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ABSTRACT
Game-theoretic models typically associate outcomes with real val-
ued utilities, and rational agents are expected to maximizetheir
expected utility. Currently fielded agent rating systems, which aim
to order a population of agents by strength, focus exclusively on
games with discrete outcomes, e.g., win-loss in two-agent settings
or an ordering in the multi-agent setting. These rating systems are
not well-suited for domains where the absolute magnitude ofutil-
ity rather than just the relative value is important. We introduce
the problem of rating agents in games with real-valued outcomes
and survey applicable existing techniques for rating agents in this
setting. We then propose a novel rating system and an extension
for all of these rating systems to games with more than two agents,
showing experimentally the advantages of our proposed system.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence ]: Application and Expert Systems—
Games; I.2.11 [Artificial Intelligence ]: Distributed Artificial In-
telligence—Multi Agent Systems

General Terms
Experimentation, Economics, Measurement

Keywords
Player Ratings, Real-valued Games, Least Squares, Ridge Regres-
sion

1. INTRODUCTION
In games with real-valued outcomes the goal of players is not

to win, but instead tomaximizethe utility gained during play. Ex-
isting rating schemes that are applicable have only been defined
for the two-player case, and have only been applied in games (like
American football or basketball) where the actual goal of the par-
ticipants is simply to win, not actually to maximize their score. We
examine the efficacy of those previous schemes in our settingand
also introduce a new regularized least squares ratings system. We
extend all of these rating systems to games with more than two
players which have real-valued outcomes. All of these systems are
experimentally evaluated in the domain of poker.
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2. THE PLAYER RATING PROBLEM
Our goal is to provide player ratings for a population of players

who play a given zero-sum (not necessarily two-player) game. Let
S = {1, 2, . . .m} be the set ofm seats, or positions, in the game.
We denote the population of players by the setN = {a, b, . . .},
where|N | = n. For a given gameG and a population of players
N , we define agame configurationg to be the tuple(φg, ug , kg).
The functionφg : S 7→ N denotes the mapping from game posi-
tions to players in the populationN . The inverse mappingφ−1

g :
N 7→ S ∪∅ specifies the seat position, or not participating (∅), that
every player inN occupies in game configurationg. The function
ug : S ∪ ∅ 7→ R describes the average utility, or average pay-
off, that the player in each seat of the game received as a result of
participating inkg ∈ N independentgame instancesor game repe-
titions of the specific arrangement of players composing this game
configuration. The total amount of utility gained by a playera in
a game configurationg will then be equal tokgug(φ

−1
g (a)). For

ease of exposition we defineug(∅) = 0, that is, the net utility for
any player not participating in that game configuration is 0.The
real-valued rating problemis to take a datasetD of game configu-
rations for a populationN and to determine for each playera ∈ N

a single real-valued ratingra which is a good fit to this data. We
note that in this work we treat a player’s rating as a static value
and consider thekg game instances of each game configuration to
be independent and identically distributed samples drawn from a
distribution with mean equal to the true expected utilityu∗

g of each
player in game configurationg.

3. RATINGS IN REAL-VALUED GAMES
We begin by introducing a simple linear model of how play-

ers’ skill ratings yield the payoffs in the game. We will denote
by δ : S × S 7→ [1, m] ⊂ N a function which maps two seat posi-
tions in the game to an index which captures the relative position of
these seats in the game. Our system will learn a vector of weights,
denoted byβ, which will contain a value for each possible output
of the functionδ. Theβ values, intuitively, are meant to capture the
strength of the impact of players in each position on the net payoff
of players in the other positions, including their own.

Given ratings for all participants in a game configurationg, the
linear model will predict the expected net payoffpa of playera in
g to bepg(a) =

∑

s∈S β
[

δ(φ−1(a), s)
]

rφ(s). Given the data,
our goal is to determine values for theβ weights and ratingsr for
the players such that the predicted outcome of each game configu-
ration matches the observed outcome in the data. Each presented
rating system uses a different method for determining “fit.”Since
the game is zero-sum, for anyj ∈ S,

∑

s∈S
β [δ(j, s)] = 0. This

reduces the number ofβ values we need to search over, since we



Table 1: Optimization Objectives
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actually only have to determine the value of|S|−1 of theβ values,
and the last value will be equal to zero minus the sum of the previ-
ous values. We also choose to fix theβ scale so that the skill ratings
of the players are in the same units as the payoff of the game. We
do this by fixingβ [δ(s, s)] (the weight for the seat of the player
whose payoff we are predicting) to be 1, for alls ∈ S. With β

constrained in this manner, there is a natural way to interpret the
meaning of the player ratings. Specifically, a player’s rating corre-
sponds to the expected amount of utility they would be predicted to
gain if all of their opponents in a game configuration had a rating
of zero.

3.1 Rating Approaches
Each approach we evaluate differs in how it measures the “fit”

of a set of predictions to the actual game configuration outcomes
in the data. The use of squared error (LS) was introduced for 2-
player games in 1977 [5] and 1980 [4], where it was used to rank
teams in sports like American football and basketball and focused
on predicting the actual scores of games. The use of absoluteerror
(LAV) was introduced and evaluated, again in the two-team game
case, in 1997 [2]. This previous work always involved only two
teams and was only ever applied to games where the main goal of
teams is (arguably) to win, not maximise score. In the settings for
which these previous methods were introduced, teams being rated
had participated in similar number of games. In general, there is no
reason why players will necessarily have participated in the same
number of game instances, and when data is sparse, the ratings
will “overfit.” Obviously, the more game instances that a player
participates in, the more evidence we have of their actual skill level.
This is the idea behind our novel regularized least square rating
system (RLS). It attaches a penalty to large ratings, so ratings will
be close to zero unless there is enough evidence in the data toshow
that they should be something else.

The optimization objective for each method is given in Table
1. In each case the ratingsr andβ values are optimized, in order
to minimize the given objective function, using Alternate Convex
Search (ACS) [3]. This algorithm is defined for the optimisation of
biconvex functions. In our setting, we initialize eachβ entry to be
−1

|S|−1
. We then find the optimal ratingsr, given thatβ. Then we

find the optimalβ, given those ratingsr. This process is repeated
until convergence. Exact methods (normal equations or LP solvers)
are employed to optimiser andβ in each step. Of course, in the
two-player case (|S| = 2), there are noβ values to optimise, so the
globally optimal ratings can be computed. In the general case ACS
is guaranteed to find only a local, not a global, optimum.

4. EXPERIMENTS
We use the data from the 2012 Annual Computer Poker Compe-

tition’s (ACPC) two-player limit (2P-L), two-player no limit (2P-
NL), and three-player limit (3P-L) events, which is available for
download on the ACPC website [1]. For purposes of comparison,
we also include the results for a zero-rating scheme in each exper-
iment. This rating system is completely data-agnostic and rates all
players the same, predicting that every game instance will end with

each player receiving a payoff of zero. We divide the data into
training and test sets in the following manner. We begin withan
empty set of training game configurations and repeatedly select a
random game configuration from the data and add it to the train-
ing set. After each new game configuration is added, we check to
determine whether the current training set of game configurations
connects the set of players, i.e. does a sequence of common oppo-
nents connect any two players in the population so that the ratings
obtained are meaningful. Once the growing set of game configura-
tions is sufficient to connect all the players, the process stops, and
this becomes the training set. The test set is simply the remainder
of the game configurations. The scores reported are averagedover
100 training and test sets created randomly in this manner. This
evaluation method creates, in some sense, the minimum number of
game instances necessary to rate the players in the population.

We use both theMean squared error (MSE)and theMean ab-
solute error (MAE)to evaluating the quality of a particular set of
ratings on the test set. Each method weights the error of the rat-
ings’ outcome prediction in each game configurationg by kg, the
number of game instances that compose this game configuration.

The regression coefficient for the RLS ratings was optimizedon
the corresponding 2011 ACPC data. We see that by both metrics,
the RLS ratings achieved the lowest average error on each dataset.

Table 2: Rating Accuracy on 2012 ACPC Data

MSE

Data Zero Mean Median LS LAV RLS

2P-L 0.0666 0.0394 0.0428 0.0131 0.01380.0107

2P-NL 36466 62340 59739 81543 8150734886

3P-L 0.0303 0.0070 0.00900.0023 0.0028 0.0023

MAE

Data Zero Mean Median LS LAV RLS

2P-L 0.2058 0.1516 0.1506 0.0868 0.08870.0790

2P-NL 108.68 151.15 133.01 171.31 157.9398.554

3P-L 0.1473 0.0662 0.0765 0.0397 0.04420.0371
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