Improved Opponent Modeling in Poker

Aaron Davidson, Darse Billings, Jonathan Schaeffer, Duane Szafron
Department of Computing Science, University of Alberta
Edmonton, Alberta
Canada T6G 2H1

Abstract The game of poker has many prop-
erties that make it an interesting topic for
artificial intelligence (AI). It is a game of
imperfect information, which relates to one
of the most fundamental problems in com-
puter science: how to handle knowledge that
may be erroneous or incomplete. Poker is
also one of the few games to be studied where
deriving an accurate understanding of each
opponent’s style is an essential element to
success. In developing a strong poker pro-
gram, the opponent modeling method has al-
ways been a central component of the sys-
tem. As other aspects of the program were
improved, the techniques for modeling once
again became a limiting factor to the over-
all level of play. As a result, the topic has
This paper reports on re-
cent progress achieved by improved statisti-
cal methods, which were suggested by exper-
iments using artificial neural networks.

been revisited.

Keywords: computer poker, imperfect informa-
tion, opponent modeling

1 Introduction

Poker is a challenging domain, and the goal
of producing a strong computer poker player
presents many obstacles that have not been
faced by other high-performance Al systems.
In particular, poker involves hidden informa-
tion (the opponent’s cards), many players (typ-
ically nine opponents), deception (bluffing, and
handling an opponent’s possible bluff), and
agent modeling.

The last point is the focus of this paper.

To maximize practical results, it is essential to
model every opponent, whether they be weak
or strong. In most other games, the particu-
lar style of the opponent is not very important,
because weak moves can be exploited without
changing strategy. For example, in chess we
can strive to make the objectively best move
possible, and simply ignore how the opponent
will handle any particular position. In effect,
we assume that the opponent plays perfectly
(or more precisely, plays at least as well as we
do), and this assumption does not adversely
affect our choice of “best” move.

In contrast, the method for exploiting weak
play in poker entirely depends on the type of
mistakes each opponent tends to make. Even
among very strong players, there is a wide vari-
ety of good styles, and handling each opponent
appropriately is a basic requirement for an elite
player. The best players are also proficient at
adapting to the specific conditions of a game,
which may change rapidly over time.

Poker has an underlying mathematical
structure, and in theory an optimal strategy
exists for playing against perfect opponents.
However, determining such a strategy for real
poker appears to be computationally infeasible
[1]. Furthermore, an optimal strategy would
not maximize winnings against most typical
opponents. Consequently, the issue of oppo-
nent modeling cannot be ignored, and is criti-
cal to achieving the highest level of play.!

!This point is not a given. For example, Scrabble?™
is technically a game of imperfect information; but this
does not play a large role in the overall strategy, and
has not prevented the development of a program that
is apparently stronger than all human players.

2 Texas Hold’em

The variation of poker examined in this re-
search is Texas Hold’em. This is the most
popular form of poker played in North Ameri-
can card clubs and casinos. Hold’em is gener-
ally regarded to be the most strategically com-
plex variant of poker commonly played, and is
the game of choice for determining the world
champion. Despite the richness in strategy, the
game is logistically quite simple.

In “10-20 limit Hold’em”, each player is
dealt two private hole cards, face down. The
first two players behind the dealer must post
blind bets of $5 and $10, respectively, and each
player in turn must either fold, call the current
bet, or raise an additional $10. On the comple-
tion of that first betting round, three commu-
nity cards, collectively known as the flop, are
dealt face up on the table, and another betting
round ensues, where all bets and raises are ex-
actly $10 (one small bet). Another card, called
the turn, is dealt face up, followed by a betting
round where all bets and raises are doubled to
$20 (one large bet). A final river card is dealt
face up, followed by a final betting round at
$20. If more than one player is still active (ie.
has not folded), the hole cards are exposed and
the winner is determined by the best five-card
poker hand, using any combination of the two
private cards and the five community cards. A
thorough introduction to the strategy of Texas
Hold’em can be found in [2].

Our original poker-playing program, Loki
[3, 4], has been rewritten and is now called
Poki. The program design, including evalua-
tion of hand strength, draw potential, betting
strategy, and “search” by simulation, are be-
yond the scope of this paper [3, 4].

3 Previous Opponent
Modeling System

During the course of each hand, a weight ta-
ble is maintained for each opponent. For each
possible combination of hole cards, the table
gives the probability that the opponent would

have played that hand to the present point in
the game. Since there are only 1326 two-card
combinations, it is convenient to store a value
in the range 0.0 to 1.0 for each particular hand.
This probability distribution is updated after
each opponent action, to be consistent with
the betting decisions observed throughout the
current hand. The precise details of this re-
weighting process depends on our method of
modeling each opponent.

If we do no opponent modeling at all, we ef-
fectively do not update the weight table. All
values are fixed, and the probability density
function is flat. This is a simple-minded base-
line, which ignores all opponent actions.

If we modify the weights as play proceeds,
but do it the same way for all players according
to some chosen standard for “typical” play, we
call it generic opponent modeling. For exam-
ple, we might assume that all opponents will
play the same way that we would in each par-
ticular situation. This is a vast improvement
over no modeling at all, but could be very in-
accurate for certain opponents.

Finally, specific opponent modeling treats ev-
ery player as distinct, and utilizes information
collected from all previous hands witnessed.
While this is obviously preferable to generic
opponent modeling in principle, the crude sta-
tistical methods used previously were insuffi-
cient to show a meaningful advantage. The
experiments in this paper involve some fairly
straight-forward enhancements to the existing
system, which account for more context in the
historical record of each player. The result is
a significant increase in winning rate, and a
clear superiority of the specific techniques over
a generic approach.

The basic data structure used for the oppo-
nent model is a table of betting frequencies for
various stages during the hand. The old sys-
tem consisted of counting the number of times
each player folded, called, or raised in each of
twelve particular contexts (depending on the
betting round (pre-flop, flop, turn, river) and
the number of bets to call (zero, one, two or
more)).

After each opponent action, the correspond-

ing betting frequencies were used to deter-
mine that player’s threshold, or median hand
strength, for the observed action. This in turn
was used to estimate the a posteriori probabil-
ity of each possible holding, given its connec-
tion to the community cards.

This framework was rather simplistic, as it
did not account for many relevant details, such
as number of active opponents, and betting po-
sition. For example, betting first into many
oppounents is clearly very different from betting
after a single opponent has checked; but with
the previous crude modeling, the actions under
these different conditions were merged into one
betting context. Nevertheless, a fully adaptive
re-weighting system based on this information
was able to perform as well as the generic op-
ponent modeling system, which was based on
a number of expert-defined default values.

4 Improved Opponent
Modeling System

There are many other contextual factors that
could potentially affect a player’s behavior,
such as number of active players, relative bet-
ting position, size of the pot, and characteris-
tics of the community board cards (eg. the ex-
istence of flush or straight draws). Testing each
of these factors and tuning their usage would
be labourious, and not particularly interesting
from a scientific point of view.

Moreover, this approach would be contrary
to the philosophy of developing an autonomous
system which decides the best action in any
situation entirely on its own. Strategies based
on a simple rule-based approach are inherently
flawed, resulting in a system that contains se-
rious gaps and biases. We believe the inclusion
of explicit human knowledge should be avoided
whenever possible, in favour of more computer-
oriented methods. Historically, this view has
been supported by virtually every major suc-
cess in high-performance game systems, and in
many other areas of Al

Playing poker at a world-class level will re-
quire dynamic learning as play proceeds, and

the ability to adapt to the prevailing condi-
tions. As such, we have begun investigat-
ing alternative methods of accomplishing these
tasks, which potentially offer much greater
flexibility than the existing structure.

A preliminary study was conducted using an
artificial neural network (ANN) for the specific
goal of predicting an opponent’s next action,
based on a full history of a few hundred previ-
ous hands by that player [5]. One advantage of
using a neural network is that many different
parameters can be provided as input, and they
will be weighted to maximize the accuracy of
the target output, without external interven-
tion. In this way, we can filter out much of
the “noise”, and identify those features or pat-
terns that are most relevant to the given set of
data. This insight will be useful, even if the
technique itself cannot be incorporated into a
real-time system.

As a result of the ANN study, two particu-
larly strong features for prediction were identi-
fied: previous action, and previous amount to
call. These properties were added to the exist-
ing opponent modeling system to create new
contexts, and the performance of the new sys-
tem was tested empirically.

5 Experimental Results

Poki plays on an online poker server on the In-
ternet Relay Chat (irc.poker.net). Several dif-
ferent poker channels are available, and each
game is administered by a dedicated program,
or “bot”, which deals the cards and prompts
each player in turn for an action. No real
money is at stake, but statistics are main-
tained between sessions. All users are eligible
to play in the entry level games, called #hol-
deml. Players who accumulate a large enough
bankroll by winning at this level are permit-
ted to play in a more advanced game, called
#holdem2. Although the participants are only
playing for pride, the majority of people take
the game seriously, so it is usually similar to a
game in a casino.

This venue has been an important testbed

throughout the development of the program.
The empirical data gathered in play against ac-
tual human opponents has consistently proven
to be more reliable than the results of self-
play experiments. While playing the pro-
gram against other versions of itself is a use-
ful diagnostic tool, the inherent biases (“near-
sightedness”) of this form of testing make real-
world experiments indispensable.

The training data for the neural network was
based on log files of actual hands played on
the IRC poker server by particular opponents.
This data was fed into a standard feed-forward
ANN (also known as a multilayer perceptron)
with four nodes in the hidden layer, and three
output nodes for fold, call, or raise. Nine-
teen different parameters were provided as in-
put nodes, including all of the properties men-
tioned previously. The back propagation algo-
rithm for neural networks (effectively a local
hill-climbing method) was used on repeated it-
erations of the training data to maximize the
prediction of all post-flop betting decisions by
that player.

The results of these off-line computations
were very encouraging. The actions of real op-
ponents (on independent test data) could rou-
tinely be predicted with 80% accuracy, and up
to 90% in some cases.

Table 1 demonstrates the accuracy of a typ-
ical network with a so-called “confusion ma-
trix” [5]. The columns indicate the predicted
frequencies of fold, call and raise, and the rows
give the actual frequencies. Values on the main
diagonal are correct predictions. For example,
3.3% of the time, the neural net predicted that
an opponent would raise when they actually
called.

Knowing the type of error the network is
prone to make is also useful information, be-
cause not all errors are equally serious. For
example, incorrectly predicting that an oppo-
nent will fold can result in a significant error in
the calculation of expected value. This was the
source of some erratic behavior in previous bet-
ting strategies based on run-time simulations.
As we can see from the confusion matrix, this
type of error is negligible for this particular

Prediction
‘ H fold ‘ call ‘ raise H % ‘
fold || 13.0 | 0.3 0.3 || 13.6
call 0.0 | 58.4 3.3 || 61.8
raise 0.0 | 10.5 | 14.1 || 24.7

| % [[13.0]69.3] 17.7 [85.6 |

Actual

Table 1: Neural Net Prediction Accuracy

network and opponent.

Figure 1 is an illustration of a neural net pre-
dicting the opponent’s next action in a particu-
lar context. The black area within a node rep-
resents the internal value (solid black is 100%),
and the thickness of a line corresponds to the
strength of that particular signal. Black lines
represent a positive correlation, whereas grey
lines indicate an inverse relationship. Input 12
is the previous bets to call, while input 11 is
the previous action (check/call or bet/raise).

We compared the ANN results to the pre-
vious opponent modeling system directly, by
using the old system to make the same kind of
predictions on the given test data. However,
the ANN is an off-line technique, which may
or may not eventually be feasible in real time.
The results can be used to indicate which in-
put conditions have the greatest influence on
the prediction. Two of the strongest factors
that were not in the previous opponent model-
ing system were the opponent’s previous action
and the previous amount to call. These were
used to enhance the existing framework.

Table 2 compares the predictions of the
three models on seven different players, rang-
ing in ability from rather weak to fairly strong.
The table gives the number of training exam-
ples, test examples, prediction rates for the
previous, enhanced, and neural net models (in
percent), and the strength of the opponent
(their overall win rate). The ANN was able to
predict the opponent’s next action much more
reliably, about 81% of the time compared to
57% for the old system.

The program could benefit from a complete
re-design of the opponent modeling system,

Figure 1: A network after being trained on a specific opponent (predicting a raise)

i B0 B O Ve vl o' Pl
=
‘.l'
wcn | b
A
e
= ﬂlﬂ.'
¥
T o —ﬂ.-\.,-l“’w-f
" _.l_'.‘
e A e
- q_,_,""
e K
f o
. ur‘q-,d"-“—\-l-’.-HM-\-\“'*w
o L

Figure 2: Performance of Pok: with old and
new opponent modeling systems on #holdem1.

which is planned for the near future. However,
the results of the hypothetical model suggest
that much of this improvement could be real-
ized immediately with fairly simple enhance-
ments to the existing system, having identified
the most significant factors.

In order to test this claim, new versions of
Poki were run on the online poker server, using
the refined modeling system with no prior op-
ponent information. The #holdem1 results are
shown in Figure 2 and #holdem?2 in Figure 3.

To obtain a statistically significant sample,
each version must be tested over several thou-

Bl i WS

Figure 3: Performance of Pok: with old and
new opponent modeling systems on #holdem2.

sand hands. The variance in poker is very high,
and lengthy runs of good or bad luck are pos-
sible. Although most results are fairly stable,
anomalies are occasionally observed (one such
instance is described below). Common prac-
tice is to have each version play at least 20,000
hands at the given level. In order to compare
results between games at different levels, the
win rate is measured in small bets per hand
(sb/h). As a point of reference, an average pro-
fessional poker player earns in the range of 0.05
to 0.10 sb/h (albeit in much tougher games!).

As a baseline, a version which used no oppo-

Train | Test | Prev | Enhc | ANN | sb/h
218 | 361 | 63.4 | 69.5| 90.0 | -0.017
250 217 | 52.1 | 64.1 | 75.6 | 0.131
1323 | 615 | 58.2 | 72.2| 80.0 | -0.076
237 116 | 56.0 | 72.4 | 75.6 | -0.078
3256 | 109 | 55.1 | 73.4 | 82.6 | 0.127

90 322 | 51.2 | 70.2 | 82.6 | 0.166
86 138 | 65.2 | 80.4 | 81.2|-0.138
361 | 268 | 57.3 | 71.7 | 81.1 | 0.016

Table 2: Comparison of three prediction tech-
niques.

nent modeling whatsoever was tested on #hol-
deml. This program was unable to win con-
sistently, with a long term average near zero
(break-even). In the advanced game, it would
have lost quickly.

Poki with the old specific opponent mod-
eling system (pokisl) won at a rate of ap-
proximately +0.09 sb/h in both #holdem1 and
#holdem2 games. Full length runs for the
generic opponent modeling system were also
conducted, resulting in a win rate of approx-
imately 40.08 sb/h for #holdeml1, and +0.05
sb/h for #holdem2. This is consistent with
our previously reported results, where the two
methods had roughly comparable win rates [3].

With the enhanced model (poki_s2), the re-
sults against players on #holdeml improved
significantly, to +0.22 sb/h. In contrast, the
difference in performance did not appear to be
significant for the #holdem2 game, reaching
about +0.08 sb/h. However, an anomaly ap-
pears to have occurred over a span of 6,000
hands near the beginning of this run.? If this
negative stretch was indeed primarily due to
bad luck, then a better estimate of the final
win rate would be at least +0.12 sb/h.

2At the time of this decline, the log of 10,000 com-
mented hands (played over a two week period) was scru-
tinized. While several distinguishable features of the
new modeling system were apparent, there was no ob-
vious explanation for the losing streak, other than hav-
ing an inordinately large number of good hands lose
due to bad luck. Over the following week, the fortune
of the program reversed again, and it recovered all of
the previous losses.

The difference between the results for the
#holdem1 and #holdem2 games is interesting.
After analyzing the hand evaluations made by
Poki, it was clear that the new opponent mod-
eling was more committal. Actions of the op-
ponent were given a lot of credit, whether pas-
sive or aggressive. This makes it more success-
ful against predictable players, but also more
easily deceived against tricky opponents. For
example, the program became more vulnera-
ble to a “slowplay”, where the opponent does
not raise a very strong hand until a later bet-
ting round. Since strong players are able to de-
tect this difference over time, they are able to
adapt their play to exploit this characteristic.?
The lesson is that the modeling technique itself
should be adaptive, based on the predictability
of the opponent.

6 Conclusions and
Future Work

In this paper, we revisited the problem of oppo-
nent modeling, which is central to the playing
ability of a computer poker player. A recur-
ring theme of the research is that improving
the program is not a simple linear task, but is
a complex system of trade-offs, involving ev-
ery component of the program. The task of
predicting an opponent’s next action, based on
a large set of contextual information, was in-
vestigated with artificial neural networks. The
results of these experiments suggested simple
but effective changes that could be made to
the real-time system.

The modifications to the old modeling sys-
tem were not extensive, but it is instructive to
observe the significant improvements achieved
with fairly simple enhancements. Furthermore,
it is much more satisfying (and less work!) to
have identified these properties with an au-

8Other indications of adaptation by the regular play-
ers are also evident. In many runs, a noticeable drop
in win rate occurs after about 5,000 hands. This curve
was less prevalent in versions of Pok: based on run-time
simulations, presumably because the resulting style was
less predictable than the conventional approach.

tomated learning system, rather than relying
on the input of a human expert. While the
domain-specific knowledge of experts may be
definitive, it is also notoriously difficult to en-
corporate and maintain in a high-performance
game system.

The topic is far from being well-solved, and
we still believe that a thorough re-design of
the opponent modeling system is in order. For
example, the program still does not make ef-
fective use of the information indicated from
a showdown. Once the opponent’s cards are
known, a lot can be inferred from the decisions
made during the hand. This can have a sig-
nificant impact on our understanding of that
player’s approach to the game, and provide
better predictions of future behavior. While
other aspects of poker algorithms may eventu-
ally approach perfection, this strategic prop-
erty of the game will likely continue to be a
major challenge long into the future.

7 Acknowledgments

Financial support was provided by the Natural
Sciences and Engineering Research Council of
Canada.

References

[1] D. Koller and A. Pfeffer. Representations
and solutions for game-theoretic problems.
Artificial Intelligence, 94(1):167-215, 1997.

[2] D. Sklansky and M. Malmuth. Hold’em
Poker for Advanced Players. Two Plus Two
Publishing, 1994.

(3] D. Billings, D. Papp, J. Schaeffer, and
D. Szafron. Opponent modeling in poker.
In AAAI National Conference, pages 493—
499, 1998.

[4] D. Billings, L. Pena, J. Schaeffer, and
D. Szafron. Using probabilistic knowledge
and simulation to play poker. In AAAI Na-
tional Conference, pages 697-703, 1999.

[5] A. Davidson. Using artificial
neural networks to model oppo-
nents in Texas Hold’em, 1999.
www.cs.ualberta.ca/~davidson/poker /-
nnpoker.pdf.

