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Abstract

Poker is an interesting test-bed for artificial intelligence research. It is
a game of imperfect information, where multiple competing agents must
deal with probabilistic knowledge, risk assessment, and possible deception,
not unlike decisions made in the real world. Opponent modeling is another
difficult problem in decision-making applications, and it is essential to
achieving high performance in poker.

This paper describes the design considerations and architecture of the
poker program Poki. In addition to methods for hand evaluation and bet-
ting strategy, Pok: uses learning techniques to construct statistical models
of each opponent, and dynamically adapts to exploit observed patterns
and tendencies. The result is a program capable of playing reasonably
strong poker, but there remains considerable research to be done to play
at a world-class level.

1 Introduction

The artificial intelligence community has recently benefited from the positive
publicity generated by chess, checkers, backgammon, and Othello programs that
are capable of defeating the best human players. However, there is an important
difference between these board games and popular card games like bridge and
poker. In the board games, players have complete knowledge of the entire
game state, since everything is visible to both participants. In contrast, bridge
and poker involve imperfect information, since the other players’ cards are not
known. Traditional methods like deep search have not been sufficient to play
these games well, and dealing with imperfect information is the main reason that
progress on strong bridge and poker programs has lagged behind the advances
in other games. However, it is also the reason these games promise greater
potential research benefits.



Poker has a rich history of study in other academic fields. Economists and
mathematicians have applied a variety of analytical techniques to poker-related
problems. For example, the earliest investigations in game theory, by luminaries
such as John von Neumann and John Nash, used simplified poker to illustrate
the fundamental principles [22, 23, 38].

Until recently, the computing science community has largely ignored poker.
However, the game has a number of attributes that make it an interesting do-
main for artificial intelligence research. These properties include incomplete
knowledge, multiple competing agents, risk management, opponent modeling,
deception, and dealing with unreliable information. All of these are challenging
dimensions to a difficult problem.

We are attempting to build a program that is capable of playing poker at a
world-class level. We have chosen to study the game of Texas Hold’em, which
is one of the most strategically complex and popular variants of poker. Our
experiences with our first program, called Loki, were positive [6, 7]. In 1999, we
rewrote the program, christening the new system Poki.

These programs have been playing on Internet poker servers since 1997,
and have accrued an impressive winning record, albeit against weak opponents.
Early versions of the program were only able to break even against better oppo-
sition, but recent improvements have made the program substantially stronger,
and it is now winning comfortably in those more difficult games. Although most
of these Internet games simulate real game conditions quite well, it would be
premature to extrapolate that degree of success to games where real money is
at stake. Regardless, analysis of Poki’s play indicates that it is not yet ready
to challenge the best human players. Ongoing research is attempting to bridge
that gap.

Section 2 of this article reviews previous work and related research on poker.
Section 3 provides an overview of Texas Hold’em, including an illustrative ex-
ample of strategic concepts, and a minimal set of requirements necessary to
achieve world-class play. An overview of Poki’s architecture is described in Sec-
tion 4. Section 5 discusses the program’s betting strategy, detailing some of
the components of the system. The special problem of opponent modeling is
addressed in Section 6. Experimental methods and the performance of the pro-
gram are assessed in Section 7. Section 8 provides a generalized framework for
non-deterministic games, based on Poki’s simulation search strategy. Section
9 discusses the challenges that remain for building a world-class poker-playing
program.

2 Other Research

There are several ways that poker can be used for artificial intelligence research.
One approach is to study simplified variants that are easier to analyze. We have
already mentioned some of the the founding work in game theory, which could
only handle extremely simple poker games. An example is Kuhn’s game for two
players, using a three-card deck, one-card hands, and one betting round, with



at most two betting decisions [21]. While this was sufficient to demonstrate
certain fundamental principles of game theory, it bears little resemblance to
normal competitive poker variations.

Mathematicians have also explored many interesting problems related to
poker, and highly simplified variations are again sufficient to provide complex
problems ([26] for example).

Another way to reduce the complexity of the problem is to look at a subset
of the game, and try to address each sub-problem in isolation. Several attempts
have been made to apply machine learning techniques to a particular aspect of
poker (some examples include [9, 20, 34, 39]). Similarly, many studies only look
at two-player poker games. Multi-player games are vastly more complicated,
even with the usual assumption of no co-operative behavior between players.
The danger with any type of simplification is that it can destroy the most
challenging and interesting aspects of the problem.

An alternate approach, which we advocate, is to tackle the entire problem:
choose a real variant of poker and address all of the considerations necessary
to build a program that performs at a level comparable to or beyond the best
human players. Clearly this is a most ambitious undertaking, but also the one
that promises the most exciting research contributions if successful.

Nicholas Findler worked on and off for 20 years on a poker-playing program
for 5-card Draw poker [12]. His primary objective was to model human cogni-
tive processes, and he developed a program that could learn. While successful
to a degree, the program itself was not reported to be a strong player. Fur-
thermore, the game of 5-card Draw, although quite popular at that time, is not
as strategically complex as other poker games, such as 7-card Stud and Texas
Hold’em.

Some success in analyzing larger scale poker variants was achieved by Nor-
man Zadeh in the 1970s, and much of this work is still of value today [40, 41].
Other individuals, including expert players with a background in mathematics,
have gained considerable insight into “real” poker by using partial mathematical
analyses, simulation, and ad hoc expert experience ([33] is a popular example).

There is a viable middle-ground between the theoretical and empirical ap-
proaches. Recently, Daphne Koller and Avi Pfeffer have revived the possibility
of investigating poker from a game-theoretic point of view [19]. They presented
a new algorithm for finding optimal randomized strategies in two-player im-
perfect information games, which avoids the usual exponential blow-up of the
problem size when converting it to normal form. This algorithm is used in their
Gala system, a tool for specifying and solving a greatly extended range of such
problems. However, the size of the translated problems is still proportional to
the size of the game tree, which is prohibitively large for most common varia-
tions of poker. For this reason, the authors concluded “...we are nowhere close
to being able to solve huge games such as full-scale poker, and it is unlikely that
we will ever be able to do so.”

Nevertheless, this does raise the interesting possibility of computing near-
optimal solutions for real poker variants, which might require far less computa-
tion to obtain a satisfactory answer. This is analogous to efficient approximation



algorithms for certain combinatorial optimization problems that are known to
be intractable (NP-hard).

One obvious technique for simplifying the problem is to use abstraction,
collecting many instances of similar sub-problems into a single class. There
are many states in the poker game tree that are isomorphic to each other (for
example, a hand where all relevant cards are hearts and diamonds is isomorphic
to two corresponding hands with all spades and clubs). Beyond this, strictly
distinct cases might be so similar that the appropriate strategy is essentially
identical. For example, the smallest card of a hand being a deuce instead of a
trey may have no bearing on the outcome. This is analogous to the approach
used by Matt Ginsberg in partition search, where he defined equivalence classes
for the smallest cards of each suit in a bridge hand [14]. Jiefu Shi and Michael
Littman have made some preliminary attempts along these lines to produce
near-optimal solutions for a scaled-down version of Texas Hold’em [31].

A second method is aimed at constructing a shallower game tree, using
expected value estimates to effectively truncate subtrees. This is similar to
the method used so successfully in most perfect information games, where an
evaluation function is applied to the leaves of a depth-limited search. However,
it is not as easy to accomplish because, unlike perfect information games, the
states of a poker game tree are not independent of each other (specifically,
we cannot distinguish states where the opponent has different possible hidden
cards). Ken Takusagawa, a former student of Koller and Pfeffer, has extended
their work by combining this method with abstraction, to produce some near-
optimal solutions for particular scenarios of Texas Hold’em [35]. Alex Selby has
applied the Simplex algorithm directly to two-player pre-flop Hold’em, and has
computed optimal solutions for that re-defined game, using expected values in
place of the post-flop phase [28].

Our own empirical studies over the past few years have used similar meth-
ods of abstraction and expected value estimation to reduce the computational
complexity of the problem, so the approaches are not as different as they may at
first appear. It will be interesting to see if these theoretical “hybrid techniques”
can be applied directly to a competitive poker program in the future.

3 Texas Hold’em

We have chosen to study the game of Texas Hold’em, the poker variation used
to determine the world champion in the annual World Series of Poker. Hold’em
is generally considered to be the most strategically complex poker variant that
is widely played in casinos and card clubs. It is also convenient because it has
particularly simple rules and logistics.

We assume the reader is familiar with the ranking of poker hands (if not,
many good introductions to poker can be found on the Internet). In the following
description, and throughout the paper, italics are used for common poker terms,
which are defined in the glossary (Appendix A).



3.1 Rules of Play

A hand! of Texas Hold’em begins with the pre-flop. Each player is dealt two
hole cards face down, followed by the first round of betting, which is started with
two forced bets called the small blind and the big blind. Three community cards,
collectively called the flop, are then dealt face up on the table, and the second
round of betting occurs. On the turn, a fourth community card is dealt face up
and another round of betting ensues. Finally, on the river, a fifth community
card is dealt face up and the final round of betting occurs. The players still
active in the game at that time reveal their two hole cards for the showdown.
The best five-card poker hand formed from each player’s two private hole cards
and the five public community cards wins the pot. If a tie occurs, the pot is
split.

Texas Hold’em is typically played with 8 to 10 players. Limit Texas Hold’em
uses a structured betting system, where the amount of each bet is strictly con-
trolled in each betting round.? There are two denominations of bets, called a
small bet and a big bet, which will be $10 and $20 in this paper. In the first
two betting rounds, all bets and raises are $10, while in the last two rounds,
they are always $20. In general, when it is a player’s turn to act, one of three
betting options is available: fold, check/call, or bet/raise.> There is normally a
maximum of three raises allowed per betting round. The betting option rotates
clockwise until each player has matched the current bet, or folded. If there is
only one player remaining (all others having folded) that player is the winner
and is awarded the pot without having to reveal their cards.

3.2 Poker Strategy

To illustrate some of the decisions one must face in Hold’em, we will present a
sample hand, with some typical reasoning a good player might go through. This
hand is relatively basic, in order to make the example easier to follow. Many
complex interactions can contribute to much more difficult situations, but it
is hoped that this example will suffice to demonstrate some of the strategic
richness of the game.

The game is $10-$20 Limit Hold’em with ten players. We “have the button”,
meaning that we will be the last to act in each betting round, which is an
advantage. The two players to the left of us post the small blind ($5) and the
big blind ($10), and the cards are dealt. The action begins with the player to

1The term “hand” is used in two ways: to denote a player’s private cards, and to
refer to one complete deal, or game. We have not tried to avoid the possible ambiguity,
preferring to use the same terminology used by most serious poker players whenever
possible. In each instance, the intended meaning of “hand” should be clear from the
context.

2In No-limit Texas Hold’em, there are no restrictions on the size of bets; a player
may wager any amount, up to their entire stack, at any time.

SA check and a call are logically equivalent, in that the betting level is not increased.
The term check is used when the current betting level is zero, and call when there has
been a wager in the current betting round. Similarly, a bet and a raise are logically
equivalent, but the term bet is used for the first wager of a betting round.



the left of the big blind, who calls $10 (we will refer to this player as “EP”,
for “early position”). The next three players fold (throwing their cards into the
discard pile), a middle position player (MP) calls $10, and the next two players
fold.

We are next to act and have 7{-6<. A strong poker player would know that
this is a reasonably good drawing hand, which should be profitable to play for
one bet from late position against several players. This would not be a good
hand to call a raise with, or to play against only one or two opponents. From
previous hands played, we know that EP is a tight (conservative) player. We
expect that EP probably has two big cards, since he called in early position
(but didn’t raise, making large pairs highly unlikely for this particular player).
Our opponent modeling has concluded that MP is a loose player, who sees the
flop about 70% of the time, so he could have almost anything (eg. any pair, any
two cards of the same suit, or even a hand like 6-4 of different suits). The small
blind is an extremely tight player who will probably fold most hands rather than
calling another $5. The big blind almost always defends her blind (i.e. she will
call a raise).

A raise in this situation, for deceptive purposes, is not completely out of
the question. However, it would be inappropriate against this particular set of
opponents (it might be more suitable in a game with higher limits). We call the
$10, the small blind calls, and the big blind checks.

The flop is Q#-70-4{. We have second pair (connecting with the second
largest card on the board) for a hand of moderate strength and moderate po-
tential for improvement. If we do not currently have the best hand, there are
five direct outs (outcomes) that can immediately improve our hand (7, 7,
6, 6, 69). We also have some indirect flush and straight potential, which
will come in about 7% of the time,* and can be treated as roughly three direct
outs. The board texture is fairly dry, with only a few possible straight draws,
and no direct flush draws. Therefore, any bets by the opponents are likely to
indicate a made hand (eg. a pair) rather than a draw (a hand where additional
cards are needed), unless they are a chronic bluffer. An expert player wouldn’t
actually need to go through this thought process—it would simply be known
the moment the flop hits the table, through experience and pattern recognition.

Both blinds check, EP bets, and MP folds (see Figure 1). There is $60 in
the pot, and it will cost us $10 to call. We believe the bettor seldom bluffs, and
almost certainly has a Queen, given his early position pre-flop call.®> The small
blind is known to check-raise on occasion, and might also have a Queen, but
is more likely to have a poor match with the board cards, because he is highly
selective before the flop. We have never observed the big blind check-raising in
the past, so the danger of being trapped for an extra bet is not too high.

If we play, we must decide whether to raise, trying to drive the other players
out of the hand, or call, inviting others to call also. If there was a good chance
of currently having the best hand, we would be much more inclined to raise.

473 out of 990 outcomes (43 flushes and 30 straights).

5Ironically, reasonably good players are often the most predictable, whereas very
good players are not.
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Figure 1: Sample hand after the flop.

However, we feel that chance is relatively small in the current situation. We
might also want to drive out other players who are looking to hit the same
cards we want, such as 5-3, which needs a 6 to make a straight against our two
pair. However, the added equity from having an extra bet in the pot is normally
greater than the risk of shared outs, so we are happy to let the blinds draw with
us against the bettor.

From our previous study and experience, we know that calling in this sit-
uation is a small positive expectation play, but we still cannot rule out the
possibility of raising for a free-card. If we raise now, we may induce the bettor
to call and then check to us next round, when we can also check and get a
second card for “free” (actually for half-price). We need to assess the likelihood
that EP will re-raise immediately (costing us two extra bets, which is a very bad
result), or will call but then bet into us again on the turn anyway (costing us
one extra bet). Since we do not feel we have much control over this particular
player, we reject the fancy raise maneuver, and just call the $10. Both of the
blinds fold, so we are now one-on-one with the bettor. Despite the many factors
to consider, our decision is made quickly (normally within one second when it
is our turn).

The turn card is the 50 and EP bets. The 59 gives us an open-ended draw
to a straight, in addition to our other outs. In terms of expected value, this is
essentially a “free pass” to the river, as we now have a clearly correct call of
$20 to win $90. However, we again need to consider raising. This opponent will
probably give us credit for having a very strong hand, since the 59 connects for
several plausible two pair hands or straights. We could also be slow-playing a
very strong hand, like a set (three of a kind using a pocket pair, such as 44-4é).
Since we’re quite certain he has only one pair, this particular opponent might
even fold the best hand, especially if his kicker (side-card) is weak. At the very
least, he will probably check to us on the river, when we can also check, unless
we improve our hand. Thus we would be investing the same amount of money



as calling twice to reach the showdown, and we would be earning an extra big
bet whenever we make our draw. On the other hand, we don’t necessarily have
to call that last bet on the river (although if we fold too often, we will become
vulnerable to bluffing). We decide to make the expert play in this situation,
confidently raising immediately after his bet. He thinks about his decision for
a long time, and reluctantly calls.

The river card is the 5#, and our opponent immediately checks. We know
that he is not comfortable with his hand, so we can consider bluffing with what
we believe is the second-best hand. From our past sessions we know that once
this player goes to the river, he will usually see the hand through to the end.
In effect, his decision after our raise was whether to fold, or to call two more
bets. Since a bluff in this situation is unlikely to be profitable, we stick to our
plan and check. He shows Qé-Jé, we say “good hand”, and throw our cards
into the discard pile.

Now we consider what effect this hand has had on our table image, in an-
ticipation of how the players at the table will react to our future actions. The
better players might have a pretty good idea of what we had (a small pair that
picked up a good draw on the turn), and won’t make any major adjustments to
their perception of our play. Our opponent, EP, is more likely to call us down
if a similar situation arises, so we might earn an extra bet on a strong hand
later. Weaker players may think we are a somewhat wild gambler, so we expect
them to call even more liberally against us. This reinforces our plan of seldom
bluffing against them, but betting for value with more marginal hands.

3.3 Requirements for a World-Class Poker Player

We have identified several necessary attributes for an algorithm to play poker at
a world-class level. A system may handle some of these requirements indirectly,
rather than by explicit design, but all of them must be solved at least satis-
factorily if a program is to compete with the best human players. We present
one or more ways of solving each requirement, but there are many different
approaches that could be just as viable, or possibly much better. Furthermore,
these components are not independent of each other. They must be continually
refined and integrated as new capabilities are added to the system.

Hand strength assesses the strength of a hand in relation to the other
hands. A simple hand strength computation is a function of the cards held
and the current community cards. A better evaluation takes into account the
number of players still in the game, the relative position of the player at the
table, and the history of betting for the current game. An even more accurate
calculation considers the probabilities for each possible opponent hand, based
on the likelihood of each hand being played to the current point in the game.

Hand potential computes the probability that a hand will improve to win,
or that a leading hand will lose, after future community cards appear. For
example, a hand that contains four cards in the same suit may have a low hand
strength, but has good potential to win with a flush as additional community
cards are dealt. Conversely, a hand with a high pair might be expected to



decrease in strength if many draws are available for opposing hands. At a
minimum, hand potential is a function of the cards in the hand and the current
community cards. However, a better calculation would use all of the additional
factors described in the hand strength computation.

Bluffing makes it possible to win with a weak hand,® and creates doubt
on the part of the opponent, thereby increasing the amount won on subsequent
strong hands. Bluffing is essential for successful play. Game theory can be used
to compute a theoretically optimal bluffing frequency in certain situations. A
minimal bluffing system would bluff this percentage of hands, indiscriminately.
In practice, other factors (such as hand potential) should also considered. A
better system would identify profitable bluffing opportunities by deducing the
opponent’s approximate hand strength and predicting their probability of fold-
ing.

Unpredictability makes it difficult for opponents to form an accurate
model of our strategy. Mixing strategies (occasionally handling a given situ-
ation in different ways) hides information about the nature of our current hand.
By varying our playing style over time, opponents may be induced to make
mistakes based on incorrect beliefs.

Opponent modeling determines a likely probability distribution of the
opponent’s hand. Minimal opponent modeling might use a single generic model
for all opponents. This can be improved by modifying those probabilities based
on the personal betting history and collected statistics of each opponent.

Certain fundamental principles of poker, such as pot odds, are taken as a
given. There are several other identifiable characteristics that might not be
necessary to play reasonably strong poker, but may eventually be required for
world-class play. Collectively, these concepts are part of an overall betting strat-
egy, which determines whether we fold, call, or raise in any particular situation.
The most important of these attributes for poker-playing programs are discussed
in greater detail in the following sections.

4 Poki’s Architecture

A poker game consists of a dealer together with multiple players that represent
either human players or computer players. In our Java implementation, these
players are defined as objects. The dealer handles the addition and removal of
players from the game, deals the cards to each player at the start of a new hand,
prompts each player for an appropriate action when it is their turn, broadcasts
player actions to other players, and updates a public game context as the game
progresses. The game context contains all of the public information about the
game, including the names and relative locations of the players, and the board
cards.

We have implemented several different dealer interfaces: an IRC-Dealer
for playing against other players on the Internet Relay Chat poker server, a

60ther forms of deception such as slow-playing (calling with a strong hand) are not
considered here.



Poki Program Architecture
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Figure 2: The architecture of Poki.

Tournament-Dealer for self-play experiments, and a TCP /IP-Dealer that allows
Poki to play against humans using a web browser, and against other programs
using a published protocol (see http://www.cs.ualberta.ca/ games/poker/).

An overview of Poki’s architecture is shown in Figure 2. Although each ver-
sion of the program represents and uses the available information in a different
way, all versions share a common high-level architecture.

In addition to the public game context, Poki stores private information: its
current hand, and a collection of statistical opponent models. The assessment
of the initial two-card hand is explained in Section 5.1, and the first-round bet-
ting decisions are made with a simple rule-based system. The opponent model
(essentially a probability distribution over all possible hands) is maintained for
each player participating in the game, including Poki itself, as detailed in Sec-
tion 6. The Opponent Modeler uses the Hand Evaluator, a simplified rule-based
Betting Strategy, and learned parameters about each player to update the cur-
rent model after each opponent action, as described in Section 5.2.4. After the
flop, the Hand Evaluator in turn uses the opponent model and the game state
information to assess the value of Poki’s hand in the current context, as ex-
plained in Section 5.2.1 and 5.2.2. Thus, there is a certain amount of cyclic
feedback among the core components of the system. The evaluation is used
by a more sophisticated rule-based Betting Strategy to determine a plan (how
often to fold, call, or raise in the current situation), and a specific action is
chosen, as discussed in Section 5.2.5 and throughout Section 5. The entire pro-
cess is repeated each time it is our turn to act. For a more advanced decision
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procedure, the Simulator iterates this process using different instantiations of
opponent hands, as discussed in Section 5.3.

5 Betting Strategy

Betting strategies before the flop and after the flop are significantly different.
Before the flop there is little information available to influence the betting de-
cision (just two hole cards and the previous player actions), and a relatively
simple expert system is sufficient for competent play. After the flop the pro-
gram can analyze how all possible opponent holdings combine with the given
public cards, and many other factors are relevant to each decision. A post-flop
betting strategy uses the full game context, the private hand, and the appli-
cable opponent models to generate an action. Three betting strategies will be
described in this paper, one for the pre-flop and two for the post-flop.

5.1 Pre-flop Betting Strategy

There are {52 choose 2} = 1326 possible hands prior to the flop. The value of one
of these hands is called an income rate, and is based on a simple technique that
we will call a roll-out simulation. This is an off-line computation that consists of
playing several million hands (trials) where all players call the first bet (i.e. the
big blind), and then all the remaining cards are dealt out without any further
betting. This highly unrealistic always call assumption does not necessarily
reflect an accurate estimate for the expected value of the hand. However, it
does provide a first-order approximation, and the relative values of the hands
are reasonably accurate for the given situation.

More generally, this method is referred to as the all-in equity. It is a calcu-
lation of the percentage expectation for the current hand assuming the player
is all-in,” and all active hands proceed to the showdown. It can be applied at
any phase of the game, and serves as a baseline estimate of the expected value
of a hand in any given situation.

5.1.1 Comparing Pre-Flop Strategies

The best known and most widely respected expert opinion on pre-flop play
is that of David Sklansky, a professional poker player and author of the most
important books on the game [32, 33]. In Texas Hold’em for the Advanced Player
[33] he prescribes a hand classification scheme to be used in typical middle limit
games (eg. $20-$40 limit Hold’em). There is a strong correlation between his
rankings and the results of the roll-out simulations.

Before proceeding to a closer comparison of the two ranking systems, a few
caveats should be mentioned. First, there is no single ranking of starting hands

"Under normal table stakes rules, a player who does not have enough money on
the table to meet the outstanding bet can go all-in, and remains eligible to win the
portion of the pot contributed to. The betting continues (toward a side-pot) for the
remaining active hands.
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that applies to all situations. An expert player will make adjustments based on
the prevailing conditions (for example, a loose game (many players seeing the
flop), a wild game (lots of gambling), etc.). Furthermore, the true expectation
of each hand will depend on the precise context at the time of each betting
decision. For example, a hand is assessed very differently after all previous
players have folded than it would be after one or more players have called. The
general guidelines must cover a wide variety of situations, so naturally there will
be exceptions. Sklansky’s recommendations are also intended for a full game of
ten players. A completely different set of hand rankings are necessary for short-
handed games, and this is reflected in the different income rates computed by
roll-out simulations with fewer players in the hand.

Table 1 shows how the roll-out simulations compare to Sklansky’s rankings.
In the tables, “s” refers to a suited hand (two cards of the same suit), “0” refers
to an offsuit hand (two cards of different suits), and “*” indicates a pocket pair
(two cards of the same rank). Table 1 is divided into eight groups, corresponding
to Sklansky’s rating system, with Group 1 being the best hands, and Group 8
being weak hands that should only be played under special circumstances (eg.
for one bet after many players have called). In general, there is a strong corre-
lation between Sklansky’s rankings and the income rates obtained from roll-out
simulations.

The simulation values demonstrate a bias in favor of certain hands that play
well against many players, known as “good multi-way hands”. These are cards
that can easily draw to a very strong hand, such as a flush (eg. suited hands like
AQ-29), a straight (eg. connectors like 80-7é), or three of a kind (eg. a pocket
pair like 20-2&). Since all ten players proceed to the showdown in a roll-out
simulation, the average winning hand needs to be considerably stronger than in
a real ten player game (where typically half of the players will fold before the
flop, and many hands are won uncontested before the showdown). By the same
reasoning, large pairs may be undervalued, because of the unaccounted potential
of winning without improvement against a smaller number of opponents.

Conversely, Sklansky’s rankings show evidence of a bias in favor of unsuited
connectors, where suited hands should be preferred.® Certain small-card com-
binations, such as 7#-6#, may have been given a higher ranking by Sklansky
because they add a good balance of deception to the overall play list (for ex-
ample, one does not want the opposition to conclude that we cannot have a 7
when the flop is 7Q-7)-3&). However, the hands intended for information hid-
ing purposes should not extend to the unsuited connectors like 7&-60, which
have a much lower overall expectation.

There are also a few instances of small logical errors in Sklansky’s rankings.
For example, 43s is ranked in Group 7, ahead of 53s in Group 8, but it can be
shown that 53s logically dominates 43s, because it has the same straight and
flush potential, with better high-card strength. Similarly, 52s dominates 42s
and 32s, but 52s is not ranked in any of the eight groups, whereas the latter are

8The highest valued hands not in Sklansky’s rankings are T7s (4+231) and QT7s
(4+209).
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| Group 1 | Group2 | Group 3 Group 4
$2112 | AA® || +714 | TT* || +553 | 99% || +481 | T9s []
+1615 | KK* || 4915 | AQs | 4657 | JTs || +515 | KQo
41224 | QQ* || +813 | AJs || +720 | QJs || +450 | 88*
+935 | JJ* +858 | KQs || +767 | KJs +655 | QTs
+1071 | AKs +718 | AKo || +736 | ATs +338 | 98s [1]
+555 | AQo +449 | J9s
+430 | AJo
+694 | KTs
| Group 5 | Group6 | Group 7 Group 8 |
1364 | 7% || 1304 | 66* | 1214 | 44* 75 | 870 2]
4270 | 87s[1] | +335 | ATo | +92 | 390 [2] | +87 | 535 [3] (> 43)
+452 | Q9s || +238 | 55* || +41 | 435 [3] | +119 | A%
+353 | T8s [1] || +185 | 865 | +141 | 75 +65 | Q9o
+391 | KJo || 4306 | KTo || +127 | T9% 1129 | 760 [2]
+359 | QJo +287 | QTo || +199 | 33* -42 | 42s [3] (< 52s)
+305 | JTo || +167 | 5ds 15 [ 980 (2] | -83 | 325 [3] (< 529)
+222 | 76s [1] +485 | K9s +106 | 64s +144 | 96s
+245 | 97s [1] +327 | J8s +196 | 22%* +85 | 858
+538 | A9s +356 | K8s .51 | J80 [2]
+469 | A8s +309 | K7s +206 | J7s
+427 | ATs +278 | K6s 1158 | 650 [2]
+386 | A6s +245 | Kb5s 1181 | 540 [2]
+448 | Abs +227 | K4s +41 | 74s
+422 | Ads +211 | K3s +85 | K9
+392 | A3s +192 | K2s -10 | T8o
+356 | A2s +317 | Q8s
+191 | 655 [1]

Three possible explanations for the differences: [1] small card balancing, [2] bias
for unsuited connectors, and [3] logical error (inconsistent).

Table 1: Income rate values versus Sklansky groupings.
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members of Group 8.

Since the differences are not large, it is clear that roll-out simulations pro-
vide an acceptable means of quantifying the pre-flop value of each hand. This
information is currently used as part of a formula-based expert system for play-
ing before the flop, which is not unlike the guidelines given by Sklansky in
the aforementioned text. We prefer to use the computed results, rather than
transcribing the Sklansky rules, because (a) we wish to eliminate the use of
human knowledge whenever possible, (b) the roll-out simulation information is
quantitative rather than qualitative, and (c) the algorithmic approach can be
applied to many different specific situations (such as having exactly six players
in the game), whereas Sklansky gives only a few recommendations for atypical
circumstances.

Future versions of the program should be even more autonomous, adapting
to the observed game conditions and making context-sensitive decisions on its
own.

5.1.2 Iterated Roll-out Simulations

An interesting refinement to roll-out simulation is to use repeated iterations
of the technique, where the previous results govern the betting decision for
each player. In the ten player case, a negative value in the previous simulation
would dictate that the hand be folded, rather than calling the big blind. This
drastically reduces the number of active players in each hand, producing a more
realistic distribution of opponents and probable hands. The result is a reduction
in the bias toward multi-way hands, and a much better estimation of the hands
that can be played profitably when ten players are originally dealt in.

After each round of simulations has reached a reasonable degree of stability,
another iteration is performed. This process eventually reaches an equilibrium,
defining a set of hands that can be played profitably against the blinds and
the other unknown hands. The results are most applicable to the “play or
don’t play” decision for each player. Although much better than a simple roll-
out simulation, this technique is still far from perfect, because other important
considerations such as betting position and known opponent actions have not
been accounted for.

In our experiments, each iteration lasted for 50,000 trials. A diminishing
noise factor was added to each income rate, analogous to the cooling factor
used in simulated annealing. This gives negative expectation hands a chance to
recover as the prevailing context changes. After ten generations, the remaining
positive expectation hands were played for another 500,000 trials, to ensure
stability. The resulting set of profitable hands, shown in Table 2, is in strong
agreement with expert opinion on this matter. The table shows a comparison
of the income rates for 10-player roll-out simulations (IR-10) and the results
refined by iterating (Iterated). The values shown are in milli-bets (eg. a hand
with an income rate of +1000 should win an average of one small bet each time it
is played). The iterated values are reasonable estimates of actual income rates,
unlike the simple roll-out values, which are only used as relative measures.
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Hand | IR-10 | Iterated || Hand |

IR-10 | Iterated || Hand |

IR-10 | Iterated

AA® [ 2112 | +2920 || ATs | +736 | +640 || KQo | +515 | +310
KK* | +1615 | +2180 || 99* | +553 | +630 | QTs | +655 | +280
QQ* | +1224 | +1700 || KQs | +858 | +620 || QJs | +720 | +270
JI* | 4935 | 41270 || AQo | +555 | +560 || A9s | +538 | 4220
TT* | +714 | +920 || KJs | 4767 | +480 || ATo | +335| +200
AKs | +1071 |  +860 || 88* | +450 | 4450 | KTs | +694 | +190
AKo | +718 | 4850 | 77* | +364 | +390 | KJo | +391 | +160
AQs | +915 | 4780 || AJo | +430 | 4380 | A8s | +469 | +110
AJs | +813| +680 || JTs | +657 | +360 | 66* | +304 +40

Table 2: Iterated income rate (profitable hands).

One of the factors used by Sklansky and other experts is the possibility of
a hand being dominated. For example, AQ is said to dominate AJ, because
the AQ has a tremendous advantage if they are in a hand against each other
(an Ace on board does not help the AJ). In contrast, AQ does not dominate
the inferior holding of KJ, because they are striving to hit different cards. The
role of domination is clearly demonstrated in the results of the iterated roll-
out simulations. Examples include the increased value of large pairs and AK
unsuited, and the diminished value of KQ (which is dominated by AA, KK, QQ,
AK, and AQ).

Tterated roll-out simulations have also been used to compute accurate ex-
pected values for two-player pre-flop Hold’em. The resulting betting decisions
are in very good agreement with Alex Selby’s computation of the optimal game-
theoretic strategy, in which he used an adaptation of the Simplex algorithm for
solving this game directly [28].° The small number of cases where the strategies
differ are all near the boundary conditions between raise and call, or call and
fold. Furthermore, the expected values are always close to the threshold for
making the alternate choice, with a difference usually less than 0.1 small bets.

5.2 Basic Betting Strategy

The basic betting strategy after the flop chooses an action using three steps:

1. Compute the effective hand strength, EHS, of Poki’s hand relative to the
board.

2. Use the game context, a set of betting rules, and formulas to translate the
EHS into a probability triple: {Pr(fold), Pr(call), Pr(raise)}.

3. Generate a random number in the range zero to one, and use it to choose

9We are assuming that an optimal solution to the re-defined game of pre-flop Hold’em will
serve as a near-optimal solution to the pre-flop phase of real Hold’em (i.e. that a “perfect”
solution to a simpler game will be a “good” solution to the full-scale version).
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HandStrength(ourcards,boardcards)

{
ahead = tied = behind = 0
ourrank = Rank(ourcards,boardcards)
/* Consider all two card combinations of the remaining cards.*/
for each case(oppcards)
{
opprank = Rank(oppcards,boardcards)
if (ourrank>opprank) ahead += 1
else if (ourrank==opprank) tied += 1
else /* < %/ behind += 1
}
handstrength = (ahead+tied/2) / (ahead+tied+behind)
return(handstrength)
}

Figure 3: Hand strength calculation.

an action from the probability distribution. This contributes to the un-
predictability of the program.

EHS is a measure of how well the program’s hand stands in relationship to
the remaining active opponents in the game. It is a combination of the current
hand strength (HS) and positive potential (PPot) for the hand to improve.
These are discussed in the following sections.

5.2.1 Hand Strength

The hand strength, HS, is the probability that a given hand is better than that of
an active opponent. Suppose an opponent is equally likely to have any possible
two hole card combination.!® All of these opponent hands can be enumerated,
identifying when Poki’s hand is better (+1), tied (+3), or worse (0). Taking
the summation and dividing by the total number of possible opponent hands
gives the (unweighted) hand strength. Figure 3 gives the algorithm for a simple
hand strength calculation.

Suppose our hand is AP-Qée and the flop is JO-4&-30. There are 47 re-
maining unknown cards and therefore {47 choose 2} = 1,081 possible hands an
opponent might hold. In this example, any three of a kind, two pair, one pair,
or AK is better (444 cases), the remaining AQ combinations are equal (9 cases),
and the rest of the hands are worse (628 cases). Counting ties as one half, this
corresponds to a percentile ranking, or hand strength, of 0.585. In other words,
there is a 58.5% chance that A{J-Qd is better than a random hand.

The hand strength calculation is with respect to one opponent, but can be
extrapolated to multiple opponents by raising it to the power of the number of

10This is not true, in general, but simplifies the presentation of the algorithm. We eliminate
this assumption and generalize the algorithm in the next section.
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| A-Qd hole cards JO-4&-3Q board cards |

| 5 Cards | 7 Cards |
Ahead Tied | Behind Sum
Ahead | 449,005 3,211 | 169,504 628x990 = 621,720
Tied 0 8,370 540 9x990 = 8,910
Behind 91,981 1,036 | 346,543 444x990 = 439,560

[ Sum [ 540,986 | 12,617 | 516,587 | 1,081x990 = 1,070,190 |

Table 3: Hand potential example.

active opponents.!' Against five opponents with random hands, the adjusted
hand strength, HSs, is 0.585% = 0.069. Hence, the presence of the additional
opponents has reduced the likelihood of A{-Qé being the best hand to only
6.9%.

5.2.2 Hand Potential

After the flop, there are still two more board cards to be revealed. On the turn,
there is one more card to be dealt. We want to determine the potential impact
of these cards. The positive potential, PPot, is the chance that a hand which is
not currently the best improves to win at the showdown. The negative potential,
NPot, is the chance that a currently leading hand ends up losing.

PPot and NPot are calculated by enumerating over all possible hole cards
for the opponent, like the hand strength calculation, and also over all possible
board cards. For all combinations of opponent hands and future cards, we
count the number of times Poki’s hand is behind, but ends up ahead (PPot),
and the number of times Poki’s hand is ahead but ends up behind (NPot). The
algorithm is given in Figure 4, and the results for the preceding example are
shown in Table 3. In this example, if the hand A{)-Qée is ahead against one
opponent after five cards, then after 7 cards there is a 449,005/621,720 = 72%
chance of still being ahead.

Computing the potential on the flop can be expensive, given the real-time
constraints of the game (about one second per decision). There are {45 choose 2} = 990
possible turn and river cards to consider for each possible two-card holding by
the opponent. In practice, a fast approximation of the PPot calculation may be
used, such as considering only the next one card to come. Previous implemen-
tations have used a fast function to produce a crude estimate of PPot, which
was within 5% of the actual value about 95% of the time.

1 This assumes that all of the opponent hands are independent of each other. Strictly
speaking, this is not true. To be a useful estimate for the multi-player case, the error from
this assumption must be less than the error introduced from other approximations made by
the system. More accurate means are available, but we defer that discussion in the interest of
clarity.
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HandPotential (ourcards,boardcards)

{
/* Hand potential array, each index represents ahead, tied, and behind. */
integer array HP[31[3] /* initialize to 0 */
integer array HPTotal[3] /# initialize to 0 */

ourrank = Rank(ourcards,boardcards)
/* Consider all two card combinations of the remaining cards for the opponent.*/
for each case(oppcards)

{

opprank = Rank(oppcards,boardcards)

if (ourrank>opprank) index = ahead
else if (ourrank=opprank) index = tied
else /* < */ index = behind

HPTotal[index] += 1

/* All possible board cards to come. */
for each case(turn)
{
for each case(river)
{ /* Final 5-card board */
board = [boardcards,turn,river]
ourbest = Rank(ourcards,board)
oppbest = Rank(oppcards,board)

if (ourbest>oppbest) HP [index] [ahead ]+=1
else if(ourbest==oppbest)HP[index] [tied ]+=1
else /*x < x/ HP[index] [behind]+=1

}
}

/* PPot: were behind but moved ahead. */

PPot = (HP[behind] [ahead] + HP[behind] [tied]/2 + HP[tied] [ahead]/2)
/ (HPTotal[behind]+HPTotal[tied]/2)

/* NPot: were ahead but fell behind. */

NPot = (HP[ahead] [behind] + HP[tied] [behind]/2 + HP[ahead] [tied]/2)
/ (HPTotal [ahead] +HPTotal [tied]/2)

return(PPot ,NPot)

Figure 4: Hand potential calculation.
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5.2.3 Effective Hand Strength

The effective hand strength, EHS, combines hand strength and potential to
give a single measure of the relative strength of Poki’s hand against an active
opponent. One simple formula for computing the probability of winning at the
showdown 2 is:

Pr(win) = Pr(ahead) x Pr(opponent does not improve)
+ Pr(behind) x Pr(we improve)
= HSx(1—-NPot) + (1-HS)x PPot

In practice, we generally want to bet when we currently have the best hand,
regardless of negative potential, so that an opponent with a marginal hand
must either fold, or pay to draw. Hence, NPot is not as important as PPot
for betting purposes. Since we are interested in the probability that our hand
is either currently the best, or will improve to become the best, one possible
formula for EHS sets NPot = 0, giving:

EHS = HS + (1 — HS) x PPot (1)

This has the effect of betting a hand aggressively despite good draws being
possible for opponent hands, which is a desirable behavior.
For n active opponents, this can be generalized to:

EHS = HS™ + (1 — HS™) x PPot (2)

assuming that the same EHS calculation suffices for all opponents. This is
not a good assumption, since each opponent has a different style. A better
generalization is to have a different HS and PPot for each opponent i. EHS
with respect to each opponent can then be defined as:

EHSiZHSi-{-(l—HSi)XPPOti (3)

Modifying these calculations based on individual opponents is the subject of
Section 6.

5.2.4 Weighting the Enumerations

The calculations of hand strength and hand potential in Figures 3 and 4 assume
that all two card combinations are equally likely. However, the probability of
each hand being played to a particular point in the game will vary. For example,
the probability that the opponent holds Ace-King is much higher than 7-2 after
the flop, because most players will fold 7-2 before the flop.

To account for this, Poki maintains a weight table for each opponent. The
table has an entry for every possible two card hand, where each value is the

12The formula can be made more precise by accounting for ties, but becomes less
readable.
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UpdateWeightTable(Action A, WeightTable WT, GameContext GC, OpponentModel OM)

{

foreach (entry E in WT)

{

ProbabilityDistribution PT[FOLD,CALL,RAISE]

PT = PredictOpponentAction(OM, E, GC)
WT[E] = WT[E] * PT[A]

Figure 5: Updating the Weight Table.

conditional probability of the opponent having played those cards to the current
point in the game. To get a better estimate of hand strength, each hand in the
enumeration is multiplied by its corresponding probability in the weight table.

In practice, the weights have a value in the range zero to one, rather than
absolute probabilities (summing to one), because only the relative sizes of the
weights affect the later calculations. When a new hand begins, all entries are
initialized to a weight of one. As cards become known (Poki’s private cards or
the public board cards), many hands become impossible, and the weight is set
to zero.

After each betting action, the weight table for that opponent is updated in
a process called re-weighting. For example, suppose an opponent calls before
the flop. The updated weight for the hand 7-2 might be 0.01, since it should
normally be folded. The probability of Ace-King might be 0.40, since it would
seldom be folded before the flop, but is often raised. The relative value for each
hand is increased or decreased to be consistent with every opponent action.

The strength of each possible hand is assessed, and a mized strategy (prob-
able distribution of actions) is determined by a formula-based betting strategy.
These values are then used to update the weight table after each opponent
action. The algorithm is shown in Figure 5.

For example, assume that the observed player action is a bet or raise, and
that the weight table currently has entries:

[AM-K&, 0.40], ..., [Q0-2, 0.20], ...

Further assume that in the given situation, the PredictOpponentAction proce-
dure (see Figure 5) generates probability distributions { Pr(fold), Pr(check/call),
Pr(bet/raise)} of {0.0, 0.7, 0.3} for the hand Ad-K&, and {0.0, 0.1, 0.9} for
the hand Q<¢-2¢. After re-weighting, the new weight table entry for Ad-Ké
will be 0.4 x 0.3 = 0.12, and 0.2 x 0.9 = 0.18 for Q{-2¢. Had the op-
ponent checked or called in this situation, the weights would be 0.28 and 0.02,
respectively.

13[n the parlance of Bayesian (conditional) probabilities, the old weight table represents
the prior distribution of the opponent’s cards, and the new weight table is the posterior
distribution.
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| | SB | BB | EP | MP | Poki |

Pre-flop
small blind | big blind | call | call | call
call check
Flop Q& 70 4$
check check bet | fold | call
fold fold
Turn 59
bet raise
call
River 54
| | check | | check

Table 4: Betting scenario for hand described in Section 3.2.

Preflop Flop River

[ RO R A R R L A )
[T R N - R A ]
[T R A I R A ]

A K O J T % & 7 & 5 4 3 2 | R SR R G N R TR R R e S e A K @ J T % & 7 & 5 4 3 2

Figure 6: Progressive weight tables for one opponent in the example hand.

Table 4 shows a possible game scenario based on the example given in Sec-
tion 3.2 (with the five players that immediately folded in the pre-flop removed).
In this hand, player EP is assumed to be a default player rather than the well-
modeled tight opponent described previously. Figure 6 shows Poki’s weight
table for EP at three stages of the hand (pre-flop, flop, and river). In each fig-
ure, darker cells correspond to higher relative weights. Suited hands are shown
in the upper right portion of the grid, and unsuited hands are on the lower
left. The program gathers more information as the hand is played, refining the
distribution of hands that are consistent with the betting actions of EP.

5.2.5 Probability Triples and Evaluation Functions

A probability triple is an ordered triple of values, PT = {f, ¢, r}, such that
f + ¢ + r = 1.0, representing the probability distribution that the next
betting action in a given context is a fold, call, or raise, respectively. This
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representation of future actions (analogous to a mized strategy in game theory)
is used in three places in Poki:

1. The basic betting strategy uses a probability triple to decide on a course
of action (fold, call, or raise).

2. The opponent modeling component (Section 6) uses an array of probability
triples to update the opponent weight tables.

3. In a simulation-based betting strategy (Section 5.3) probability triples are
used to choose actions for simulated opponent hands.

Hand strength (HS), potential (PPot, NPot), and effective hand strength
(EHS), are simple algorithms for capturing some of the probabilistic informa-
tion needed to make a good decision. However, there are many other factors
that influence the betting decision. These include things like pot odds, implied
odds, relative betting position, betting history of the current hand, etc. Hence
the probability triple generation routine consists of ad hoc rules and formulas
that use EHS, the opponent model, game conditions, and probability estimates
to assess the likelihood of each possible betting action. A professional poker
player (Billings) defined this system based on crude estimates of the return on
investment for each betting decision. We refer to this as either a rule-based or
formula-based betting strategy. The precise details of this procedure will not
be discussed, as they are of limited scientific interest.

An important advantage of the probability triple abstraction is that most
of the expert-defined knowledge in Poki has been gathered together into the
triple-generation routines. This is similar to the way that external knowledge
is restricted to the evaluation function in alpha-beta search. The probability
triple framework allows the “messy” elements of the program to be amalgamated
into one component, which can then be treated as a black box by the rest of
the system. Thus, aspects like Hold’em-specific knowledge, complex expert-
defined rule systems, and knowledge of human behavior are all separated from
the engine that uses this input for its calculations. The essential algorithms
should be applicable to other poker variants with little or no modification, and
perhaps to substantially different domains.

5.3 Selective Sampling and Simulation-based Betting Strat-
egy

Having an expert identify all the betting rules necessary to play poker is time
consuming and difficult. The game is strategically complex, and decisions must
be based on the exact context of the current game, and historical information
of past sessions. A system based on expert rules is unlikely to produce a world-
class level of play, because covering every relevant situation in sufficient detail is
not feasible. We believe that dynamic, adaptive, computer-oriented techniques
will be essential to compete with the best human players.

As mentioned above, a knowledge-based betting strategy is analogous to a
static evaluation function in deterministic perfect information games. Given the
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current state of the game, it attempts to determine the action that yields the
best result. The corresponding analogue would be to add search to the evalua-
tion function. While this is easy to achieve in a game such as chess (consider all
possible moves as deeply as resources permit), the same approach is not directly
applicable to poker. There are fundamental differences in the structure of im-
perfect information game trees, and the total number of possibilities to consider
is prohibitive.

Toward this end, Poki supports a simulation-based betting strategy. It con-
sists of playing out many likely scenarios, keeping track of how much money
each decision will win or lose. Every time it faces a decision, Poki invokes the
Simulator to get an estimate of the expected value (EV) of each betting action
(see the dashed box in Figure 2, with the Simulator replacing the Action Selec-
tor). A single trial consists of playing out the hand from the current state of
the game through to the end. Many trials produce a full-information simulation
(which is not to be confused with the simpler roll-out simulations mentioned in
Section 5.1).

Each trial is played out twice—once to consider the consequences of a check
or call, and once to consider a bet or raise. In each trial, a hand is assigned to
each opponent, based on the probabilities maintained in their weight table. The
resulting instance is simulated to the end, and the amount of money won or lost
is determined. Probability triples are used to determine the future actions of
Poki and the opponents, based on the two cards they are assigned for that trial
and threshold values determined by the specific opponent model. The average
over all trials in which we check or call is the call FV, and the average for the
matching trials where we bet or raise is the raise EV. The fold EV can be
calculated without simulation, since there is no future profit or loss.

In the current implementation, we simply choose the action with the greatest
expectation. If two actions have the same expectation, we opt for the most
aggressive one (prefer a raise, then a call, then a fold). To increase the program’s
unpredictability, we can randomize the selection between betting actions whose
EVs are close in value, but the level of noise in the simulation already provides
some natural variation for close decisions.!*

Enumerating all possible opponent hands and future community cards would
be analogous to exhaustive game tree search, and is impractical for poker. Sim-
ulation is analogous to a selective expansion of some branches of a game tree. To
get a good approximation of the expected value of each betting action, one must
have a preference for expanding and evaluating the nodes that are most likely
to occur. To obtain a correctly weighted average, all of the possibilities must be
considered in proportion to the underlying non-uniform probability distribution
of the opponent hands and future community cards. We use the term selective
sampling to indicate that the assignment of probable hands to each opponent
is consistent with this distribution.

14yUnfortunately, this simple approach does convey some useful information to observant
opponents, in that the strength of our hand and the betting level are too closely correlated.
Moving toward a near-optimal mixed strategy would provide better information-hiding, and
may be necessary to reach the world-class level.
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At each betting decision, a player must choose a single action. The choice
is strongly correlated to the quality of the cards that they have, and we can
use the opponent model and formula-based betting strategy to compute the
likelihood that the player will fold, call, or raise in each instance. The player’s
action is then randomly selected based on this probability distribution, and the
simulation proceeds. As shown in Figure 2, the Simulator calls the opponent
model to obtain each of our opponent’s betting actions and our own actions.
Where two or three alternatives are equally viable, the resulting EVs should be
nearly equal, so there is little consequence if the “wrong” action is chosen.

It is reasonable to expect that the simulation approach will be better than
the static approach, because it essentially uses a selective search to augment and
refine a static evaluation function. Barring serious misconceptions, or bad luck
on a limited sample size, playing out many relevant scenarios will improve the
estimates obtained by heuristics alone, resulting in a more accurate assessment
overall.

As seen in other domains, we find that the search itself contains implicit
knowledge. A simulation contains inherent information that improves the basic
evaluation, such as:

e hand strength (fraction of trials where our hand is better than the one
assigned to the opponent),

e hand potential (fraction of trials where our hand improves to the best, or
is overtaken), and

e subtle considerations not addressed in the simplistic betting strategy (eg.
implied odds, extra bets won after a successful draw).

It also allows complex strategies to be uncovered without providing
additional expert knowledge. For example, simulations produce advanced
betting tactics like check-raising as an emergent property, even if the basic
strategy used within each trial is incapable of this play.

At the heart of the simulation is the evaluation function, discussed in Sec-
tion 5.2.5. The better the quality of the evaluation function, the better the
simulation results will be. Furthermore, the evaluation system must be compat-
ible and harmonious with the nature of the simulations. Since the formula-based
betting strategy was developed and tuned for the original system, it may not be
entirely consistent or appropriate for use in the simulation-based version. It is
possible that built-in biases which were useful (or compensated for) in the orig-
inal version are sources of serious systemic error when used as the evaluation
function for simulations. It may be the case that a simpler function would be
more balanced, producing better results.

One of the interesting results of work on alpha-beta search is that even a
simple evaluation function can result in a powerful program. We see a similar
situation in poker. The implicit knowledge contained in the search itself im-
proves the basic evaluation, refining the quality of the approximation. As with
alpha-beta, there are important tradeoffs to consider. A more sophisticated
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evaluation function can reduce the size of the tree, at the cost of more time
spent on each node. In simulation analysis, we can improve the accuracy of
each trial, but at the expense of reducing the total number of trials performed
in real-time.

Variations of selective sampling have been used in other games, including
Scrabble [30], backgammon [36], and bridge [15]. Likelihood weighting is an-
other method of biasing stochastic simulations [13, 29]. In our case, the goal is
different because we need to differentiate between EVs (for call/check, bet/raise)
instead of counting events. Poker also imposes tight real-time constraints (typi-
cally a maximum of a few seconds per decision). This forces us to maximize the
information gained from a limited number of samples. The problem of handling
unlikely events (which is a concern for any sampling-based result) is smoothly
handled by the re-weighting system (Section 5.2.4), allowing Poki to dynami-
cally adjust the likelihood of an event based on observed actions. An unlikely
event with a large payoff figures naturally into the EV calculations.

6 Opponent Modeling

No poker strategy is complete without a good opponent modeling system. A
strong poker player must develop a dynamically changing (adaptive) model of
each opponent, to identify potential weaknesses.

In traditional games, such as chess, this aspect of strategy is not required
to achieve a world-class level of play. In perfect information games, it has
been sufficient to play an objectively best move, without special regard for the
opponent. If the opponent plays sub-optimally, then continuing to play good
objective moves will naturally exploit those errors. Opponent modeling has been
studied in the context of two-player games, but the research has not translated
into significant performance benefits [8, 17, 18].

In poker, the situation is different. Two opponents can make opposite kinds
of errors—both can be exploited, but it requires a different response for each.
For example, one opponent may bluff too much, the other too little. We adjust
by calling more frequently against the former, and less frequently against the
latter. To simply call with the optimal frequency would decline an opportunity
for increased profit, which is how the game is scored. Even very strong players
can employ radically different styles, so it is essential to try to deduce each
opponent’s basic approach to the game, regardless of how well they play.

6.1 RoShamBo

The necessity of modeling the opponent is nicely illustrated in the game of
RoShamBo (also known as Rock-Paper-Scissors). This is a well-known “kid’s
game”, where each player chooses an action simultaneously, and there is a cyclic
set of outcomes: scissors beats paper, paper beats rock, and rock beats scissors
(choosing the same action results in a tie). The game-theoretic optimal strategy
for this zero sum game is also well-known: one chooses any of the three actions

25



uniformly at random. However, the optimal strategy is oblivious to opponent
actions, and is not exploitive. The best one can do using the optimal strategy
is to break even in the long run (an expected value of zero, even if the opponent
always goes rock). Contrary to popular belief, the game is actually very complex
when trying to out-guess an intelligent opponent.

The International RoShamBo Programming Competition'® is an annual con-
test for programs that play Rock-Paper-Scissors [3]. More than 50 entries were
submitted from all over the world for each competition. Every program plays
every other program in a round-robin tournament, with each match consisting
of 1,000 games. Scores are based on total games won, and on the match results
(with the match declared a draw if the scores are not different by a statistically
significant margin). Since the optimal strategy can only draw each match, it
consistently finishes in the middle of the pack, and has no chance of winning
the tournament.

The authors of the top entries, including some well-known AT researchers,
have commented that writing a strong RoShamBo program was much more
challenging than they initially expected [4, 11]. The best programs do sophis-
ticated analysis of the full history of the current match in order to predict the
opponent’s next action, while avoiding being predictable themselves. Programs
that used a simple rule-base for making their decisions consistently finished near
the bottom of the standings. All of the top programs define completely general
methods for pattern detection, some of which are remarkably elegant. Given
the simple nature of RoShamBo, some of these nice ideas may be applicable to
the much more complex problems faced by a poker playing system.

6.2 Statistics-based Opponent Modeling

In poker, opponent modeling is used in at least two different ways. We want a
general method of deducing the strength of the opponent’s hand, based on their
actions. We also want to predict their specific action in a given situation.

At the heart of an opponent modeling system is a predictor. The predictor’s
job is to map any given game context into a probability distribution over the
opponent’s potential actions. In limit poker, this distribution can be represented
by a probability triple {Pr(fold), Pr(call), Pr(raise)}.

One way to predict an opponent action would be to use our own betting
strategy, or some other set of rules, to make a rational choice on behalf of
the opponent. When we use this type of fixed strategy as a predictor, we are
assuming the player will play in one particular “reasonable” manner, and we
refer to it as generic opponent modeling (GOM).

Another obvious method for predicting opponent actions is to expect them to
continue to behave as they have done in the past. For example, if an opponent
is observed to bet 40% of the time immediately after the flop, we can infer
that they will normally bet with the top 40% of their hands in that situation
(including a certain percentage of weak hands that have a good draw). When

15See http://www.cs.ualberta.ca/ games.
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we use an opponent’s personal history of actions to make predictions, we call it
specific opponent modeling (SOM).

Our first opponent modeling effort was based on the collection of simple
statistical information, primarily on the betting frequencies in a variety of con-
texts. For example, a basic system distinguishes twelve contexts, based on the
betting round (pre-flop, flop, turn, or river), and the betting level (zero, one,
or two or more bets). For any particular situation, we use the historical fre-
quencies to determine the opponent’s normal requirements (i.e. the average
effective hand strength) for the observed action. This threshold is used as input
into a formula-based betting strategy that generates a mized strategy of rational
actions for the given game context (see Section 5.2.5).

However, this is a limited definition of distinct contexts, since it does not ac-
count for many relevant properties, such as the number of active opponents, the
relative betting position, or the texture of the board cards (eg. whether many
draws are possible). Establishing a suitable set of conditions for defining the
various situations is not an easy task. There are important trade-offs that deter-
mine how quickly the algorithm can learn and apply its empirically discovered
knowledge. If a context is defined too broadly, it will fail to capture relevant
information from very different circumstances. If it is too narrow, it will take
too long to experience enough examples of each scenario, and spotting general
trends becomes increasingly difficult. Equally important to deciding how many
equivalence classes to use is knowing what kinds of contextual information are
most relevant in practice.

Furthermore, there are many considerations that are specific to each player.
For example, some players will have a strong affinity for flush draws, and
will raise or re-raise on the flop with only a draw. Knowing these kinds of
personality-specific characteristics can certainly improve the program’s perfor-
mance against typical human players, but this type of modeling has not yet
been fully explored.

Opponent modeling in poker appears to have many of the characteristics
of the most difficult problems in machine learning—noise, uncertainty, an un-
bounded number of dimensions to explore, and a need to quickly learn and
generalize from relatively small number of heterogeneous training examples.'8
As well, the real-time nature of poker (a few seconds per betting decision) limits
the effectiveness of most popular learning algorithms.

6.3 Neural Networks-based Opponent Modeling

To create a more general system for opponent modeling, we implemented a
neural network for predicting the opponent’s next action in any given context.
Guessing the next action is useful for planning advanced betting strategies, such
as a check-raise, and is also used in each trial of a full-information simulation
(see Section 5.3).

16By “heterogeneous” we mean that not all games and actions reveal the same type
or amount of information. For example, if a player folds a hand, we do not get to see
their cards.
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Figure 7: A neural network predicting an opponent’s future action.

A standard feed-forward neural net was trained on contextual data collected
from online games against real human opponents. The networks contain a set
of nineteen inputs corresponding to properties of the game context, such as the
number of active players, terture of the board, opponent’s position, and so on.
These are easily identified factors that may either influence, or are correlated
with a player’s next action.

The output layer consists of three nodes corresponding to the fold, call, and
raise probabilities. Given a set of inputs, the network will produce a probability
distribution of the opponent’s next action in that context (by normalizing the
values of the three output nodes).

By graphically displaying the relative connection strengths, we are able to
determine which input parameters have the largest effects on the output. After
observing networks trained on many different opponents, it is clear that certain
factors are dominant in predicting the actions of most opponents, while other
variables are almost completely irrelevant. The accuracy of these networks
(and other prediction methods) is measured by cross-validating with the real
data collected from past games with each opponent. Details are available in a
previous paper [10].

Figure 7 shows a typical neural network after being trained on a few hundred
hands played by a particular opponent. The inputs are the on the top row,
with the activation level ranging from zero (fully white) to one (fully black).
The thickness of the lines represent the magnitude of the weights (black being
positive, grey being negative). In this example, the connections from input node
number twelve (true if the opponent’s last action was a raise) are very strong,
indicating that it is highly correlated with what the opponent will do next. The
bottom row shows the network predicting that the opponent will probably fold,
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with a small chance of calling.

The first result of this study was the identification of new features to focus
on when modeling common opponents. This produced a relatively small set of
context equivalence classes which significantly improved the statistical opponent
modeling reported previously [10]. We are currently experimenting with using a
real-time neural network system to replace the frequency table method entirely.
Preliminary results from games with both human and computer opponents sug-
gest that this may lead to a dramatic improvement.

7 Performance Evaluation

Measuring the performance of a poker-playing program is difficult. Poki is a
complex system of interacting components, and changing a single component
often has cascading effects, leading to unpredictable and unforeseen behavior.
We have employed a variety of methods for assessing the program, but none of
them is completely adequate.

7.1 Experimental Methodology

Poker is a game of high variance, and the element of luck dominates the outcome
of any one hand. Among evenly matched players, the effects of good or bad
fortune are still significant even after several thousand hands. Measurements are
always susceptible to high levels of noise and anomalous games. Furthermore,
players are constantly adapting during this time, improving their understanding
of each opponent, or changing styles to make it more difficult for others to form
an accurate model of them.

Self-play experiments are a simple way to test new features, by playing
older versions of the program against newer versions. This provides an easily
controlled closed environment, where many thousands of hands can be played
quickly.

To reduce variance we use a duplicate tournament system similar to that
used in duplicate bridge. Since each hand can be played with no memory of
preceding hands, in a ten-player game each deal of the cards can be replayed ten
times, shuffling the seating arrangement each time so that every player holds
each hand once. This reduces the amount of noise considerably, and also reduces
the effects of relative seating position (for example, it would be advantageous to
always act immediately after a particularly aggressive or unpredictable player).
However, this method still admits a lot of variance. For example, one player
might choose to fold a marginal hand whereas another might play in that same
situation, possibly winning or losing many bets.

Another assessment method attempts to compute an objective measurement
of the expected value for each decision, using the perfect information of the
actual situation. For example, a weak looking hand might actually win 20% of
the time against the current field, and the EV for making a “loose call” in that
situation might be +0.6 bets, compared to -0.6 bets for a more conservative
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fold, or -0.2 bets for a raise. When comparing two or more players, this kind
of specific evaluation of an action can be applied to the first differing decision
of each deal, since the subsequent betting actions are not comparable (being
different contexts). While this method is attractive in principle, it is somewhat
difficult to define a reliable EV measure for all situations, and consequently it
has not been used extensively to date.

The major drawback of self-play experiments is that they lack the wide
variety of styles and game conditions exhibited by real players. Other researchers
have previously commented on the “myopia” of self-play games in chess [2].
The problem is much more acute and limiting for the development of a poker-
playing system, because the style of the opponent is of paramount importance to
correct play. A program that does very well against normal opponents may be
vulnerable to a particular type of erratic or irrational player, even if their play
is objectively worse. Although we try to create a variety of computer opponents
by varying parameter settings of the players (eg. percentage of hands played,
aggressiveness, advanced betting strategies, etc.), the range of styles is still much
more restricted than that of human opponents.

Even with a carefully selected, well-balanced field of artificial opponents, it is
important to not over-interpret the results of any one experiment. Often all that
can be concluded is the relative ranking of the algorithms amongst themselves.
One particular strategy may dominate in a self-play experiment, even though
another approach is more robust in real games against human opponents.

A good demonstration of this limitation was seen in the testing of early
simulation-based betting strategies. The results of self-play experiments were
very encouraging, and occasionally spectacular. However, this was largely due
to the pure aggressiveness of the new strategy, which was particularly effective
at exploiting the overly conservative nature of its computer opponents at that
time. When testing the new betting strategy in online games, it was much less
successful against reasonably strong human opposition, who were able to adapt
quickly.

For this reason, playing games against real human opponents is still in-
dispensable for proper evaluation. Unfortunately, this entails other sources of
inaccuracy.

A poker program can participate in a real game with willing participants,
using a laptop computer on the table. This turns out to be surprisingly difficult,
due to the fast pace of a real game and the amount of information to be entered.
Even with numerous single-character accelerators, text entry is a bottleneck to
the process. A well-designed graphical interface might help considerably, and an
automatic card-reader (eg. a bar-code scanner) could prevent the operator from
giving away useful information, since only the program would know its hand.
However, it may always be more practical to have human players participate in
a virtual game, rather than having programs compete in the physical world.

For more than three years, our programs have regularly participated in on-
line poker games against human opposition on the Internet Relay Chat (IRC).
Players connect to the IRC poker server and participate in numerous games that
are conducted by dedicated software. No real money is at stake, but the accu-
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mulated bank-roll for each player is preserved between sessions, and a variety of
statistics are maintained. There is a hierarchy of games for limit Hold’em, and
a player must win a specified amount in the introductory level games to qualify
for the higher tiered games.

These lowest level games (open to everyone) vary from wild to fairly normal,
offering a wide variety of game conditions to test the program. The second
and third tier games resemble typical games in a casino or card room. Most
of these players take the game seriously, and some are very strong (including
some professionals). Since Poki has been a consistent winner in these higher
tiered games (and is in the top 10% of all players on the server), we believe the
program plays better than the average player in a low-limit casino game.

Recently, several online poker servers have begun offering real-money games
played over the Internet. The response has been very favorable, and it is normal
to have more than 1,000 players logged into a virtual card room at any given
time. With the agreement of the entrepreneurs, this might provide a future
venue for testing programs in a completely realistic setting.

Another form of online poker is a free Java web applet, where users can play
at a table with poker programs and other people. Poki currently hosts such a
facility, which provides an interesting hybrid between self-play experiments and
games against humans.'”

While online poker is useful for measuring the progress of a program, it is not
a controlled environment. The game is constantly changing, and positive results
over a given time-frame can easily be due to playing against a weaker set of
opponents, rather than actual improvements to the algorithm. Considering that
it may take thousands of hands to measure small improvements, it is difficult to
obtain precise quantified results. There is also no guarantee that an objectively
stronger program will be more successful in this particular style of game. Certain
plays that might be good against master players could be inappropriate for the
more common opponents in these games. Moreover, regular players may have
acquired a lot of experience against previous versions of Poki, making it difficult
to achieve the same level of performance.

As aresult, it is still beneficial to have a master poker player review hundreds
of hands played by the program, looking for errors or dubious decisions. Needless
to say, this is a slow and laborious method of assessment. A human master can
also play against one or more versions of the program, probing for weaknesses
or unbalanced strategy. Based on these direct encounters, we believe Poki is an
intermediate level player, but has not yet reached the master level.

7.2 Experimental Results

The unit of measurement for program performance is the average number of
small bets won per hand (sb/hand). For example, in a game of $10/$20 Hold’em
with 40 hands per hour, an income rate of +0.05 sb/hand translates into $20
per hour. Human players sometimes use this metric in preference to dollars per

17See http://www.cs.ualberta.ca/"games.
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Figure 8: Poki’s performance on the IRC poker server (introductory level
games).

hour, since it is not dependent on the speed of play, which can vary from 20 to
60 hands per hour.

Since no variance reduction methods are available for online games, we gen-
erally test new algorithms for a minimum of 20,000 hands before interpreting
the results. On this scale, the trends are usually clear and stable amid the noise.
Unfortunately, it can take several weeks to accumulate this data, depending on
the popularity of the online game in question.

Any embellishment resulting in an improvement of +0.05 sb/hand in self-
play experiments against previous versions is considered to be significant. How-
ever, this does not always translate into comparable gains in actual games, as
many factors affect the ultimate win rate. Nevertheless, the program has made
steady progress over the course of the project. In recent play on the IRC poker
server, Poki has consistently performed between +0.10 and +0.20 sb/hand in
the lowest level games, and between +0.07 and +0.10 sb/hand in the higher
tiered games against stronger opposition.

The results of simulation-based betting strategies have so far been inconsis-
tent. Despite some programming errors that were discovered later, the earli-
est (1998) versions of simulation-based Loki outperformed the regular formula-
based version in both self-play experiments (+0.10 & 0.04 sb/hand), and in the
introductory level games of IRC (40.13 sb/hand vs +0.08 sb/hand). However,
it lost slowly in the more advanced IRC games, whereas the regular version
would at least break even.

The more recent versions are substantially stronger, but a similar pattern is
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Figure 9: Poki’s performance on the web applet.

apparent. Figure 8 shows that both the regular betting strategy (labeled “poki”)
and the simulation-based betting strategy (labeled “pokisim-S”) win at about
+0.20 sb/hand in the introductory level games on the IRC poker server. It is
quite likely that differences in playing strength cannot be demonstrated against
this particular level of opposition, since both may be close to their maximum
income rate for this game. In other words, there are diminishing returns after
achieving a very high win rate, and further improvement becomes increasingly
difficult. However, there is a clear difference in the more advanced games,
where the regular betting strategy routinely wins at about 4+0.09 sb/hand, but
the simulation-based version could only break even (peaking at +0.01 sb/hand
after 5,000 hands, but returning to zero after 10,000 hands).

When the simulation-based versions were introduced, some of the credit for
their success was probably due to the solid reputation that the more conser-
vative versions of Poki had previously established. Many opponents required
several hundred hands to adjust to the more aggressive style resulting from the
simulations. However, the stronger opposition was able to adapt much quicker,
and learned to exploit certain weaknesses that had not been detrimental against
weaker players.

Figure 9 shows some recent results using the online web applet. This game
consists of several computer players (some of which are intentionally weaker than
the most recent versions of Poki), and at least one human opponent at all times.
Since the artificial players are quite conservative, this game is quite a bit tighter
than most IRC games, and the win rate for the regular formula-based betting
strategy is +0.13 sb/hand. The simulation-based betting strategy performs at
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+0.08 sb/hand, indicating that this particular set of opponents are much less
vulnerable to its strategy differences than the players in the introductory IRC
games.

A new simulation-based player (labeled “pokisim-A”) maintains three dif-
ferent methods for opponent modeling (statistical frequencies, the rule-based
method used by Poki, and a real-time neural network predictor), and uses
whichever one has been most successful for each opponent in the past. Not
surprisingly, it outperforms the single approach, earning +0.12 sb/hand, for a
50% overall improvement in this particular game. This is roughly the same de-
gree of success as the formula-based strategy (“poki”), despite the fact that the
original system has benefited from much more tuning, and that the underlying
evaluation function was not designed for this fundamentally different approach.

We note that the variance is quite a bit higher in this experiment, which is the
more common situation.'® The results could be quite misleading if interpreted
after only 5,000, or even after 15,000 hands. The two bottom lines cross over at
15,000 hands, but “pokisim-S” is lower before and after that point.

There have been hundreds of self-play experiments over the last few years,
testing individual enhancements, and the effects of different game conditions.
We refer the reader to our previous publications for further details [5, 6, 7, 10,
24, 25, 217].

8 A Framework for Non-Deterministic Game-
Playing Programs

Using simulations for non-deterministic games is not new. Consider the follow-
ing three games:

1. In Scrabble, the opponent’s tiles are unknown, so the outcome of future
turns must be determined probabilistically. A simulation consists of re-
peatedly generating a plausible set of tiles for the opponent. Each trial
might involve a two ply or four ply search of the game tree, to deter-
mine which move leads to the maximum gain in points for the program.
A simulation-based approach has been used for a long time in Scrabble
programs. Brian Sheppard, the author of the Scrabble program Maven,
coined the term “simulator” for this type of game-playing program struc-
ture [30].

2. In backgammon, simulation is used for “rollouts” of the remainder of a
game, and are now generally regarded to be the best available estimates
for the equity of a given position. A simulation consists of generating a
series of dice rolls, and playing through to the end of the game with a
strong program choosing moves for both sides. Gerry Tesauro has shown

18The relatively low variance in the previous figure may again be a result of both
programs being close to maximal gains against that particular level of opposition.
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that relatively simple rollouts can achieve a level of play comparable to
the original neural network evaluation function of T'D-Gammon [36, 37].

3. In bridge, the cards of other players are hidden information. A simulation
consists of assigning cards to the opponents in a manner that is consistent
with the bidding. The hand is then played out and the result determined.
Repeated deals are played out to decide which play produces the highest
probability of success. Matt Ginsberg has used this technique in GIB to
achieve a world-class level for play of the hand [15].

In the above examples, the programs are not using traditional Monte Carlo
simulation to generate the unknown information. They use selective sampling,
biased to take advantage of all the available information. In each case, and in
poker, we are using information about the game state to skew the underlying
probability distribution, rather than assuming a uniform or other fixed probabil-
ity distribution. Monte Carlo techniques might eventually converge on the right
answer, but selective sampling allows reduced variance and faster convergence.

In the Scrabble example, Maven does not assign tiles for the opponent by
choosing from the remaining unknown tiles uniformly at random. It biases its
choice to give the opponent a “nice” hand, because strong players usually make
plays that leave them with good tiles for future turns (such as letters that may
score the 50 point bonus for using all tiles). It also samples without replacement,
to ensure that every remaining tile is selected equally often, thereby reducing
the natural variance [30]. In backgammon, future dice rolls are generated ran-
domly, but the choice of moves is made by an external player agent. In bridge,
the assignment of cards to an opponent is subject to the information obtained
from the bidding. If one opponent has indicated high point strength, then the
assignment of cards to that opponent reflects this information [15].

The alpha-beta framework has proven to be an effective tool for the design
of two-player, zero-sum, deterministic games with perfect information. It has
been around for more than 30 years, and in that time the basic structure has not
changed much (although there have been numerous algorithmic enhancements
to improve the search efficiency). The search technique usually has the following
properties:

1. The search is full breadth, but limited depth. That is, all move alternatives
are considered, except those that can be logically eliminated (such as
alpha-beta cutoffs).

2. Heuristic evaluation occurs at the leaf nodes of the search tree, which are
interior nodes of the game tree.

3. The search gets progressively deeper (iterative deepening), until real-time
constraints dictate that a choice be made.

The alpha-beta algorithm typically uses integer values for positions and is
designed to identify a single “best” move, not differentiating between other
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SimulationFramework()

{
obvious_move = NO
trials = 0
while( ( trials <= MAX_TRIALS ) and ( obvious_move == NO ) )
{
trials = trials + 1
position = current_state_of_the_game +
( selective_sampling to generate missing information )
for( each legal move m )
{
value[m] += PlayOut( position.m, info )
}
if( exists i such that valuel[il >> valuel[jl1( forall j # i ) )
{
obvious_move = YES
}
}
select move based on valuel[]
}

Figure 10: Framework for two-player, zero-sum, imperfect information games.

moves. The selection of the best move may be brittle, in that a single node mis-
evaluation can propagate to the root of the search and alter the move choice.
As the search progresses, the bounds on the value of each move are narrowed,
and the certainty of the best move choice increases. The deeper the search, the
greater the confidence in the selected move, and after a certain point there are
diminishing returns for further search.

In an imperfect information game of respectable size, it is impossible to
examine the entire game tree of possibilities [19]. This is especially true for
poker because of the many opponents, each making their own decisions. The
pseudo-code for the proposed method of selective sampling is shown in Figure 10
[5]. This approach has the following properties:

1. The search is full depth, but limited breadth. That is, each line is played
out to the end of the game (in poker, to the showdown or until one player
wins uncontested).

2. Heuristic evaluation occurs at the interior nodes of the search tree to
decide on future moves by the players. Outcomes are determined at the
leaf nodes of the game tree, and are 100% accurate.

3. The search gets progressively wider, performing trials consistent with the
probability distribution of hidden information, until real-time constraints
dictate that a choice be made.
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Figure 11: Comparing two search frameworks.

The expected values of all move alternatives are computed, and the resulting
choice may be a randomized mized strategy. As the search progresses, the values
for each move become more precise, and the certainty of the best move choice
increases.!® The more trials performed, the greater the confidence in the selected
move, and after a certain point there are diminishing returns for performing
additional trials.

Although the move sequences examined during an alpha-beta search are sys-
tematic and non-random, it can be viewed as a sampling of related positions,
used as evidence to support the choice of best move. In the case of selective
sampling, the evidence is statistical, and the confidence can be measured pre-
cisely. The two contrasting methods are depicted in Figure 11, with alpha-beta
search on the left and simulation-based search on the right.

As noted previously, it is not essential to continue each trial to the end of
the game. In non-deterministic games, the expected value of internal game
tree nodes can also be heuristically estimated with a score (as in Scrabble), an
evaluation function (as in backgammon), or other methods (such as the roll-out
simulations described in Section 5.1).

An important feature of the simulation-based framework is the notion of
an obvious move. Although some alpha-beta programs try to incorporate an
obvious move feature, the technique is usually ad hoc and based on programmer
experience, rather than a sound analytic technique (an exception is the B*
proof procedure [1]). In the simulation-based framework, an obvious move is
well-defined. If one choice exceeds the alternatives by a statistically significant
margin, we can stop the simulation early and take that action, with precise
knowledge of the mathematical validity of the decision. Like alpha-beta pruning,
this early cut-off may prove to be an effective means for reducing the required
amount of search effort, especially if it is applied at all levels of the imperfect
information game tree.

The proposed framework is not a complete ready-made solution for non-
deterministic games, any more than alpha-beta search is the only thing required
for high-performance in a particular deterministic game. As discussed in Sec-

9The “best” move is somewhat subjective. Here we do not consider certain plays,
such as deliberately misrepresenting the hand to the opponents.
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tion 5.3, there are many trade-offs to be considered and explored. One must
find a good balance between the amount of effort spent on each trial, and the
total number of trials completed in the allotted time. There are many different
ways to create an evaluation function, and as with other strong game programs,
speed and consistency may be more important than explicit knowledge and
complexity.

9 Conclusions and Future Work

Poker is a complex game, with many different aspects, from mathematics and
hidden information to human psychology and motivation. To master the game,
a player must handle all of them at least adequately, and excel in most. Strong
play also requires a player to be adaptive and unpredictable — any form of
fixed recipe can and will be exploited by a good opponent. Good players must
dynamically alter their style, based on the current game conditions and on
historical knowledge (including past sessions). In contrast, traditional games
like chess are somewhat homogeneous in nature, where one can focus very deeply
on one particular type of strategy.

Like other computer game-playing research, poker has a well-defined goal,
and the relative degree of success is measurable — whether the program plays the
game well, or doesn’t. We have resisted the temptation of focusing only on the
clearly tractable problems, in favor of grounding the research on those topics
that actually affect the bottom line the most. As a result, developing Poki has
been a cyclic process. We improve one ability of the program until it becomes
apparent that another property is the performance bottleneck. Some of the
components in the current system are extremely simplistic (such as a constant
where a formula or an adaptive method would be better), but do not yet appear
to limit overall performance. Others have received much more attention, but
are still woefully inadequate.

Human poker players are very good at understanding their opponent, often
forming an accurate model based on a single data point (and occasionally before
the first hand is dealt!). Programs may never be able to match the best players
in this area, but they must at least try to reduce the gap, since they can clearly
be superior in other aspects of the game. Although Poki has successfully used
opponent modeling to improve its level of play, it is abundantly clear that these
are only the first steps, and there are numerous opportunities for improvement.

For example, the current system becomes slower to adjust as more infor-
mation is collected on a particular opponent. This “build-up of inertia” after
thousands of data points have been observed can be detrimental if the player
happens to be in an uncommon mood that day. Moreover, past success may
have largely been due to opponents staying with a fixed style that does not
vary over time (most computer opponents certainly have this property). It is
much more difficult to track good players who constantly “change gears” for
a relatively brief time. Although recent actions are mixed with the long-term
record, a superior historical decay function could allow the system to keep up
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with current events better.

It is easy to gather lots of data on each opponent, but it is difficult to discern
the most useful features. It is possible that simpler metrics may be better
predictors of an opponent’s future behavior. There are also several techniques
in the literature for learning in noisy domains where one must make inferences
based on limited data, which have not yet been explored.

For the simulations, the major problem is the high variance in the results.
Even with noise reduction techniques, the standard deviation can still be high.
Faster machines and parallel computations might help to base decisions on a
larger sample size. This eventually has diminishing returns, and our empirical
results suggest that the benefits may be small beyond a necessary minimum
number of data points (roughly 500). Once the critical minimum can be at-
tained in real-time, the more important issue is whether the trials are fair and
representative of the situation being modeled.

For the game of bridge, simulations have successfully allowed computer pro-
grams to play hands at a world-class level [15]. Nevertheless, limitations in the
simulation-based approach and the high variance have prompted Matt Gins-
berg, the author of GIB, to look at other solutions, including building the entire
search tree [16]. We too may have to look for new approaches to overcome the
limitations of simulations.

The poker project is rich in research opportunities, and there is no short-
age of new ideas to investigate. Having explored some fairly straight-forward
techniques to accomplish a reasonable level of play, we are now contemplating
re-formulations that might produce a breakthrough to a world-class level of play.
Toward this end, some of our current research has moved toward empirical tech-
niques for deriving game-theoretic near-optimal solutions for betting strategies.
We have also given more attention to two-player Hold’em, in which many of the
flaws of the current system are emphasized.

However, it is not clear if a single unifying framework is possible for poker
programs. Certain abilities, such as the accurate estimation of expected values
in real time, will eventually be well-solved. However other aspects, like opponent
modeling, are impossible to solve perfectly, since even the opponents may not
understand what drives their actions!

A Glossary of Poker Terms

This appendix contains definitions of common poker terms used in this pa-
per. More extensive poker glossaries are available on the world wide web, such
as http://www.kimberg. com/poker/dictionary.html, or http://conjelco.
com/pokglossary.html.

e All-in To have one’s entire stake committed to the current pot. Action
continues toward a side pot, with the all-in player being eligible to win
only the main pot.
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All-in Equity The expected income if the current hand was permitted
to go to the showdown with no further betting.

Bet To make the first wager of a betting round (compare raise).
Big Bet The largest bet size in limit poker. $20 in $10-$20 Hold’em.

Big Blind A forced bet made before the deal of the cards. $10 in $10-$20
Hold’em, posted by the second player to the left of the button.

Blind A forced bet made before the deal of the cards (see small blind
and big blind).

Bluff To bet with the expectation of losing if called.
Board The community cards shared by all players.
Button The last player to act in each betting round in Texas Hold’em.

Call To match the current level of betting. If the current level of betting
is zero, the term check is preferred.

Check To decline to make the first wager of a betting round (compare
call).

Check-Raise To check on the first action and then raise in the same
betting round after someone else has bet.

Community Cards The public cards shared by all players.

Connectors Two cards differing by one in rank, such as 7-6. More likely
to make a straight than other combinations.

Draw A hand with good potential to make a strong hand, such as a
straight draw or a flush draw (compare made hand).

Dry Lacking possible draws or betting action, as in a dry board or a dry
game.

Flop The first three community cards dealt in Hold’em, followed by
the second betting round (compare board).

Fold To discard a hand instead of matching the outstanding bet, thereby
losing any chance of winning the pot.

Free-Card Raise To raise on the flop intending to check on the turn.

Hand (a) A player’s private cards (two hole cards in Hold’em). (b) One
complete game, from the dealing of the cards to the showdown (or until
one player wins uncontested).

Hole Card A private card in Hold’em.
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Implied Odds The pot odds based on the probable future size of the
pot instead of the current size of the pot.

Income rate The expected amount a hand will win.

Kicker A side card, often deciding the winner when two hands are oth-
erwise tied (eg. a player holding Q-J when the board is Q-7-4 has top
pair with a Jack kicker).

Loose Game A game having several loose players.

Loose Player A player who does not fold often (eg. one who plays most
hands at least to the flop in Hold’em).

Made hand A hand with a good chance of currently being the best, such
as top pair on the flop in Hold’em (compare draw).

Mixed strategy Handling a particular situation in more than one way,
such as to sometimes call, and sometimes raise.

Near-optimal A good approximation of a game-theoretic optimal solu-
tion.

Offsuit Two cards of different suits (compare suited).

Open-Ended Draw A draw to a straight with eight cards to make the
straight, such as 6-5 with a board of Q-7-4 in Hold’em.

Outs Cards that will improve a hand to a probable winner (compare
draw).

Pocket Pair Two cards of the same rank, such as 6-6. More likely to
make three of a kind than other combinations (see set).

Pot Odds The ratio of the size of the pot to the size of the outstanding
bet, used to determine if a draw will have a positive expected value.

Pre-flop In Hold’em, the first betting round after the deal of the cards
and before the flop.

Raise To increase the current level of betting. If the current level of
betting is zero, the term bet is preferred.

Raising for a Free-card To raise on the flop intending to check on
the turn.

River The fifth community card dealt in Hold’em, followed by the
fourth (and final) betting round.

Second pair Matching the second highest community card in Hold’em,
such as having 7-6 with a board of Q-7-4.
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e Set Three of a kind, formed with a pocket pair and one card of matching
rank on the board. A powerful well-disguised hand (compare trips).

e Showdown The revealing of cards at the end of a hand to determine the
winner and award the pot.

e Side-pot A second pot for the bets made by active players after another
player is all-in.

e Slow-play To call with a strong hand, and then raise in a later betting
round, for purposes of deception.

e Small Bet The smallest bet size in limit poker. $10 in $10-$20 Hold’em.

e Small Blind A forced bet made before the deal of the cards. $5 in
$10-$20 Hold’em, posted by the first player to the left of the button.

e Suited Two cards of the same suit, such as both Hearts. More likely to
make a flush than other combinations (compare offsuit).

e Table Image The general perception other players have of one’s play.

e Table Stakes A poker rule allowing a player who cannot match the out-
standing bet to go all-in with his remaining money, and proceed to the
showdown (also see side pot).

e Texture of the Board Classification of the type of board, such as having
lots of high cards, or not having many draws (see dry).

e Tight Player A player who usually folds unless the situation is clearly
profitable (eg. one who folds most hands before the flop in Hold’em).

e Top pair Matching the highest community card in Hold’em, such as
having Q-J with a board of Q-7-4.

e Trips Three of a kind, formed with one hole card and two cards of match-
ing rank on the board. A strong hand, but not well-disguised (compare
set).

e Turn The fourth community card dealt in Hold’em, followed by the
third betting round.

e Wild Game A game with a lot of raising and re-raising. Also called an
action game.
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