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ABSTRACT

Game-theoretic models typically associate outcomes wihwval-
ued utilities, and rational agents are expected to maxirthize
expected utility. Currently fielded agent rating systemisiclv aim
to order a population of agents by strength, focus exclisior
games with discrete outcomes, e.g., win-loss in two-agettings
or an ordering in the multi-agent setting. These ratingesystare
not well-suited for domains where the absolute magnitudeticf
ity rather than just the relative value is important. We ddtice
the problem of rating agents in games with real-valued ou&g
and survey applicable existing techniques for rating agenthis
setting. We then propose a novel rating system and an egtensi
for all of these rating systems to games with more than twatsge
showing experimentally the advantages of our proposeesyst
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1. INTRODUCTION

In games with real-valued outcomes the goal of players is not
to win, but instead tanaximizethe utility gained during play. Ex-
isting rating schemes that are applicable have only beemeatkfi
for the two-player case, and have only been applied in galikes (
American football or basketball) where the actual goal ef plar-
ticipants is simply to win, not actually to maximize theiose. We
examine the efficacy of those previous schemes in our sedtidg
also introduce a new regularized least squares ratingsrysive

extend all of these rating systems to games with more than two

players which have real-valued outcomes. All of these systare
experimentally evaluated in the domain of poker.
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2. THE PLAYER RATING PROBLEM

Our goal is to provide player ratings for a population of gliesy
who play a given zero-sum (not necessarily two-player) garee
S ={1,2,...m} be the set ofn seats, or positions, in the game.
We denote the population of players by the 8ét= {a,b, ...},
where|N| = n. For a given gamé& and a population of players
N, we define agame configuratiory to be the tupld ¢y, ug, kg).
The functiong, : S — N denotes the mapping from game posi-
tions to players in the populatioN. The inverse mappin@;1 :
N — S U specifies the seat position, or not participatify that
every player inV occupies in game configuratign The function
ug : S UMD — R describes the average utility, or average pay-
off, that the player in each seat of the game received as & odsu
participating ink, € N independengame instancesr game repe-
titions of the specific arrangement of players composing this game
configuration. The total amount of utility gained by a playein
a game configuratiop will then be equal tdkgu, (¢, *(a)). For
ease of exposition we defing (0) = 0, that is, the net utility for
any player not participating in that game configuration isThe
real-valued rating problenis to take a datasd? of game configu-
rations for a populatiofV and to determine for each player= N
a single real-valued rating, which is a good fit to this data. We
note that in this work we treat a player’s rating as a statloeva
and consider thé, game instances of each game configuration to
be independent and identically distributed samples draam fa
distribution with mean equal to the true expected utilifyof each
player in game configuratiogn

3. RATINGS IN REAL-VALUED GAMES

We begin by introducing a simple linear model of how play-
ers’ skill ratings yield the payoffs in the game. We will démo
byd: S xS+~ [1,m] C N afunction which maps two seat posi-
tions in the game to an index which captures the relativetiposof
these seats in the game. Our system will learn a vector othisig
denoted bys, which will contain a value for each possible output
of the functiond. The values, intuitively, are meant to capture the
strength of the impact of players in each position on the agoff
of players in the other positions, including their own.

Given ratings for all participants in a game configuratigrihe
linear model will predict the expected net paypif of playera in
gtobepg(a) = >, s B[6(¢ ' (a),s)] rocs). Given the data,
our goal is to determine values for tifeweights and ratings for
the players such that the predicted outcome of each gameyuenfi
ration matches the observed outcome in the data. Each pedsen
rating system uses a different method for determining “fgihce
the game is zero-sum, for apgyc S, >- . 8[0(4,5)] = 0. This
reduces the number ¢@f values we need to search over, since we



Table 1: Optimization Objectives
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actually only have to determine the valug 8f — 1 of the 5 values,
and the last value will be equal to zero minus the sum of theipre
ous values. We also choose to fix thecale so that the skill ratings
of the players are in the same units as the payoff of the ganee. W
do this by fixing 3 [6(s, s)] (the weight for the seat of the player
whose payoff we are predicting) to be 1, for alle S. With g8
constrained in this manner, there is a natural way to inéribre
meaning of the player ratings. Specifically, a player'sn@gtorre-
sponds to the expected amount of utility they would be ptedito
gain if all of their opponents in a game configuration had mgat
of zero.

3.1 Rating Approaches

Each approach we evaluate differs in how it measures the “fit”
of a set of predictions to the actual game configuration ou&g
in the data. The use of squared error (LS) was introduced-for 2
player games in 1977 [5] and 1980 [4], where it was used to rank
teams in sports like American football and basketball ardised
on predicting the actual scores of games. The use of absaide
(LAV) was introduced and evaluated, again in the two-teameya
case, in 1997 [2]. This previous work always involved onlyotw

each player receiving a payoff of zero. We divide the data int
training and test sets in the following manner. We begin aith
empty set of training game configurations and repeatedbcsel
random game configuration from the data and add it to the-train
ing set. After each new game configuration is added, we check t
determine whether the current training set of game configuns
connects the set of players, i.e. does a sequence of comnpor op
nents connect any two players in the population so that tiregsa
obtained are meaningful. Once the growing set of game camafigu
tions is sufficient to connect all the players, the procespsstand
this becomes the training set. The test set is simply theiretan
of the game configurations. The scores reported are aveaged
100 training and test sets created randomly in this mannkis T
evaluation method creates, in some sense, the minimum mwhbe
game instances necessary to rate the players in the papulati

We use both théean squared error (MSEand theMean ab-
solute error (MAE)to evaluating the quality of a particular set of
ratings on the test set. Each method weights the error ofahe r
ings’ outcome prediction in each game configuratjoby %, the
number of game instances that compose this game configuratio

The regression coefficient for the RLS ratings was optimized

teams and was only ever applied to games where the main goal ofthe corresponding 2011 ACPC data. We see that by both metrics

teams is (arguably) to win, not maximise score. In the sgstiior
which these previous methods were introduced, teams batad r
had participated in similar number of games. In generatgtieno
reason why players will necessarily have participated exshme
number of game instances, and when data is sparse, thesrating
will “overfit.” Obviously, the more game instances that ayeia
participates in, the more evidence we have of their actuthlekel.
This is the idea behind our novel regularized least squaiegra
system (RLS). It attaches a penalty to large ratings, sogsiwill
be close to zero unless there is enough evidence in the dsato
that they should be something else.

The optimization objective for each method is given in Table
1. In each case the ratingsand 8 values are optimized, in order
to minimize the given objective function, using Alternater@ex
Search (ACS) [3]. This algorithm is defined for the optimisatof
biconvex functions. In our setting, we initialize eaélentry to be
‘S*‘—il. We then find the optimal ratings given that3. Then we
find the optimalg, given those ratings. This process is repeated
until convergence. Exact methods (normal equations or hREx)
are employed to optimise and 8 in each step. Of course, in the
two-player case|f| = 2), there are n@ values to optimise, so the
globally optimal ratings can be computed. In the generad ¢3S
is guaranteed to find only a local, not a global, optimum.

4. EXPERIMENTS

We use the data from the 2012 Annual Computer Poker Compe-
tition’s (ACPC) two-player limit (2P-L), two-player no lim(2P-
NL), and three-player limit (3P-L) events, which is aval&lfor
download on the ACPC website [1]. For purposes of comparison
we also include the results for a zero-rating scheme in egoére
iment. This rating system is completely data-agnostic anesrall
players the same, predicting that every game instance mdlixgth

the RLS ratings achieved the lowest average error on eaabatat

Table 2: Rating Accuracy on 2012 ACPC Data

MSE
Data | Zero Mean Median LS LAV RLS
2P-L |0.0666 0.0394 0.0428 0.0131 0.01880107
2P-NL | 36466 62340 59739 81543 815034886
3P-L |0.0303 0.0070 0.009®.00230.0028 0.0023
MAE
Data | Zero Mean Median LS LAV RLS
2P-L |0.2058 0.1516 0.1506 0.0868 0.08870790
2P-NL [108.68 151.15 133.01 171.31 157.98.554
3P-L [0.1473 0.0662 0.0765 0.0397 0.04020371
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