
This is a preprint of an article that will appear in the Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Toronto, May 2010.

Using Counterfactual Regret Minimization to Create
Competitive Multiplayer Poker Agents

Nick Abou Risk
University of Alberta

Department of Computing Science
Edmonton, AB
780-492-5468

abourisk@cs.ualberta.ca

Duane Szafron
University of Alberta

Department of Computing Science
Edmonton, AB
780-492-5468

duane@cs.ualberta.ca

ABSTRACT
Games are used to evaluate and advance Multiagent and Artificial
Intelligence techniques. Most of these games are deterministic
with perfect information (e.g. Chess and Checkers). A
deterministic game has no chance element and in a perfect
information game, all information is visible to all players.
However, many real-world scenarios with competing agents are
stochastic (non-deterministic) with imperfect information. For
two-player zero-sum perfect recall games, a recent technique
called Counterfactual Regret Minimization (CFR) computes
strategies that are provably convergent to an ε-Nash equilibrium.
A Nash equilibrium strategy is useful in two-player games since it
maximizes its utility against a worst-case opponent. However, for
multiplayer (three or more player) games, we lose all theoretical
guarantees for CFR. However, we believe that CFR-generated
agents may perform well in multiplayer games. To test this
hypothesis, we used this technique to create several 3-player limit
Texas Hold’em poker agents and two of them placed first and
second in the 3-player event of the 2009 AAAI/IJCAI Computer
Poker Competition. We also demonstrate that good strategies can
be obtained by grafting sets of two-player subgame strategies to a
3-player base strategy after one of the players is eliminated.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence] Problem Solving, Control Methods,
and Search.

General Terms
Algorithms, Economics, Performance.

Keywords
Abstraction, Game Theory, Equilibrium, Computer Poker,
Counterfactual Regret Minimization.

1. INTRODUCTION
An extensive game [13] models interactions between multiple
autonomous agents by describing sequential decision-making
scenarios, even in the context of imperfect information and non-
determinism. A game tree represents the decisions. A non-

terminal choice node exists for each player’s possible decisions.
The directed edges leaving a choice node represent the legal
actions for that player. Each terminal node contains the utilities of
all players for one potential game result. Stochastic events
(Backgammon dice rolls or Poker cards) are represented as special
nodes, for a player called the chance player. The directed edges
leaving a chance node represent the possible chance outcomes.

Since extensive games can model a wide range of strategic
decision-making scenarios, they have been used to study poker.
Recent advances in computer poker have led to substantial
advancements in solving general two player zero-sum perfect
recall extensive games. Koller and Pfeffer [10] used linear
programming to solve games with 108 game states. Competitors in
the AAAI/IJCAI Computer Poker Competitions (denoted CP
Competitions) [7] developed alternate techniques (gradient-based
algorithms [4] [5] [6] and counterfactual regret minimization
(CFR) [18]) to find near equilibrium strategy profiles for two-
player, zero-sum, perfect recall games with 1012 game states.

Although these techniques compute near equilibrium strategy
profiles for large extensive games, two-player limit Texas
Hold’em (henceforth Hold’em) has 1018 game states [1] and two-
player no-limit Hold’em has 1071 game states [6]. Abstraction [1]
is used to reduce game size. Card abstraction combines similar
hands into buckets. Betting abstraction eliminates some betting
options. If a near equilibrium strategy is used to play in the un-
abstracted game, then translation [6] [14] is needed to select
actions in the un-abstracted game based on the abstract strategy.

Our goal is to compute winning strategies for large extensive
multiplayer games (more than two players). Specifically we
would like to derive winning strategies for 3-player limit
Hold’em, where we have computed the number of game states to
be 1024. Some research on multiplayer extensive games has been
done for a simple poker variant [4]. Ganzfried and Sandholm used
techniques, involving extensions of fictitious play to compute ε-
Nash equilibriums for a 3-player Poker game in [2] and [3]. They
found ε-Nash equilibria for 3-player no-limit jam/fold Texas
Hold’em, a one-round Poker game where each player has two
options: fold or bet all remaining chips. These techniques require
the ability to efficiently compute best responses. Due to the
reduced betting space, the 3-player jam/fold game is fairly small
and best responses can be computed efficiently. Unfortunately,
even an abstracted version of the 3-player limit Hold’em game is
too large to use this approach. We wish to use CFR to derive
winning strategies in three-player limit Hold’em. There are two
challenges. First, CFR is only guaranteed to converge to an ε-
Nash equilibrium strategy profile for two-player zero-sum perfect
recall games [18]. Second, even if CFR generates an ε-Nash

Cite as: Using Counterfactual Regret Minimization to Create Competitive
Multiplayer Poker Agents, Nick Abou Risk and Duane Szafron, Proc. of
9th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada,
pp. XXX-XXX. Copyright © 2010, International Foundation for
Autonomous Agents and Multiagent Systems (www.ifaamas.org). All
rights reserved.

 2

equilibrium strategy, there is no guarantee that this strategy will
perform well in a multiplayer game. We show that CFR can
compute strategies that are strong enough to win the 3-player limit
Hold’em events of the 2009 CP Competition and introduce a
strategy grafting approach that shows promise for helping to
address the scalability issue in computing multiplayer strategies.

2. BACKGROUND
2.1 Poker
Poker is a class of multiplayer card games with many variants.
Several similarities exist among the variants: they use a standard
playing card deck (4 suits of 13 ranks), there are betting rounds,
and the standard five-card hand ranking system is used to
determine winner(s). Hold’em is the most popular poker variant.

In Hold’em, the pot is the collection of all chips wagered during a
game. After each game finishes, a dealer button is moved
clockwise by one position around the table. The player sitting in
that position is designated the dealer or the button. The player to
the left of the dealer is called the small blind. The player to the
left of the small blind is called the big blind. There are four
betting rounds. The preflop is the first betting round. The small
blind and big blind place mandatory bets into the pot to give
players an incentive to play hands. Each player then receives two
private cards, face-down, called hole cards. The betting begins
with the player to the left of the big blind.
The possible actions in every betting round are:

• Bet by placing a wager into the pot or raise by matching the
outstanding bet and placing an extra bet into the pot. The
minimum size of the extra bet is the difference between the
two previous bet or raise sizes.

• Call by matching the amount of all outstanding bets or check
by passing when there is no outstanding bet.

• Fold by passing when there is an outstanding bet and forfeiting
the current game. A player who has folded can take no further
actions in the current game.

After the pre-flop, the betting begins with the nearest active (non-
folded) player to the dealer’s left. The flop (second round) begins
with three public community cards and ends with betting. The
turn (third round) and river (final round) have one community
card and betting. After the river betting, all active players enter a
showdown where the hands – the best five card combination of
each agent’s two hole cards and the five community cards – are
revealed and the agent with the highest ranking hand wins the pot
or splits the pot if several agents have equivalent hands.

There are several variants of Hold’em in two orthogonal
dimensions, number of players and betting structure. The heads-
up variant has two players. The dealer is the small blind and acts
first preflop and last postflop. The multiplayer variant has more
than two players (usually three to ten). The betting structure in
limit Hold’em has a fixed amount for each bet and raise, equal to
the big blind amount for the preflop and flop rounds and equal to
twice this amount for the turn and river. In limit, there is a cap of
four bets per player per round. No-limit is a variant in which bets
and raises can be any amount between the size of the big blind
and all of a player’s remaining chips. Betting all remaining chips
is called going all-in. We focus on multiplayer limit Hold’em.

2.2 Extensive Form Games
An informal description of an extensive game was given in the
introduction. A formal definition appears on page 200 of [13], and
an excerpt appears in [14], along with formal definitions for
information set, strategy profile, Nash equilibrium, ε-Nash
equilibrium, and the best response strategy to a strategy profile.
We provide more informal descriptions of these terms.

In an imperfect information game, there are game states that each
agent cannot differentiate due to hidden information (opponent
hole cards in poker). The set of all indistinguishable game states
for a given agent is called an information set for that agent. Each
choice node, in an imperfect information extensive game,
corresponds to an information set instead of a full game state. In
poker, there are many more game states than information sets.
In an extensive game, a strategy profile is a set of strategies, one
for each player. In poker, we represent a strategy as a probability
triple (f, c, r) at each information set, where f is the probability of
folding, c is the probability of checking or calling, and r is the
probability of betting or raising, with f+c+r = 1. A best response
is a strategy that obtains the highest possible utility against the set
of all other strategies in a strategy profile. A Nash equilibrium is a
strategy profile, in which no agent can increase its utility by
unilaterally changing its strategy. Each strategy from a Nash
equilibrium strategy profile is a best response to the other
strategies in that profile. A multiplayer Nash equilibrium does not
guarantee maximum utility, regardless of what strategies are
employed by other agents. If a single agent plays a strategy from
an equilibrium profile and the other agents deviate, the single
agent could obtain reduced or increased utility by deviating from
the strategy included in the equilibrium strategy profile.

Equilibrium strategy profiles are important since for two-player
zero-sum games they have additional properties. A zero-sum
game is one in which the utility for all players sums to zero. In a
two-player zero-sum game, every strategy for a given player in a
Nash equilibrium strategy profile has the same utility and is a best
response to all the strategies in equilibrium profiles for the other
player. This means that if a player plays a strategy from one
equilibrium strategy profile, the other player cannot gain utility by
playing a strategy from a different equilibrium strategy profile (or
any other strategy). For this reason we often refer to a strategy
from a Nash equilibrium strategy profile simply as a Nash
equilibrium strategy. This result is not true with more than two
players [12] or if the game is not zero-sum. Computing an exact
Nash equilibrium for a large extensive game such as poker is
infeasible, even with extensive abstraction. Thus, we rely on
finding approximations to Nash equilibria. An ε-Nash equilibrium
is a strategy profile, in which no player can increase its utility by
more than ε by unilaterally changing its strategy.

Card abstraction is the most popular way to reduce the size of the
game tree. The simplest way to perform card abstraction is to
apply a metric to poker hands such as hand strength (E[HS]) and
to group hands that have similar metric values into the same
bucket [1]. Percentile bucketing places an approximately equal
number of hands into each bucket. Alternately, uniform bucketing
uniformly partitions the metric interval [0, 1] into buckets. With N
buckets, all hands with metric value in the [0, 1/N) range are
placed in the same bucket, all hands with value in the [1/N, 2/N)
range are together, and so on. In poker, there are many hands that
are not very strong on a given round but have the potential of
making a very strong hand on a future round (e.g. a straight or

 3

flush). It turns out that a very effective alternative metric to E[HS]
which intrinsically incorporates potential is called expected hand
strength squared, E[HS2][8]. This metric, which is also in [0, 1],
computes the expected value of the square of the hand strength.

A card game is transformed into a bucket game and all hands in
the same bucket are played the same way. The information sets
represent buckets instead of cards. If the abstraction is constructed
so that all players can recall all previous actions at each
information set, the abstraction is called perfect recall. With
perfect recall, and N buckets per round, we have N bucket
sequences preflop, N2 bucket sequences on the flop, N3 bucket
sequences on the turn, and N4 bucket sequences on the river. With
a 2-bucket abstraction, this results in 24 = 16 bucket sequences on
the river. To reduce the size of the game tree, imperfect recall
abstraction can be applied so that information sets from different
buckets lead to common information sets in subsequent rounds.
The game tree becomes a directed acyclic graph, but is reduced in
size. In the extreme, the buckets of all previous rounds are
forgotten and only the betting sequence and current betting
round’s bucket is remembered. For example, instead of a 2-bucket
perfect recall abstraction, a game tree of about the same size could
be created using a 16-bucket imperfect recall abstraction.

2.3 Counterfactual Regret Minimization
Regret (opportunity cost) is the difference between the highest
utility attainable (over all actions) and the utility of the action that
was taken. Counterfactual regret minimization (CFR) minimizes
the positive immediate counterfactual regret at each information
set. Zinkevich et al. [18] show that minimizing positive immediate
counterfactual regret, minimizes the average overall regret and
that in a two-player zero-sum perfect recall game, minimizing
both players’ average overall regret leads to an ε-Nash
equilibrium strategy profile. Johanson [8] provides details on the
implementation of CFR for general two-player zero-sum perfect
recall games and for heads-up poker. CFR was a breakthrough for
computing ε-Nash equilibrium strategy profiles for imperfect
information games since the memory scales with the number of
information sets instead of the number of game states, which is
true for sequence-form solvers [9]. Due to these savings,
Zinkevich et al. [18] were able to solve abstract poker games two
orders of magnitude larger than previously solved. Another useful
property of CFR is that it can compute an abstract game best
response against a static opponent [8].
While the theoretical guarantees of CFR are limited to two-player
zero-sum perfect recall games, CFR is quite robust in generating
strong strategy profiles in two-player games when two of these
restrictions (perfect recall and zero-sum) are relaxed. Some of the
strongest heads-up limit Hold’em agents were created with
imperfect recall. For example, Hyperborean08Limit, an imperfect
recall agent, won the limit elimination (equilibrium) event in the
2008 CP Competition and placed second in the bankroll event.
The imperfect recall agent, Hyperborean08NoLimit, won both the
no-limit elimination and bankroll events in 2008. Strong heads-up
limit Hold’em agents were also created for nonzero-sum games,
with the agent obtaining bonuses for winning hands. These agents
have little exploitability and actually perform better against
human players (due to the agents’ tendency to be aggressive and
human players’ tendency to fold too often). The agents that played
in both of the Man-Machine competitions were computed with
CFR using nonzero-sum abstract games [15].

CFR also has no theoretical guarantees for multiplayer zero-sum
games and, before this research, no results had been reported on
applying CFR to large multiplayer games. We show in this paper
that CFR is also capable of generating winning computer poker
agents for multiplayer games. CFR generated a three-player
imperfect recall agent and a three-player perfect recall agent that
placed first and second respectively in the 2009 CP Competition.

2.4 Equilibrium in a Multiplayer Game
Two player zero-sum games have convenient theoretical
guarantees. In a two player zero-sum game, if one agent plays a
strategy from a Nash equilibrium strategy profile, there is no
strategy that the other agent can select that reduces the first
agent’s utility. However, in a multiplayer game, if one agent plays
a strategy from a Nash equilibrium strategy profile, the other set
of agents may play strategies that reduce the first agent’s utility.
Consider the following simple game:

• Three players ante 1 unit each.

• Each player has a coin and privately chooses heads or tails.

• After all three players have acted they reveal their coins.

• If all three players chose the same side, the antes are returned.

• If exactly two players have chosen the same side, they win and
take back their initial ante and split the loser’s ante.

All three agents choosing heads or tails with probability ½ is a
Nash equilibrium strategy profile. Player i’s strategy is σi = (P(H),
P(T)) where P(H) is the probability of choosing heads and P(T) is
the probability of choosing tails. Fix σ1 = σ2 =(½, ½) and let σ3
=(p, 1-p). The utility of player 3 is u = p×EV(H) + (1-p)×EV(T)
= 0. Regardless of the strategy chosen by player 3, the same
utility is obtained so deviating from σ3 = (½, ½) does not
unilaterally improve player 3’s utility. The set of strategies σ1 = σ2
= σ3 = (½, ½) is a Nash equilibrium profile. Let player 3 select the
strategy σ3 =(½, ½) and the other players change to the static
strategies of always-heads, σ1 = σ2 =(1, 0). There are two possible
outcomes, HHH and HHT, with equal probabilities of ½. When
player 3 selects heads, all three players take back their antes.
When player 3 selects tails the ante is lost. Player 3’s utility is u =
½×(0) + ½×(-1) = -½. However, if player 3 changes its strategy
to always select heads, the utility increases to 0. Playing the
strategy σ3 =(½, ½), which is part of a Nash equilibrium strategy
profile is disastrous when the other two players both deviate from
the equilibrium strategy profile. Playing an equilibrium strategy in
a multiplayer game does not maximize the agent’s worst case
utility, as it does in the two-player zero-sum game.

3. CFR FOR MULTIPLAYER GAMES
There is no guarantee that CFR will generate a multiplayer ε-Nash
equilibrium strategy profile. As illustrated by the matching-coins
game, even if CFR could compute a multiplayer equilibrium
strategy profile, there is no guarantee that one of the strategies
would be robust against arbitrary opponents. Since CFR takes
days or weeks on abstracted Hold’em games, we use small games
to quickly evaluate new ideas. However, we require these small
games to exhibit the properties of large poker games, such as
stochasticity, hidden information, and action-based utility. Kuhn
and Leduc Hold’em are small heads-up poker games that we
generalized to 3-player games to help determine whether CFR is a
viable option for generating robust multiplayer strategies.

 4

3.1 3-player Kuhn Poker
Kuhn invented a simple one-round one-card poker game in 1950
so that the hand-computed optimal solution could be studied [11].
Kuhn poker includes bluffing, inducing bluffs, and value betting.
In this paper, we have extended the definition of Kuhn to three
players and the depth 6 betting tree has 25 game nodes:

• Each player antes 1 chip each before the cards are dealt.

• Each player is dealt one private card.

• The deck has 4 cards with ranking K > Q > J > T (no ties).

• There is one betting round with a 1-bet cap.

• If there is no outstanding bet, a player can check or bet 1 chip.

• If there is an outstanding bet, a player can fold or call.

3.2 3-Player Leduc Hold’em
Kuhn poker ignores many important aspects of real poker variants
such as multi-round play, community cards, rounds with different
bet sizes, split pots, and raising. Therefore, a small heads-up
game, called Leduc Hold’em, which includes all of these
important properties, was created [16]. Here, we have extended
the game of Leduc Hold’em to three players.

• Each player antes 1 chip each before the cards are dealt.

• Each player is dealt one private card.

• The deck consists of 4 ranks and 2 suits (Td, Tc, Jd, Jc, Qd,
Qc, Kd, Kc) with ranking K > Q > J > T.

• There are two betting rounds, each with a 2-bet cap and each
betting round (the preflop and the flop) has a different bet size:
preflop bets are 2 chips and flop bets are 4 chips.

• One community card is dealt before the flop betting.

• After the flop betting, active players showdown. The pot is
split if two players tie with the best hand.

• A paired hand beats an unpaired hand, if there are no pairs,
high card wins and flushes and straights do not exist.

3.3 Evaluation of 3-Player CFR Strategies
Let σ = (σ1, σ2, σ3) be a CFR generated 3-player strategy profile
and σ-i be all strategies in σ except σi. If σ is an ε-Nash equilibrium
strategy profile, then no player, i, can gain more than ε by
deviating from σi, while σ-i remains fixed. By fixing σ-i, CFR can
generate a best response, σi

BR, to σ-i. Doing so for every player
results in a best response, σBR = (σ1

BR, σ2
BR, σ3

BR), to the CFR
strategy profile, σ. Here is a method to determine whether a CFR
generated strategy profile is an ε-Nash equilibrium:

1. Generate a strategy profile σ = (σ1, σ2, σ3) using CFR.

2. Compute a best response strategy, σi
BR to σ-i using CFR for

each i = 1, 2, 3.
3. Combine the three computed best responses into a best

response strategy profile, σBR = (σ1
BR, σ2

BR, σ3
BR).

4. Compute the utilities for each position of the strategy profile
σ by playing three σ’s against each other.

5. Compute the utilities of the best response in each position by
playing one σBR against two σ’s.

6. Compare σBR’s utilities in each position to σ’s utilities to
determine how much extra BR wins in each position.

7. If the best response, σBR, does not improve by more than ε
averaged over all positions then σ is an ε-Nash equilibrium.

We used 108 iterations of CFR (no theoretical guarantee of
convergence). We found that CFR did derive an ε-Nash
equilibrium strategy for 3-player Kuhn, but it did not derive an ε-
Nash equilibrium strategy for the more complex 3-player Leduc.
Table 1 and Table 2 show the utilities obtained by following the
7-step method for both games. CFR was used to create both the
CFR strategy profile, σ and each BR strategy, σi

BR shown in the
Tables. The utilities were then computed using a tool that walks
the whole game tree applying the probability triples in each
strategy at each node in the tree. The CFR row plays three σ
strategies against each other. The BR row plays the best response,
σi

BR against the σ-i strategies. The final row is the difference
between the utility of the BR row and the CFR row.

Table 1. Utilities for 3-player Kuhn (antes/hand)

 Player 1 Player 2 Player 3

CFR -0.0544877 -0.0418710 +0.0963587

BR -0.0543373 -0.0414071 +0.1008150

BR - CFR +0.0001504 +0.0004639 +0.0044563

For Kuhn, the best response does not gain much utility by
deviating from the CFR solution, so it is an ε-Nash equilibrium
with ε = +0.0016902 (average of the final row of Table 1). This is
an interesting result since there is currently no theory suggesting
that CFR should produce an equilibrium for multiplayer games.

Table 2. Utilities for 3-player Leduc (antes/hand)

 Player 1 Player 2 Player 3

CFR -0.243451 -0.1960510 +0.439502

BR -0.124749 -0.0656892 +0.550788

BR - CFR +0.118702 +0.1303618 +0.111286

However, CFR does not produce an ε-Nash equilibrium for Leduc
(at least in 108 iterations). The hope of using CFR to generate ε-
Nash equilibrium for more complex games has failed. It is
possible that the CFR Leduc strategy is strong against two
arbitrary opponents, but to verify this conjecture, we would need
to play it against a suite of benchmark agents. If we are going to
do that, we might as well play 3-player limit Hold’em directly
since our goal is to produce strong agents for that game.

4. CFR FOR MULTIPLAYER HOLD’EM
A best response provides a metric for how much an agent could
improve by unilaterally deviating from its strategy. CFR can
compute an abstract game best response for heads-up limit
Hold’em. However, computing an abstract game best response for
a multiplayer poker game is infeasible due to its enormous size.
Generating a CFR best response strategy takes N CFR runs for an

 5

N-player game. Performing one CFR run (for a relatively low
number of iterations) on a 3-player game takes months. Even if
the best response computation was feasible, it would provide no
indication of the strength of an agent against two arbitrary
opponents. Thus, we evaluate the strength of the multiplayer
agents by playing millions of poker hands against benchmark
agents. This method of using tournament play (or cross-play) to
rank agents is also used in the annual CP Competition.

4.1 Benchmark Agents
To evaluate an agent against other agents, millions of hands must
be played between them. Relatively little research has been
dedicated to multiplayer poker games so there are very few
benchmark agents. Poki is a poker agent that is capable of playing
heads-up and multiplayer games [1]. In fact, Poki won the
multiplayer limit event of the 2008 CP Competition. Poki uses a
collection of technologies including an expert system preflop, a
formula for mapping hand strength and potential to actions
postflop, and Monte Carlo simulations designed to estimate the
most profitable action to take against an opponent model.

A chump is an agent that disregards its cards and takes an action
based on the same distribution at every decision point. Since Poki
was the only benchmark agent we had available for multiplayer,
we also used chumps to evaluate our newly created agents. An
Always-Fold chump has a probability triple of (f, c, r) = (1, 0, 0)
and always folds on its first action. An Always-Call chump has a
probability triple of (0, 1, 0) and always checks if there is no
outstanding bet and calls otherwise. An Always-Raise chump has
a probability triple of (0, 0, 1) and always bets if there is no
outstanding bet and raises otherwise. The final chump we used for
evaluating our 3-player agents is called Probe and it has a
probability triple of (0, 0.5, 0.5) so it chooses equally between
check/call and bet/raise at every action. We generated a perfect
recall and an imperfect recall CFR agent, using card abstractions
based on percentile bucketing of the E[HS2] metric.

4.2 PR2, a Perfect Recall CFR Agent
Due to the enormous size of the 3-player limit Hold’em game tree,
there are very few options available in terms of bucketing. In fact,
it takes over 32 GB of RAM to store the game tree with no betting
abstractions and only two buckets per round. That is, on every
round, the agent can only tell if its hand strength squared
compared to a random hand is above or below average!

We ran CFR on a 2-bucket perfect recall abstraction for 20
million iterations on a 32 GB RAM machine and called the agent
PR2. However, we were required to reduce the betting on the river
from a 4-bet cap to a 3-bet cap to fit the abstraction into memory.
In the event that PR2 falls off-tree while playing the real game
(i.e. the betting is capped on the river), PR2 simply calls. The 20
million iteration CFR computation took about three weeks to run.
Since 100 million (108) iterations would require 15 weeks of
computation and since we had the 32 GB RAM machine for a
limited time, only 20 million iterations were completed.

4.3 IR16, an Imperfect Recall CFR Agent
Several weeks after starting the PR2 computation, we gained
access to a 64 GB RAM machine for a limited time. We decided
to create a 16-bucket imperfect recall abstraction for the 3-player
game to compare the strength of this abstraction with the similar
sized 2-bucket perfect recall abstraction. At each round all
previous bucketing information is lost.

We used CFR on this abstraction for 20 million iterations
(corresponding to the number of iterations used for PR2) and
named the agent IR16S (S – for short). We also continued the
CFR computation until the start of the 2009 CP Competition. One
of the agents submitted to the 2009 CP Competition completed 43
million iterations and was named IR16L (L – for long). With
access to the 64 GB RAM machine, we were able to include a 4-
bet cap on the river as compared to PR2’s 3-bet cap. The CFR
computation took about one month to reach 43 million iterations.

4.4 Evaluation of CFR Hold’em Strategies
To reduce variance in a match between three agents A, B, and C,
we want each agent to play in the same situation (i.e. same cards,
position and relative position). We have 3! = 6 permutations of
agents for every set of pre-generated cards since there are three
positions (button, small blind, big blind) and two relative position
orderings: ABC, BCA, CAB, ACB, CBA and BAC. We average
each player’s win rate over all of these permutations to get a win
rate for that particular matchup.

Agent strength can be evaluated in several different ways. We use
the technique used in the annual CP Competition. A 3-player
tournament with N agents consists of NC3 distinct 3-player
matchups where each agent plays against N-1C2 pairs of opponents.
In a bankroll event, all agents are simply ranked based on their
total win rate against all pairs of opponents. The aim of this event
is to determine which agent exploits its opponents by the most. In
an elimination event, the winner is determined by removing the
worst-ranked agent from the bankroll event and determining a
new bankroll ranking assuming the worst agent had not entered.
This process continues recursively (always eliminating the worst
remaining agent) until exactly three agents remain in which case
they are ranked by win rate in that last matchup. The aim of this
event is to determine which agent is the most robust or least
exploitable, so it is sometimes referred to as an equilibrium event.
The outcome of both of these events can be determined with
exactly the same set of tournament hand data (i.e. it is not
necessary to run two separate tournaments). It is also not
necessary to run a new event once an agent is eliminated from the
elimination event as we can simply compute new win rates after
removing all matchups involving the eliminated agent.

4.5 Experimental Results
A tournament was run with seven 3-player limit Hold’em agents:
Always-Call (AC), Probe, Always-Raise (AR), Poki, PR2, IR16S,
IR16L. This tournament consisted of 7C3 = 35 matchups, where
each player played against 6C2 = 15 pairs of opponents. Each
matchup consisted of 1.2 million hands (6 positional permutations
of 200,000 hands). The bankroll results are displayed in Table 3.
Each entry is the win rate of the column agent versus the two row
agents. The final row is the overall win rate of the column agent
against all pairs of opponents; this is the metric used to evaluate
and rank the agents. All win rates are in millibets (10-3 x the size
of the big blind) per hand (mb/h). For comparison, the Always-
Fold strategy loses 500 mb/h in a 3-player game against any two
agents who do not fold at the start. We computed 95% confidence
intervals for each matchup. The size of the confidence intervals
varied from 14 to 78 mb/h. However, the largest intervals ±39
mb/h only occurred in the matches with Always-Raise and Probe
present. Most of the confidence intervals were within ±10 mb/h.

 6

Table 3. The cross-table for a 7-agent 3-player tournament.
Units are mb/h and overall win rates in the last row are within

±6 mb/h with 95% confidence

 PR2 IR16L IR16S Poki AR Probe AC

Poki,AC 398 497 507 - -597 -467 -
Poki, AR 784 493 479 - - 71 -601

Poki, Probe 639 575 575 - 80 - -469
Poki, PR2 - 97 97 - -1054 -839 -972

Poki, IR16S -32 - 55 - -816 -765 -1042
Poki, IR16L -34 53 - - -797 -772 -1046

AC, AR 1086 428 441 1197 - -3 -
AC, Probe 899 737 731 936 6 - -
AC, PR2 - 510 516 574 -545 -448 -

AC, IR16S 401 - 503 545 -216 -369 -
AC, IR16L 393 489 - 540 -218 -364 -
AR, Probe 734 -636 -725 -150 - - -4
AR, PR2 - 380 355 270 - -371 -541

AR, IR16S 759 - 393 323 - 324 -212
AR, IR16L 763 413 - 318 - 373 -223
Probe, PR2 - 506 506 200 -363 - -450

Probe, IR16S 624 - 515 190 312 - -368
Probe, IR16L 631 519 - 198 352 - -367
PR2, IR16S - - 50 -65 -1139 -1130 -911
PR2, IR16L - 48 - -63 -1118 -1137 -908

IR16S, IR16L -39 - - -108 -805 -1034 -992
Overall 530 341 333 327 -461 -462 -607

From Table 3, the ranking of agents in the bankroll event is PR2,
IR16S, IR16L, Poki, Always-Raise, Probe and Always-Call. From
Table 3, we determine the rankings of the top three agents in the
elimination event, by eliminating the worst performer recursively.
The elimination event winning order is: IR16L, IR16S, PR2, Poki,
Probe, Always-Raise, and Always-Call. All three of our new
CFR-generated agents are ranked in the top three for both events
and out-perform the 2008 CPC multiplayer champion, Poki. PR2
is the best exploitative player by exploiting the chumps. PR2
remains the top player, when Always-Call is removed, but falls to
third place when Always-Raise is removed, since there is only a
single chump left (Probe) to exploit. The final round of the
elimination event has IR16L first (50 mb/h), IR16S second (48
mb/h) and PR2 third (-98 mb/h).

The IR16 agents are the least exploited agents, only losing chips
in one matchup, where they are between Always-Raise and Probe.
Poki also loses the most against Always-Raise and Probe. On the
other hand, PR2 is the only agent to win in this matchup and does
so by a substantial amount. Our intuitive assumption that the 2-
bucket abstraction would play very poorly was incorrect. Even
after 20 million iterations, a fairly strong 3-player agent can be
created, although 100 million (108) CFR iterations are typically
used for a 5-bucket heads-up limit Hold’em abstraction [18] to
reduce ε to 3 mb/h. After about twice as many iterations (43
million), there seems to be little gain. Perhaps the IR16L agent is
trading off exploitative default play with more unexploitable play.

5. USING HEADS-UP EXPERTS
Heads-up situations arise frequently in 3-player limit Hold’em
after one agent folds. Since the resulting heads-up subgame is
two-player, zero-sum, and perfect recall, we can use CFR and are

guaranteed to find an ε-Nash equilibrium in the subgame. Since
the heads-up subtree is much smaller than the corresponding 3-
player tree, strategies using much larger abstractions can be used.
We call the agents resulting from the CFR solution to these heads-
up subgames, heads-up experts (HUEs). We must assume some
distribution of buckets is propagated to a HUE subtree by each of
the agents. We then solve the corresponding heads-up subgame.
Later, we substitute this strategy in place of the 3-player agent’s
strategy when the HUE subtree is reached during a match.

Columns 2 to 5 of Table 4 show empirical frequencies of bet
sequences (column 1) that end in a preflop fold (columns 6 to 8
are used in Section 5.2). The agents used were: Poki, PR2, IR16S,
and IR16L. The frequencies were computed from 1.2 million
hands of self-play between three identical agents and rounded to
two decimal places. Some entries not included in the table (such
as crcf) were also non-zero, but rounded to 0.00% and one entry
(rrrf) actually occurred 0.01% of the time for IR16S and IR16L.

Table 4. Empirical frequencies of the most common bet
sequences ending in a fold for 1.2 million hands of self-play

between three identical agents using four different strategies

sequence Poki PR2 IR16S IR16L btn sb bb

f 20.67 29.27 36.03 36.14 1-2 - -
rf 9.55 25.60 26.40 26.37 4-5 1-4 -
cf 16.43 0.02 0.09 0.04 3 1-2 -
rrf 0.54 1.51 6.64 6.61 3-5 5 1-4
rcf 1.52 9.96 0.66 0.65 3-5 4 1-2
crf 3.35 0.01 0.04 0.02 3 5 1-2

Total 52.05 66.38 69.87 69.84

About 50% to 70% of the hands resulted in heads-up play before
the flop. The most frequent bet sequences with a preflop fold are:
f, rf, cf, rrf, rcf, and crf. We conjectured that creating experts for
these common subgame situations might provide improvements.

However, this strategy-knitting approach faces the same potential
problems faced by PsOpti, where different strategies were knit
together [1]. PsOpti0 used an always-call policy preflop and an
appended 3-round postflop model that assumed uniform
distributions postflop. PsOpti1 used a 1-round preflop model and
an appended postflop model solved for a given pot-size – there are
four pot-sizes that reach the flop corresponding to the number of
raises – and assuming a uniform distribution of hands for both
players. Finally, PsOpti2 used the distributions on the flop from a
3-round preflop model as input to seven 3-round postflop models
(corresponding to the seven preflop betting sequences reaching
the flop). As shown by experimental data, PsOpti1 out-performed
PsOpti2, which out-performed PsOpti0. However, the authors
point out that several bugs in PsOpti2 were discovered after the
data was collected and claim that a bug-free PsOpti2 should result
in the strongest player among the three presented.

We are not proposing to knit together pre-flop and post-flop
strategies, but must still be aware of strategy connection
problems. Instead, we are proposing to use a static strategy such
as IR16L for the full game when a fold does not occur as one of
the betting sequences shown in column 1 of Table 4. However,
when a sequence from Table 4 does occur, we switch to a HUE
strategy for all subsequent actions in that game. In the next sub-
section we explain how we knit the strategies together.

 7

5.1 Strategy Seeding
We need to determine a reasonable strategy that will be used to
“seed” the HUE subtrees, since each subtree does not start at the
beginning of a two-player game. Two issues are important. First,
there may be some extra money in the pot at the start of each HUE
strategy compared to a normal two-player Hold’em game and
second, we cannot necessarily assume a uniform distribution of
cards, since some actions have already been taken.

We generated 2-player zero-sum CFR strategies with two
different strategy seedings for each of the 6 betting sequences
listed in Table 4. The first seeding is uniform seeding, where we
assume that the players take all of the actions in the forced action
sequence 100% of the time. That is, the distribution over hands or
buckets of all active players is completely uniform. The second is
an expert seeding. Instead of uniformly seeding the strategies, we
devise a sensible preflop strategy based on expert knowledge
(advice from poker professionals and/or based on strong computer
agents). When using a one-dimensional metric to bucket hands, it
is conventional to place hands with higher metric values in higher
numbered buckets. We adopt this convention here; namely, we
have a bucket ranking 5 > 4 > 3 > 2 > 1 for our 5-bucket E[HS2]
abstraction. We used pure prior distributions: the probability of
taking an action in a bucket is either 0 or 1. The highest (i.e.
strongest) buckets are used for raise actions, the next highest
buckets are used for call actions, and the lowest buckets are
folded. Columns 6 to 8 in Table 4, shows the expert knowledge
seeding. Each entry indicates which of the 5 buckets will be used
for the sequence in each position. For example, the rrf row
indicates that the button (btn) will make the first raise with hands
in buckets 3-5. The small blind (sb) will make the second raise
only with a hand in bucket 5 and the big blind will make the fold
action with a hand in buckets 1-4. For uniform seeding, bucket
ranges in Table 4 were replaced by the range 1-5.

5.2 Experimental Results
We conducted a 7-agent tournament to evaluate the HUE agents
and did not include any chumps (Always-Call, Always-Raise, and
Probe). There were two reasons: removing chumps should create a
playing field more comparable to those in the annual CP
Competition and including just three more entrants would result in
10C3 = 120 three-agent matchups instead of 35. The tournament
used Poki, PR2, UnM2 (PR2 with uniform seeded HUEs), ExM2
(PR2 with expert seeded HUEs), IR16, Un16 (IR16L with
uniform seeded HUEs), Ex16 (IR16L with expert seeded HUEs).
Only IR16L (IR16 run for 43 million CFR iterations) was entered
into this tournament since the results of IR16S and IR16L were
quite similar in Section 4.5 and including both of the IR16 agents
in the tournament would have created many more matchups.
Therefore all three of the IR16 agents use IR16L as the base
player.

The bankroll results are displayed in Table 5. The format is
similar to Table 3. All individual matchup win rates are within ±9
mb/h with 95% confidence. The confidence of the overall win
rates are ±6 mb/h with 95% confidence. Recall, the Always-Fold
strategy loses 500 mb/h in a 3-player game. The rankings for the
bankroll event are: IR16, Ex16, Un16, ExM2, UnM2, PR2, and
Poki. The rankings for both the elimination and bankroll events
were identical. In the tournament results from Section 4.5, PR2
won the bankroll event as it exploited chumps more than any
other agent. However, there were only strong agents in this
tournament. The top two bankroll players (IR16 and Exp16) win

in every matchup they participate in, while the opposite is true for
the worst two bankroll players (Poki and PR2). Although poker is
a non-transitive game, Table 5 shows trends. As you move across
the columns of a given row (corresponding to lower ranked
bankroll players), the win rates decrease monotonically with only
a few exceptions. Having all AI agents (instead of including
chumps) causes the results to be much more predictable. Another
trend is that every agent loses the most against the top two
bankroll players and every agent wins the most against the worst
two bankroll players. The regularity of these trends is the reason
we obtain the same rankings for both events.

The expert seeded HUEs did better than the uniform seeded HUEs
when applied to both PR2 and IR16 so the assumption that an
opponent holds a completely random hand after several betting
actions is a poor one. PR2’s performance was improved by adding
HUEs while IR16 performs worse. This demonstrates just how
effective CFR can be for generating very abstract, imperfect
recall, 3-player agents despite having no theoretical guarantees.
Our intention of incorporating and testing the HUEs was to
determine whether fairly abstract and naively created strategies
had the potential to improve play. Better strategy seeding is
possible. Due to timing constraints and machine availability, we
generated the HUEs and base players simultaneously so we were
unable to use the base players’ strategies to seed their own HUEs.
Seeding each HUE with the 3-player base strategy it will be used
with should produce better results.

Table 5. The cross-table for a 7-agent 3-player tournament
with four HUEs. Units are mb/h and overall win rates in the

last row are within ±6 mb/h with 95% confidence

 IR16 Ex16 Un16 ExM2 UnM2 PR2 Poki

Poki, PR2 95 86 70 60 35 - -
Poki, UnM2 84 78 54 50 - -1 -
Poki, ExM2 63 63 43 - 14 -10 -
Poki, IR16 - 50 19 29 -9 -30 -
Poki, Un16 70 67 - 37 7 -20 -
Poki, Ex16 56 - 22 30 -6 -27 -
PR2, UnM2 81 71 57 28 - - -34
PR2, ExM2 65 58 49 - 4 - -50
PR2, IR16 - 39 23 2 -25 - -65
PR2, Un16 60 53 - 5 -14 - -50
PR2, Ex16 51 - 28 4 -19 - -59

UnM2, ExM2 55 45 39 - - -31 -64
UnM2, IR16 - 30 9 -13 - -57 -75
UnM2, Un16 53 42 - -6 - -42 -60
UnM2, Un16 40 - 13 -10 - -53 -72
ExM2, IR16 - 15 -2 - -43 -67 -92
ExM2, Un16 34 25 - - -33 -53 -80
ExM2, Un16 22 - 0 - -35 -62 -92
IR16, Un16 - 9 - -32 -61 -83 -89
IR16, Ex16 - - -29 -36 -69 -90 -106
Un16, Ex16 20 - - -25 -55 -81 -90

Overall 57 49 26 8 -21 -47 -72

6. COMPETITION RESULTS
The results of the 2009 CP Competition were announced at the
IJCAI conference on July 15, 2009 in Pasadena, California. There
were 14 competitors (10 universities and 4 independents) from 7
different countries and 25 agents submitted (13 for heads-up limit,
5 for heads-up no-limit, and 7 for ring limit). The ring limit events

 8

this year were 3-player limit Hold’em. Each 3-player event used
660,000 hands (6 position permutations by 110 matches of 1000
hands). There were 7 agents submitted from 5 teams denoted:
IR16 (Hyperborean-Eqm U. of Alberta), Ex16 (Hyperborean-BR
U. of Alberta), dpp (Technical U. Darmstadt), dcu (dcu3pl Dublin
City U.), blu (Bluechip U. of Michigan), cmu (CMURingLimit
Carnegie Mellon U.) and ak (akuma Technical U. Darmstadt).
Matchups including two agents from the same team were not used
in determining the winners of the events. This means there are no
matches including both IR16 and Ex16 or both dpp and ak.

IR16 and Exp16, placed first and second respectively in both
events. Table 6 shows the win rates for these agents against pairs
of the rest of the agents in millibets per hand (mb/h). Recall, the
Always-Fold strategy loses 500 mb/h in a 3-player game.

Table 6. Cross-table results for IR16 and Ex16 games in the
2009 IJCAI Computer Poker Competition. Units are mb/h
and results are within ±6 to ±8 mb/h with 95% confidence

 dpp
dcu

dpp
blu

dpp
cmu

ak
dcu

ak
blu

ak
cmu

dcu
blu

dcu
cmu

blu
cmu

total

IR16 257 384 271 217 374 231 442 255 438 319
Ex16 224 360 235 19 364 215 426 235 440 299

7. CONCLUSION
In this paper, we’ve shown that despite a lack of theoretical
guarantees for CFR regarding multiplayer games, CFR can be
used to generate very abstract perfect recall 3-player agents. One
such agent, PR2, outperforms Poki, the 2008 CP Competition ring
limit event champion. This work represents the first reported
research results performed with CFR on multiplayer games.

CFR can be used to generate two-player ε-Nash equilibrium
profiles, called heads-up experts (HUEs), for 3-player subgames
where one of the players folds preflop. Since the resulting
subgame is a two-player zero-sum game, we used CFR to
compute an ε-Nash equilibrium for each HUE and knitted them to
our CFR generated 3-player strategy, PR2. This knitted strategy
showed promise by outperforming the base PR2 strategy.

CFR can be used to generate very abstract imperfect recall 3-
player agents. One such agent, IR16S, outperformed Poki, PR2
and the HUE versions of PR2, even though its abstraction is
approximately the same size as PR2. IR16S even defeated HUEs
that use it as a base player, but we expect that HUEs with better
strategy knitting will outperform it.

Two of the agents created using CFR, IR16 and Ex16, placed first
and second in the two ring limit events, bankroll and elimination,
of the 2009 CP Competition.

CFR was created to compute ε-Nash equilibria for two-player
zero-sum, perfect recall games. We have shown that it has the
potential to compute winning strategies in 3-player zero-sum
games using both perfect recall and imperfect recall abstractions

8. ACKNOWLEDGMENTS
Thanks to the Computer Poker Research Group at the University
of Alberta for their insights and discussions. This research was
supported in part by research grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the
Alberta Informatics Circle of Research Excellence (iCORE).

9. REFERENCES
[1] Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer,

J., Schauenberg, T. and Szafron, D. 2003. Approximating
game-theoretic optimal strategies for full-scale poker. IJCAI.

[2] Ganzfried, S. and Sandholm, T. 2008. Computing an
approximate jam/fold equilibrium for 3-agent no-limit texas
hold’em tournaments. AAMAS.

[3] Ganzfried, S. and Sandholm, T. 2009. Computing Equilibria
in Multiplayer Stochastic Games of Imperfect Information.
IJCAI.

[4] Gilpin, A., Hoda, S., Peña, J. and Sandholm, T. 2007.
Gradient-based algorithms for finding nash equilibria in
extensive form games. Workshop on Internet and Network
Economics, (WINE), LNCS 4858.

[5] Gilpin, A., Sandholm, T. and Sorensen, T.B. 2008. A heads-
up no-limit texas hold’em poker player: discretized betting
models and automatically generated equilibrium-finding
programs. AAMAS.

[6] Gilpin, A., Sandholm, T. and Sorensen, T.B. 2007. Potential-
aware automated abstraction of sequential games, and
holistic equilibrium analysis of Texas Hold’em poker. AAAI.

[7] Hamilton, C. 2008. AAAI Third Annual Computer Poker
Competition. AI Magazine - AAAI News, 29 (1).

[8] Johanson, M.B. 2007. Robust strategies and counter-
strategies: Building a champion level computer poker player.
MSc thesis, University of Alberta, Edmonton.

[9] Koller, D., Megiddo, N. and Von Stengel, B. 1996. Efficient
computation of equilibria for extensive two-person games.
Games and Economic Behavior, 14(2).

[10] Koller, D. and Pfeffer, A. 1997. Representations and
solutions for game-theoretic problems. Artificial Intelligence,
94.

[11] Kuhn, H.W. 1950. A simplified two-person poker.
Contributions to the Theory of Games, 1.

[12] Nash, J.F. 1950. Equilibrium points in n-person games.
National Academy of Sciences of the USA.

[13] Osborne, M. and Rubenstein, A. 1994. A Course in Game
Theory. The MIT Press.

[14] Schnizlein, D., Bowling, M. and Szafron, D. 2009.
Probabilistic state translation in extensive games with large
action sets. IJCAI.

[15] The Second Man-Machine Poker Competition.
http://poker.cs.ualberta.ca/man-machine/.

[16] Southey, F., Bowling, M., Larson, B., Piccione, C., Burch,
N., Billings, D. and Rayner, C. 2005. Bayesbluff: Opponent
modelling in poker. UAI.

[17] Waugh, K., Schnizlein, D., Bowling, M. and Szafron, D.
2009. Abstraction pathology in extensive games. AMMAS.

[18] Zinkevich, M., Johanson, M., Bowling, M. and Piccione, C.
2008. Regret minimization in games with incomplete
information. NIPS.

