices. And finally, the agent may be dynamic, chang-
ing their behavior throughout the interaction. For example,
a long-term customer’s product preferences can drift over

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time, a web visitor’s goals can change while browsing a site,
or a game opponent may switch strategies during play.

In this work, we approach the agent modelling problem
as a specific instance of the general problem of state esti-
mation. State estimation involves tracking a stochastic pro-
cess’s hidden state variables by observing noisy functions of
these variables. Such techniques represent uncertainty in the
hidden state as a probability distribution and use a recursive
Bayes’ formula to update the belief with each new obser-
vation. Although these techniques require a complete prob-
abilistic model of the process dynamics and observations,
techniques for dual estimation have relaxed this requirement
by inferring these models from data. State estimation seems
to be well-suited to the agent modelling task, and yet it has
received little attention in the agent modelling literature.

Poker is a challenging testbed for AI research that em-
bodies all of the agent modelling challenges. The environ-
ment and often the players are stochastic. Each player has
their own private information which may never be revealed.
In addition, modelling is expected to play a key role in
the eventual development of world champion poker-playing
programs.1 Dynamic behavior is also an integral part of ex-
pert poker. Exploiting one’s “table image” by “switching
gears” is a common tactic, which involves drastically chang-
ing play style. This makes poker an ideal domain for exam-
ining the problem of dynamic agent modelling. In particular,
we will focus on a simplified version called Kuhn poker.

This paper examines the use of the state estimation tech-
nique, particle filtering, along with an extension to dual es-
timation, for the problem of agent modelling in poker. We
begin with background on agent modelling and state estima-
tion. Next, we introduce Kuhn poker, and describe our ap-
plication of particle filtering to this domain. We then show
results of our approach on a broad range of scenarios, in-
cluding when the opponent’s dynamics are known, inferred,

1Many of the competitive poker playing programs today em-
ploy a game-theoretic approach without any opponent mod-
elling (Billings et al. 2003; Gilpin & Sandholm 2006). These
approaches, though, by failing to identify and exploit their oppo-
nents’ weaknesses are unlikely to best the world’s top human play-
ers. This was also the observation of a world class player after
evaluating one of these game theoretic programs, “You have a very
strong program. Once you add opponent modelling to it, it will kill
everyone.” (Billings et al. 2004)

and even wrong. These results illustrate both the effective-
ness and robustness of the technique. Finally, we conclude.

Background
This work brings ideas from state estimation to the prob-
lem of agent modelling. We briefly review past work in
agent modelling, before describing the necessary founda-
tional concepts from state estimation.

Agent Modelling
Agent modelling has been explored in the literature under
a number of different guises. Early work, which contin-
ues today, focused on plan recognition (e.g., Kautz 1991)
as the inverse of the traditional planning problem: recover-
ing a goal concept from a sequence of actions in a symbolic
planning language. If the agent’s goals can be deduced, one
can then predict the agent’s actions in novel situations. This
inversion of planning has also been attempted for stochas-
tic domains as the problem of inverse reinforcement learn-
ing (Ng & Russell 2000), where a reward function is iden-
tified from samples of the agent’s policy. These techniques,
though, generally require complete knowledge of the rest of
the system, restricting them to situations of modelling a sin-
gle agent making deterministic choices in a fully observable
environment.

Behavior classification (Han & Veloso 1999) and policy
recognition (Bui, Venkatesh, & West 2002) try to identify
behavior rather than goals. They were proposed for par-
tially observable, stochastic domains and take a more prob-
abilistic approach that can even account for an agent mak-
ing stochastic decisions. However, they only recognize or
classify observed behavior into a small discrete set of tar-
get behaviors that must be specified in advance. Also, these
approaches (along with plan recognition and inverse rein-
forcement learning) assume the agent’s behavior is static,
unchanging throughout the interaction.

Agent modelling has also been investigated in the realm
of game theory, particularly in the context of small strate-
gic form games such as prisoner’s dilemma. For example,
Carmel and Markovitch (1996) proposed a technique for
modelling an “opponent” as a deterministic finite automa-
ton, which can then be used for planning an optimal re-
sponse. Although the approach can learn models of dynamic
agents, it is not obvious how it can be extended to stochastic
choices, private information, or larger games.

Previous work on agent modelling in Texas Hold’em
poker has focused on techniques for modelling static agents.
Simple frequentist opponent modelling systems have been
used to modify the distribution over the opponent’s hidden
cards based on their past behaviour (Billings et al. 1998).
Artificial neural networks were used to learn opponent mod-
els offline from previous game data. The models were then
used for choosing salient features to augment previous fre-
quentist modelling (Davidson et al. 2000). Vexbot, the fore-
most opponent modelling poker program, incorporates fre-
quentist statistics into an imperfect information game-tree
search (Billings et al. 2004). These techniques, however,
require considerable data to be effective. Recent work by

Hoehn and colleagues (Hoehn et al. 2005) focused on short-
term modelling in Kuhn poker. We will discuss this work in
more detail below, along with a comparison of results. All
of this previous work in poker opponent modeling, however,
is focused on modelling static opponents, where as our work
explicitly models dynamic behavior.

State estimation has been wildly successful in a broad
range of applications. Although seemingly well-suited to
the challenges of agent modelling, it has received very lit-
tle attention in this area. Bererton (Bererton 2004) proposed
the use of particle filtering in commercial computer games,
but this was to imbue computer players with more realistic
beliefs about enemy positions. We propose to use state es-
timation techniques to infer an agent’s subjective state, i.e.,
its behavior, rather than any objective quantities.

State Estimation
State estimation is the problem of determining the current
state of a system given a sequence of observations. This is
done by representing the uncertainty in the current state as a
probability distribution and using Bayes’ rule to update the
belief after every observation.

Formally, let xt be the state vector, and zt be the ob-
servation vector at time t. Define x1:t to be the state
sequence x1, . . . , xt and similarly for the observation se-
quence z1:t. Then the state estimation problem is concerned
with estimating xT |z1:T , or rather the complete distribution
Pr(xT |z1:T). By applying Bayes’ rule, simple arithmetic,
and assuming that xt is a sufficient statistic for the events
up to time t (i.e., the Markov assumption), we arrive at the
standard recursive Bayesian filtering equation,

Pr(xt|z1:t) = η Pr(zt|xt)∫
Pr(xt|xt−1) Pr(xt−1|z1:(t−1))dxt−1,

where η is a normalization constant. Given our previous
belief Pr(xt−1|z1:(t−1)), we can use this equation to find
our new belief after the latest observation. The equation re-
quires an observation model Pr(zt|xt) and a motion model2
Pr(xt|xt−1). Lastly, for a practical implementation the form
of the belief distribution Pr(xt|z1:t) needs to allow the inte-
gral in the Bayesian filtering equation to be computed easily.
For example, a Gaussian form results in a Kalman filter and
its assorted variants. A Monte Carlo approximation results
in a particle filter, which is the approach taken in this paper.

Particle Filters. Particle filters are a Monte Carlo ap-
proach to Bayesian filtering. Particle filters approximate the
probability distribution over the state using a set of samples
called particles. Each particle is a state vector, which we de-
note as x

(i)
t . Particle filters are flexible and powerful. They

can handle non-linear dynamics while representing arbitrary
belief distributions over the state variables. The accuracy
and computational cost of a particle filter scales with the
number of particles used.

2Often the motion model will include other terms such as a con-
trol input signal ut. Since our application does not involve any
additional signals we exclude them from our presentation.

The particle filter update is based on importance sam-
pling. Given a particle x

(i)
t−1 approximately sampled from

Pr(xt−1|z1:(t−1)) we want a new particle x
(i)
t approxi-

mately sampled from Pr(xt|z1:t). We do this by sam-
pling x̃

(i)
t from the candidate distribution Pr(xt|z1:(t−1))

and weighting it by the importance sampling correction
Pr(zt|x̃(i)

t). Sampling from the candidate distribution in-
volves sampling from the motion model Pr(xt|x(i)

t−1). The
weighting comes from the observation model. In order to
turn the samples from the candidate distribution into sam-
ples from our desired distribution we then select n particles,
with replacement, randomly in proportion to their weights.

Dual Estimation. Here we consider a simple case of dual
estimation where the system’s dynamics are parameterized
by some unknown value θ, which we need to simultane-
ously infer along with the system state (Doucet, de Freitas,
& Gordon 2000; Storvik 2002). We can do this through an
application of Rao-Blackwellized particle filters (RBPFs),
a hybrid state estimation technique that allows a portion of
the state variables to be modelled in a Monte Carlo fashion
while others are modelled in a parametric form. For each
particle, we additionally store a sufficient statistic s

(i)
t for

computing Pr(θ|x(i)
1:t). Sampling from the candidate distri-

bution now involves sampling θ̃ from Pr(θ|s(i)
t−1) and then

sampling x̃
(i)
t from Pr(xt|x(i)

t−1, θ̃). The sufficient statistic
for each candidate particle is updated for the new transition
s̃
(i)
t = UPDATE(s(i)

t−1, x
i
t−1 → x̃i

t). The weight from the
observation model and resampling is performed in the usual
fashion. As long as we choose Pr(θ) carefully with an ap-
propriate sufficient statistic this adds very little additional
running time to the basic particle filtering algorithm.

Kuhn Poker
Kuhn poker is a tiny, toy variant of poker for which a com-
plete game theoretic analysis exists (Kuhn 1950). The game
involves two players; two actions, bet and pass; and a three
card deck, containing a Jack (J), Queen (Q) and King (K).
Each player is dealt one card privately. The first player may
then either bet or pass. If the first player bets the second
player may either bet, causing a showdown, or pass, to fold.
If the first player passes, the second player can also pass,
causing a showdown, or bet, forcing the first player to make
a final decision of either bet, for a showdown, or pass, for a
fold. In the case of a fold, the non-folding player wins one
dollar from the folding player. In the case of a showdown,
the player with the higher card (King is high, Jack is low)
wins one dollar if neither bet, or two dollars if both players
bet.

With its introduction, Kuhn also presented a complete
game theoretic analysis of the game. Although there are
64 different pure strategies for each player, many of these
are dominated, i.e., another strategy has a higher expected
value against every possible strategy of the opponent. Af-
ter eliminating dominated strategies, the undominated strat-
egy space of player one can be parameterized by three pa-

rameters (α, β, γ), and player two by two parameters (η, ξ).
These parameters are all in the range [0, 1] and specify the
probability of betting in certain information sets. For ex-
ample, η is the probability the second player bets when fac-
ing a bet while holding the Queen, and ξ is the probabil-
ity the second player bets after a pass when holding the
Jack. The game has a whole continuum of Nash equilibria,
which can be written in this parameterization as , α = γ/3,
β = (1 + γ)/3, and η = ξ = 1/3. The value of the equi-
librium is −1/18 dollars per game. In other words, if either
player plays an equilibrium strategy then player one will lose
5.5 cents per game on average.

Although the equilibrium strategy guarantees a minimum
payoff regardless of the opponent’s strategy, greater payoffs
may still be possible. For example, suppose player two is
choosing randomly among undominated actions (i.e., η =
ξ = 0.5). If player one persists with an equilibrium strategy,
the loss of −1/18 per game is unchanged. If player one
instead responds by passing in the first round and betting
with a King or Queen when bet to (i.e., the best response), it
is no longer a losing game, with the expected payoff being
zero. Other deviations from the equilibrium strategy can be
exploited by even more. It is clear that an accurate model of
the opponent’s strategy can be used to great advantage.

Kuhn poker is an ideal domain for our investigation. It has
most of the strategic properties found in the real world vari-
ations of poker, yet a game theoretic analysis of the game is
tractable and exists. For instance, Kuhn preserves the abil-
ity to trap (i.e., acting as though your hand is weaker than it
truly is) and bluff (i.e., acting as though your hand is stronger
that it truly is). In Kuhn we bluff by betting with a Jack and
trap by passing with a King. In addition, players’ strate-
gies have a natural parameterization, and best-response is a
straightforward computation. Since these features are all ac-
tive research directions in full versions of poker, Kuhn poker
offers a clean domain for evaluating ideas. It has also al-
ready been a testbed for modelling research. Hoehn and col-
leagues (Hoehn et al. 2005) examined two modelling tech-
niques for exploitation of static opponents. We will return
to their results later.

Application to Kuhn Poker
We now describe how we adapt the particle filtering tech-
nique to Kuhn poker. To simplify things, we will restrict our-
selves to the situation of player one modelling player two.
To use particle filtering, we need to define five components:
the state variables, the observations, an observation model,
a motion model, and an initial belief.

For the state variables, one natural choice is simply
Kuhn’s own parameterization of the strategy space. This
choice involves two assumptions (i) our opponent will not
play outside the parameterization (i.e., does not play dom-
inated strategies), and (ii) our opponent’s future strategies
are conditionally independent of past strategies given their
current strategy (i.e., the Markov property). For our situa-
tion of modelling player two, this means the state vector xt

is two-dimensional with the values ηt and ξt.
As the particle filter is being updated after each hand, the

observation zt naturally consists of any known cards and

the betting sequence for that hand. The observation model
Pr(zt|ηt, ξt) comes from the definition of the game itself
and is a straightforward computation. With folded hands
we are still able to compute the likelihood by marginaliz-
ing over the unknown cards, which with our small deck is a
simple operation. An encoding of these probabilities can be
easily worked out by hand due to the small size of Kuhn and
its simple strategy parameterization.

The motion model must encode our belief about how our
opponents will change their strategies over time. In this pa-
per we will explore two naive types of motion models. The
first model assumes that players will change with probabil-
ity ρ to a random strategy after every hand. With probabil-
ity (1 − ρ) they continue using their previous strategy. We
call this a switching model. The second model assumes that
players’ strategies drift after each hand. The player gener-
ates their next strategy by sampling from a spherical Gaus-
sian distribution with a mean of the current strategy and vari-
ance σ2, restricting it to the unit square, and re-normalizing
appropriately. We also refer to a combined motion model
which involves both the ρ and σ parameters. In this model,
the player switches to a uniform random strategy at the end
of the hand with probability ρ and with probability (1 − ρ)
it drifts with variance σ2.

Finally, we use a uniform random distribution over the
state space as our initial belief Pr(x0).

Dual Estimation. As we have chosen motion models that
are parameterized, we can employ an RBPF to infer the mo-
tion model parameter, either ρ or σ. The only detail is spec-
ifying a prior on ρ and σ such that the posterior can be sum-
marized with a sufficient statistic. For ρ we can model the
prior and posterior as a beta distribution BETA(α, β) where
α and β are the sufficient statistics. These are updated easily
on observing a transition: if xt−1 = xt increment β, other-
wise increment α. For σ2 we model the prior and posterior
as an inverse-gamma distribution INV-GAMMA(v, w) where
v and w are the sufficient statistics. Because we use a spher-
ical Guassian, transitions are treated as one observation of
σ2 per dimension. On observing a transition the update adds
||xt − xt−1||2/2 to w and d/2 to v, where d is the number
of dimensions in the state vector (two, in our case).

Finally, we need to choose a prior belief for ρ or σ,
depending on the motion model in use. For the experi-
ments in the next section we fairly arbitrarily chose Pr(ρ) =
BETA(1, 30) and Pr(σ2) = INV-GAMMA(0.6, 0.00005).

Using Our Model. One final consideration is what to do
with our belief about the opponent’s strategy. The correct
Bayesian approach is to select the action that maximizes the
sum of all future expected utility given our belief. This is,
in general, an intractable computation. Instead, we opt for
the simpler greedy response to maximize expected utility for
the current hand given our belief. Because of the linearity of
the expected value in our chosen state variables the best-
response to our particle posterior is just the best-response to
the mean of the particles, which can be computed quickly.
We will simply play this best-response to our posterior dis-
tribution on every hand.

Table 1: Total expected winnings of Hoehn’s parameter es-
timation algorithm compared to our particle filter with a sta-
tionary motion model over 200 hands.

Opponent Particle Filter Parameter Estimation
O1 = (0.8, 0.29) 4.3 -9.0
O2 = (0.75, 0.8) 18.7 9.0
O3 = (0.67, 0.4) -2.7 -9.0
O4 = (0.17, 0.2) 2.5 3.0
O5 = (0.25, 0.17) -1.3 -2.5
O6 = (0.25, 0.67) 10.6 16.0

Results
We now evaluate our various modelling approaches against a
variety of opponents, both static and dynamic, and when our
prior beliefs are both correct and incorrect. This will help
us to understand both the effectiveness and robustness of the
approach. We begin by briefly examining static opponents
and then move on to dynamic opponents.

Static Opponents
Hoehn and colleagues’ previous work on opponent mod-
elling in Kuhn poker focused on static opponents (Hoehn
et al. 2005; Hoehn 2006). We begin by replicating one of
their experiments with our particle filtering approach. They
examined two modelling approaches: one using explicit pa-
rameter estimation with similar Bayesian roots as our ap-
proach and an implicit modelling technique similar to an
“experts” algorithm. For 200 hand matches, they found the
parameter estimation approach with a fixed 50 hand explo-
ration period worked the best. We played a particle fil-
ter modeller using a stationary motion model (since all of
the opponents were stationary) against their six static op-
ponents. Table 1 shows the results. The particle filter ap-
proach is competitive (performing better against some op-
ponents and worse against others) with Hoehn’s parameter
estimation approach. However, our approach was specifi-
cally designed to handle dynamic agents, so we now move
on to those opponents.

Dynamic Opponents
We compared various incarnations of the particle filter
against several simple dynamic agents. The simple agents
employ one of our two motion strategies described above:
either switching randomly after each hand or moving ac-
cording to the truncated spherical Gaussian drift after each
hand. The opponents use the same parameterization as the
model with ρ specifying the switching probability for the
switching opponents and σ the drift standard deviation for
the drift opponents. Nine specific opponents (4 switching, 4
drifting, and 1 stationary) were chosen, with the specific val-
ues of ρ and σ given in Table 2. These values were chosen
to cover opponents that moved both slowly and quickly.

We played various incarnations of particle filtering against
each of our nine opponents for 1000 hand matches. These
matches were repeated 5000 times for statistical confidence.
Recall that since these experiments involve player one mod-
elling player two, this is actually a “losing” situation for the

 A B C D E Avg
0

10

20

30

40

50

60

70

80
To

ta
l W

in
ni

ng
s

($
 o

ve
r 1

00
0

ha
nd

s)

A

A

A A A
A

B

B

B

B
B

B

C

C

C

C

C

C

D D

D

D

D

DE E
E

E

E

E

 A B C D E Avg
0

10

20

30

40

50

60

70

80

To
ta

l W
in

ni
ng

s
($

 o
ve

r 1
00

0
ha

nd
s)

A

A

A

A A

A

B
B

B

B
B

B

C C

C

C

C

C

D D
D

D

D

D

E E E

E

E

E

SWITCHING OPPONENTS DRIFTING OPPONENTS

Figure 1: Total winnings of vanilla particle filter modelling against different switching opponents (left) and drifting opponents
(right). Each bar represents a different setting of ρ (left) or σ (right) in the filter’s motion model.

Table 2: Opponent Legend

Motion Model
Opponent Switch (ρ) Drift (σ)

A 0.0 0.0
B 0.002 0.005
C 0.01 0.02
D 0.05 0.05
E 0.1 0.1

modelling player. If the modelling player instead played any
equilibrium strategy it would lose over $55 on average over
1000 hands. A less naive alternative would be to exploit the
fact that all of the described opponents are effectively ran-
dom. Without considering the knowledge of past play, they
will make uniformly random decisions between any undom-
inated choices on every round. The best-response to such
random play is an alternative static strategy that gains and
loses nothing on average against any of our opponents over
1000 hands. This makes zero a good baseline comparison
for which effective opponent modelling should rise above.

To provide further context to our results, we display two
exploitability lines for each opponent. The top line in each
graph is the expected exploitability if we knew our oppo-
nent’s strategy on every hand. This is the upper bound on
any agent’s expected performance. The bottom line is the
expected exploitability if we knew our opponent’s strategy
on their previous hand and their motion model. This baseline
is a more practical goal than the first exploitability line since
it is more sensitive to how quickly the particular opponent’s
strategy is changing. Both lines are, however, only loose up-

per bounds on possible performance, as it takes many hands
of Kuhn poker to estimate even a static opponent’s strategy
parameters.

Figure 1 gives a summary of the results of applying vari-
ous incarnations of particle filtering to these opponents. The
left graph shows the results for the switching opponents and
the right graph shows the results for the drift opponents. In
both graphs, the x-axis corresponds to the different oppo-
nents from Table 2. For each opponent the set of bars show
the average total winnings of particle filtering when using
the correct form of the motion model, but varying the pa-
rameter in that model (i.e., ρ or σ). The parameters took
on the same set of values as the opponents and so each bar
is labeled with the corresponding opponent’s identifier from
Table 2. We dissect this figure further below.

Known Motion Model. Consider the case when the oppo-
nent’s motion model is known and correct. Specifically, we
know whether the opponent is a switching or drifting player
as well as the exact probability of switching or the average
amount of drift. This corresponds to the bars of Figure 1
that match the opponent being played on the x-axis. Al-
though the winnings vary depending on the opponent, for all
nine opponents the correct model outperformed the baseline
static strategy which nets zero.

Realistically, knowing the exact parameterization of an-
other agent’s motion is unlikely. It is interesting to consider
how the approach performs if its model is wrong. This case
corresponds to the remaining bars in Figure 1. Naturally,
performance is higher when the opponent’s motion parame-
ter is close to the model’s parameter. The fall off for an in-
correct model, though, can be quite drastic, sometimes drop-
ping lower than our simple static baseline performance. For

 A B C D E Avg
0

10

20

30

40

50

60

70

80
To

ta
l W

in
ni

ng
s

($
 o

ve
r 1

00
0

ha
nd

s)

C

C

C

C

C

C

Rs

Rs

Rs

Rs

Rs

Rs

Rd

Rd

Rd

Rd

Rd

Rd

Rc

Rc

Rc

Rc

Rc

Rc

 A B C D E Avg
0

10

20

30

40

50

60

70

80

To
ta

l W
in

ni
ng

s
($

 o
ve

r 1
00

0
ha

nd
s)

C C

C

C

C

C

Rs Rs

Rs

Rs

Rs

Rs

Rd Rd

Rd

Rd

Rd

Rd

Rc Rc

Rc

Rc

Rc

Rc

SWITCHING OPPONENTS DRIFTING OPPONENTS

Figure 2: Total winnings of RBPF modelling against different switching opponents (left) and drifting opponents (right). The
bars labelled “C” come from Figure 1.

example, when playing switching opponent D, if we incor-
rectly believed the opponent was stationary (model A) we
would actually lose money on the match.3

It is interesting to note that when playing against a static
opponent (opponent A) it can be beneficial to model them as
if they moved with low probability or a slight drift (model
B). This phenomenon is common for particle filtering and is
a result of the bias that comes from using a finite number of
particles (Liu & West 2000).

Unknown Motion Parameters. A more realistic setting
is if the opponent’s motion parameters are not known. One
simple approach is to choose a fixed motion parameter that
works well even when incorrect. Consulting Figure 1, model
C for switching and drifting opponents has the highest aver-
age performance across the five opponents (see the bars on
the far right of the graph).

Alternatively, we could use a RBPF to infer this param-
eter of the motion model, as described in the previous sec-
tion. The results of this approach for both switching and
drifting opponents is shown in Figure 2. For each oppo-
nent we show a bar for the best static model from the pre-
vious results (model C) as well as three RBPF modellers.
Rs corresponds to using our prior over switching probabil-
ities (assuming no drift), Rd corresponds to using our prior
over drifting amounts (assuming no switching), and Rc cor-
responds to an independent prior over both forming a com-
bined model.

Examining model C and Rs in the left-hand graph of Fig-

3Although not shown, the loss is almost $22 for 1000 hands.
This is our worst case result, which is still considerably higher than
the equilibrium value of the game of –$55.

ure 2 we see that against most opponents Rs performs better
than the static model and never performs significantly worse.
Against highly switching opponent E it actually performs
quite a bit better than the static model as it can infer that
its opponent is switching rapidly. On average, although the
improvement is not dramatic, it is still suggesting that the
inference is providing some benefit. We see a similar result
against drifting opponents (comparing model C and Rd).

Taking matters one step further, we are not likely to have
even the form of our opponent’s motion correct. We can ob-
serve the effect of this error in Figure 2. Consider model Rd

in the left-hand graph and model Rs in the right-hand graph.
This shows the result of using a completely different form
to model our opponent’s motion. Although the model per-
forms worse than the correct model4, the loss is never more
than $9 over 1000 hands. This is relatively small consid-
ering the incorrect beliefs. More importantly, the average
performance using our dual estimation with the wrong form
is very similar to model C — the best average static model
with the correct form from Figure 1. Hence, dual estima-
tion may even compensate for using the wrong form of the
motion model.

Unknown Model. If even the form of the model is un-
known, but a small set of possible forms can be enumerated,
we can still employ dual estimation. Rc in Figure 2 shows
the results of a combined prior. The performance is rea-
sonably competitive with the correct model against all op-

4Note that Rd actually does worse than Rs at modelling drift
opponents with a high drift standard deviation. This is likely due
to the fact that for our choice of prior, the switching model actually
assigns a higher likelihood than the drift model to large strategy
changes.

ponents suggesting that even this lack of knowledge can be
accounted for with dual estimation.

Conclusion
In this paper we advocated the use of state estimation tech-
niques as a promising approach for modelling agents with
dynamic behavior. We described the application of parti-
cle filtering to the domain of Kuhn poker, and showed that
it could effectively model and exploit both static and dy-
namic opponents. We also explored the use of a dual esti-
mation technique for estimating both the opponent’s strategy
and dynamics model, demonstrating significant additional
robustness to incorrect beliefs.

Although this work has focused on the small domain of
Kuhn poker, we believe the techniques can be effectively
applied to much larger domains. Particle filters can be used
effectively in a large domain as long as agent behavior can
be represented with a relatively small number of parameters
and the motion and observation models can be computed ef-
ficiently. Although the size of the Texas Hold’em game tree
is intractably large, we are investigating parameterizations
of the full game that might be sufficient for describing and
exploiting a substantial range of human play. In addition,
it has already been shown that observation models can be
computed even for the full game of Texas Hold’em in real-
time (Southey et al. 2005).

In addition to applying these ideas to the full game, we
are also planning on investigating more interesting forms of
agent dynamics. Strong human players do not adapt their
play in a random fashion nor are they oblivious to recent
play. In the future we hope to investigate the effectiveness
and robustness of such dynamics models that may more ac-
curately capture likely human dynamics.

Acknowledgments
We would like to thank Rob Holte and Bret Hoehn for their
valuable insights, along with all of the members of the Uni-
versity of Alberta Computer Poker Research Group. This
research was supported by NSERC, iCore, and Alberta In-
genuity through the Alberta Ingenuity Centre for Machine
Learning.

References
Bererton, C. 2004. State estimation for game ai using par-
ticle filters. In AAAI workshop on challenges in game AI.
Billings, D.; Papp, D.; Schaeffer, J.; and Szafron, D. 1998.
Opponent modeling in poker. In Proceedings of the Fif-
teenth National Conference on Artificial Intelligence, 493–
498. Madison, WI: AAAI Press.
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximating
game-theoretic optimal strategies for full-scale po ker. In
Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence.
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D.

2004. Game tree search with adaptation in stochastic im-
perfect information games. In Computers and Games.
Bui, H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the abstract hidden markov model. Journal of
Artificial Intelligence Research 17:451–499.
Carmel, D., and Markovitch, S. 1996. Learning models
of intelligent agents. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence. Menlo Park,
CA: AAAI Press.
Davidson, A.; Billings, D.; Schaeffer, J.; and Szafron, D.
2000. Improved opponent modeling in poker. In Proceed-
ings of the 2000 International Conference on Artificial In-
telligence.
Doucet, A.; de Freitas, N.; and Gordon, N., eds. 2000.
Sequential Monte Carlo Methods in Practice. New York.
Springer-Verlag, New York.
Gilpin, A., and Sandholm, T. 2006. A competitive
texas hold’em poker player via automated abstraction and
real-time equilibrium computation. In Proceedings of
the Twenty-First National Conference on Artificial Intelli-
gence.
Han, K., and Veloso, M. 1999. Automated robot behavior
recognition applied to robotic soccer. In Proceedings of the
International Symposium of Robotics Research, 199–204.
Hoehn, B.; Southey, F.; Holte, R. C.; and Bulitko, V.
2005. Effective short-term opponent exploitation in sim-
plified poker. In Proceedings of the Twentieth National
Conference on Artificial Intelligence, 783–788.
Hoehn, B. 2006. The Effectiveness of Opponent Modelling
in a Small Imperfect Information Game. Ph.D. Disserta-
tion, University of Alberta.
Kautz, H. A. 1991. A formal theory of plan recognition and
its implementation. In Allen, J. F.; Kautz, H. A.; Pelavin,
R.; and Tenenberg, J., eds., Reasoning About Plans. Mor-
gan Kaufmann Publishers. 69–125.
Kuhn, H. W. 1950. A simplified two-person poker. Con-
tributions to the Theory of Games 1:97–103.
Liu, J., and West, M. 2000. Combined parameter and
state estimation in simulation-based filtering. In Doucet,
A.; de Freitas, N.; and Gordon, N., eds., Sequential Monte
Carlo Methods in Practice. New York. Springer-Verlag,
New York.
Ng, A. Y., and Russell, S. 2000. Algorithms for inverse
reinforcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, 663–670.
Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2005. Bayes’ bluff: Op-
ponent modelling in poker. In Proceedings of the Twenty-
First Conference on Uncertainty in Artificial Intelligence,
550–558.
Storvik, G. 2002. Particle filters for state-space models
with the presence of unknown static parameters. IEEE
Transactions on Signal Processing 50:281–289.

