
On Strategy Stitching in Large Extensive Form
Multiplayer Games

Richard Gibson and Duane Szafron
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
{rggibson| dszafron}@ualberta.ca

Abstract

Computing a good strategy in a large extensive form game often demands an ex-
traordinary amount of computer memory, necessitating the use of abstraction to
reduce the game size. Typically, strategies from abstract games perform better in
the real game as the granularity of abstraction is increased. This paper investi-
gates two techniques for stitching a base strategy in a coarse abstraction of the full
game tree, to expert strategies in fine abstractions of smaller subtrees. We provide
a general framework for creating static experts, an approach that generalizes some
previous strategy stitching efforts. In addition, we show that static experts can cre-
ate strong agents for both 2-player and 3-player Leduc and Limit Texas Hold’em
poker, and that a specific class of static experts can be preferred among a number
of alternatives. Furthermore, we describe a poker agent that used static experts
and won the 3-player events of the 2010 Annual Computer PokerCompetition.

1 Introduction

Many sequential decision-making problems are commonly modelled as anextensive form game.
Extensive games are very versatile due to their ability to represent multiple agents, imperfect infor-
mation, and stochastic events.

For many real-world problems, however, the extensive form game representation is too large to be
feasibly handled by current techniques. To address this limitation, strategies are often computed
in abstract versions of the game that group similar states together into single abstract states. For
very large games, these abstractions need to be quite coarse, leaving many different states indistin-
guishable. However, for smaller subtrees of the full game, strategies can be computed in much finer
abstractions. Such “expert” strategies can then be pieced together, typically connecting to a “base
strategy” computed in the full coarsely-abstracted game. Adisadvantage of this approach is that
we may make assumptions about the other agents’ strategies.In addition, by computing the base
strategy and the experts separately, we may lose “cohesion”among the different components.

We investigate stitched strategies in extensive form games, focusing on the trade-offs between the
sizes of the abstractions versus the assumptions made and the cohesion among the computed strate-
gies. We define two strategy stitching techniques: (i)static expertsthat are computed in very fine
abstractions with varying degrees of assumptions and little cohesion, and (ii)dynamic expertsthat
are contained in abstractions with lower granularity, but make fewer assumptions and have perfect
cohesion. This paper generalizes previous strategy stitching efforts [1, 2, 11] under a more general
static expert framework. We use poker as a testbed to demonstrate that, despite recent mixed results,
static experts can create much stronger overall agents thanthe base strategy alone. Furthermore, we
show that under a fixed memory limitation, a specific class of static experts are preferred to several
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alternatives. As a final validation of these results, we describe entries to the 2010 Annual Computer
Poker Competition1 (ACPC) that used static experts to win the 3-player events.

2 Background

An extensive form game [9] is a rooted directed tree, where nodes represent decision states, edges
represent actions, and terminal nodes hold end-game utility values for players. For each player, the
decision states are partitioned into information sets suchthat game states within an information set
are indistinguishable to the player. Non-singleton information sets arise due to hidden information
that is only available to a subset of the players, such as private cards in poker. More formally:

Definition 2.1 (Osborne and Rubenstein [9, p. 200])A finiteextensive gameΓ with imperfect in-
formation has the following components:

• A finite setN of players.
• A finite setH of sequences, the possiblehistoriesof actions, such that the empty sequence is in

H and every prefix of a sequence inH is also inH . Z ⊆ H are the terminal histories (those
which are not a prefix of any other sequence).A(h) = {a | ha ∈ H} are the actions available
after a nonterminal historyh ∈ H .

• A functionP that assigns to each nonterminal historyh ∈ H\Z a member ofN ∪ {C}. P is
theplayer function. P (h) is the player who takes an action after the historyh. If P (h) = C,
then chance determines the action taken after historyh. DefineHi := {h ∈ H | P (h) = i}.

• A functionfC that associates with every historyh for whichP (h) = C a probability measure
fC(·|h) onA(h) (fC(a|h) is the probability thata occurs givenh), where each such probability
measure is independent of every other such measure.

• For each playeri ∈ N a partition Ii of Hi with the property thatA(h) = A(h′) wheneverh
andh′ are in the same member of the partition. ForI ∈ Ii, we denote byA(I) the set ofA(h)
and byP (I) the playerP (h) for anyh ∈ I. Ii is the information partition of playeri; a set
I ∈ Ii is an information setof playeri.

• For each playeri ∈ N a utility functionui from the terminal historiesZ to the real numbers
R. If N = {1, 2} andu1 = −u2, it is a 2-player zero-sum extensive game. Define∆u,i :=
maxz ui(z)−minz ui(z) to be the range of the utilities for playeri.

A strategy for player i, σi, is a function such that for each information setI ∈ Ii, σi(I) is a
probability distribution overA(I). Let Σi be the set of all strategies for playeri. For h ∈ I, we
defineσi(h) := σi(I). A strategy profile σ consists of a strategyσi for each playeri ∈ N . We let
σ−i refer to all the strategies inσ exceptσi, and denoteui(σ) to be the expected utility for playeri
given that all players play according toσ.

In a 2-player zero-sum game, abest responseto a player 1 strategyσ1 is a player2 strategy
σBR
2 = argmaxσ2

u2(σ1, σ2) (similarly for a player 2 strategyσ2). The best response value ofσ1

is u2(σ1, σ
BR
2

), which measures theexploitability of σ1. The exploitability of a strategy tells us
how much that strategy loses to a worst-case opponent. Outside of 2-player zero-sum games, the
worst-case scenario for playeri would be for all other players to minimize playeri’s utility instead
of maximizing their own. In large games, this value is difficult to compute since opponents cannot
share private information. Thus, we only investigate exploitability for 2-player zero-sum games.

Counterfactual regret minimization (CFR) [14] is an iterative procedure for computing strategy pro-
files in extensive form games. In 2-player zero-sum games, CFR produces an approximate Nash
equilibrium profile. In addition, CFR strategies have also been found to compete very well in games
with more than 2 players [1]. CFR’s memory requirements are proportional to the number of infor-
mation sets in the game times the number of actions availableat an information set.

The extensive form game representation of many real-world problems is too large to feasibly com-
pute a strategy directly. A common approach in these games isto first create anabstract gameby
combining information sets into single abstract states or by disallowing certain actions:

1http://www.computerpokercompetition.org
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Figure 1: (a) An abstraction of an extensive game, where states connectedby a bold curve are in the
same information set and thin curves denote merged abstractinformation sets. In the unabstracted
game, player 1 cannot distinguish between whether chance generatedb or c and player 2 cannot
distinguish betweena andb. In the abstract game, neither player can distinguish between any of
chance’s outcomes.(b) An example of a gameΓ′ derived from the unabstracted gameΓ in (a) for a
dynamic expert strategy. Here, the abstraction from (a) is used as the base abstraction, and the null
abstraction is employed on the subtree withG1,1 = ∅ andG2,1 = {al, bl, cl} (bold states).

Definition 2.2 (Waughet al. [12]) Anabstraction for player iis a pairαi =
〈

αI

i , α
A
i

〉

, where

• αI

i is a partition ofHi defining a set of abstract information sets coarser thanIi (i.e., every
I ∈ Ii is a subset of some set inαI

i ), and
• αA

i is a function on histories whereαA
i (h) ⊆ A(h) andαA

i (h) = αA
i (h

′) for all historiesh and
h′ in the same abstract information set. We will call this the abstract action set.

Thenull abstraction for player i is φi = 〈Ii, A〉. An abstractionα is a set of abstractionsαi,
one for each player. Finally, for any abstractionα, theabstract game, Γα, is the extensive game
obtained fromΓ by replacingIi with αI

i andA(h) withαA
i (h) whenP (h) = i, for all i ∈ N .

Figure 1a shows an example of an abstracted extensive form game with no action abstraction. By
reducing the number of information sets, computing strategies in an abstract game with an algorithm
such as CFR requires less memory than computing strategies in the real game. Intuitively, if a
strategy profile for the abstract gameσ performs well inΓα, and ifαI

i is defined such that merged
information sets are “strategically similar,” thenσ is also likely to perform well inΓ. Identifying
strategically similar information sets can be delicate though and typically becomes a domain-specific
task. Nevertheless, we often would like to have as much granularity in our abstraction as will fit in
memory to allow computed strategies to be as diverse as necessary.

3 Strategy Stitching

To achieve abstractions with finer granularity, a natural approach is to break the game up into sub-
trees, abstract each of the subtrees, and compute a strategyfor each abstract subtree independently.
We introduce a formalism for doing so that generalizes Waughet al.’s strategy grafting [11] and two
poker-specific methods described in Section 5. First, select a subsetS ⊆ N of players. Secondly,
for eachi ∈ S, compute a base strategyσi for playing the full game. Next, divide the game into
subtrees:

Definition 3.1 (Waughet al. [11]) Gi = {Gi,0, Gi,1, ..., Gi,p} is agrafting partition for player i if
• Gi is a partition ofHi (possibly containing empty parts),
• ∀I ∈ Ii, ∃j ∈ {0, 1, ..., p} such thatI ⊆ Gi,j , and
• ∀j ∈ {1, 2, ..., p}, h ∈ Gi,j , andh′ ∈ Hi, if h is a prefix ofh′, thenh′ ∈ Gi,j ∪Gi,0.

For eachi ∈ S, choose a grafting partitionGi so that each partition has an equal number of partsp.
Then, compute a strategy, orstatic expert, for each subtree using any strategy computation technique,
such as CFR. Finally, since the subtrees are disjoint, create astatic expert strategyby combining the
static experts without any overlap to the base strategy in the undivided game:
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Figure 2: Two examples of a gameΓj for a static expert derived from the unabstracted gameΓ in
Figure 1a. In both (a) and (b),G2,j = {al, bl, cl} (bold states). If player 1 takes actionr, player 2
no longer controls his or her decisions. Player 2’s actions are instead generated by the base strategy
σ2, computed beforehand. In (a), we haveS = {2}. On the other hand, in (b),S = N = {1, 2},
G1,j = ∅, and hence all of player 1’s actions are seeded by the base strategyσ1.

Definition 3.2 LetS ⊆ N be a nonempty subset of players. For eachi ∈ S, letσi be a strategy for
player i andGi = {Gi,0, Gi,1, ..., Gi,p} be a grafting partition for playeri. For j ∈ {1, 2, ..., p},
defineΓj to be an extensive game derived from the original gameΓ where, for all i ∈ S and
h ∈ Hi\Gi,j , we setP (h) = C andfC(a|h) = σi(h, a). That is, each playeri ∈ S only controls
actions for histories inGi,j and is forced to play according toσi elsewhere. Let thestatic expertof
{Gi,j | i ∈ S}, σj , be a strategy profile of the gameΓj . Finally, define thestatic expert strategy for
player i, σS

i , as
σS
i (h, a) :=

{

σi(h, a) if h ∈ Gi,0

σj
i (h, a) if h ∈ Gi,j .

We call{σi | i ∈ S} thebaseor seeding strategiesand{Gi | i ∈ S} thegrafting profile for the
static expert strategyσS

i .

Figure 2 shows two examples of a gameΓj for a single static expert. This may be the only subtree
for which a static expert is computed (p = 1), or there could be more subtrees contained in the
grafting partition(s) (p > 1). Under a fixed memory limitation, we can employ finer abstractions for
the subtreesΓj than we can in the full gameΓ. This is becauseΓj removes some of the information
sets belonging to players inS, freeing up memory for computing strategies on the subtrees.

When |S| = 1, the static expert approach is identical to strategy grafting [11, Definition 8], with
the exception that each static expert need not be an approximate Nash equilibrium. We relax the
definition for static experts because Nash equilibria are difficult to compute in multiplayer games,
and may not be the best solution concept outside of 2-player zero-sum games anyways. Choosing
|S| > 1, however, is dangerous because we fix opponent probabilities and assume that our opponents
are “static” at certain locations. For example, in Figure 2b, it may not be wise for player 2 to assume
that player 1 must followσ1. Doing so can dramatically skew player 2’s beliefs about theaction
generated by chance and hurt the expert’s performance against opponents that do not followσ1. As
we will see in Section 6, having more static experts with|S| > 1 can result in a more exploitable
static expert strategy. On the other hand, by removing information sets for multiple players, the static
expert approach creates smaller subtrees than strategy grafting does. As a result, we can employ even
finer abstractions within the subtrees. Section 6 shows thatdespite the risks, the abstraction gains
often lead to static experts withS = N being preferred.

Regardless of the choice ofS, the base strategy lacks “cohesion” with the static expertssince its
computation is based on its own play at the subtrees rather than the experts’ play. Though the
experts are identically seeded, the base strategy may want to play towards the expert subtrees more
often to increase utility. This observation motivates our introduction ofdynamic expertsthat are
computed concurrently with a base. The full extensive game is divided into subtrees and each
subtree is supplied its own abstraction:
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Definition 3.3 Let α0, α1, ..., αp be abstractions for the gameΓ and for eachi ∈ N , let Gi =
{Gi,0, Gi,1, ..., Gi,p} be a grafting partition for playeri satisfyingI ∩ Gi,j ∈ {∅, I} for all j ∈

{0, ..., p} andI ∈ αj,I
i . Thus, each abstract information set is contained entirelyin some part of

the grafting partition. LetΓ′ be the abstract game obtained fromΓ by replacingIi with
⋃p

j=0
{I ∈

αj,I
i | I ⊆ Gi,j} andA(h) with αj,A

i (h) whenP (h) = i andh ∈ Gi,j , for all i ∈ N . Let the
dynamic expert strategy for player i, σ′

i, be a strategy for playeri of the gameΓ′. Finally define the
dynamic expertof Gi,j , σ

j
i , to beσ′

i restricted to the histories inGi,j , σ′

i|Gi,j
. The abstractionα0

is denoted as thebase abstractionand the dynamic expertσ0

i is denoted as thebase strategy.

Figure 1b contains an abstract game treeΓ′ for a dynamic expert strategy. We can view a dynamic
expert strategy as a strategy computed in an abstraction with differing granularity dependent on
the history of actions taken. Note that our definition is somewhat redundant to the definition of
abstraction as we are simply defining a new abstraction forΓ based on the abstractionsα0, α1, ..., αp.
Nonetheless, we supply Definition 3.3 to provide the terms inbold that we will use throughout.

Under memory constraints, a dynamic expert strategy typically sacrifices abstraction granularity
in the base strategy to achieve finer granularity in the experts. We hope doing so achieves better
performance at parts of the game that we believe may be more important. For instance, importance
could depend on the predicted relative frequencies of reaching different subtrees.The base strategy’s
abstraction is reduced to guarantee perfect cohesion between the base and the experts; the base
strategy knows about the experts and can calculate its probabilities “dynamically” during strategy
computation based on the feedback from the experts. In Section 6, we contrast static and dynamic
experts to compare this trade-off between abstraction sizeand strategy cohesion.

4 Texas and Leduc Hold’em

A hand of Texas Hold’em poker (or simply Hold’em) begins witheach player being dealt two private
cards, and two players posting mandatory bets orblinds. There are four betting rounds, thepre-flop,
flop, turn, andriver where five community cards are successively revealed. Of theplayers that did
not fold, the player with the highest ranked poker hand wins all of the bets. Full rules can be found
on-line.2 We focus on the Limit Hold’em variant that fixes the bet sizes and the number of bets
allowed per round. We denote the players’ actions asf (fold), c (checkor call), andr (betor raise).

Leduc Hold’em [10] (or simply Leduc) is a smaller version of Hold’em, played with a six card deck
consisting of two Jacks, two Queens, and two Kings with only two betting rounds, pre-flop and flop.
Rather than using blinds, antes are posted by all players at the beginning of a hand. Only one private
card is dealt to each player and one community card is dealt onthe flop.

While Leduc is small enough to bypass abstraction, Hold’em is a massive game in terms of the
number of information sets; 2-player Limit Hold’em has approximately3 × 1014 information sets,
and 3-player has roughly5 × 1017. Applying CFR to these enormous state spaces necessitates
abstraction. A common abstraction technique in poker is to group many different card dealings
into single abstract states orbuckets. This is commonly done by ordering all possible poker hands
for a specific betting round according to some metric, such asexpected hand strength (E[HS]) or
expected hand strength squared (E[HS2]), and then grouping hands with similar metric values into
the same bucket [7].Percentile bucketingwith N buckets andM hands puts the topM/N hands
into 1 bucket, the next bestM/N into a second bucket, etc., so that the buckets are approximately
equal in size. More advanced bucketing schemes that use multiple metrics and clustering techniques
are possible, but our experiments use simple percentile bucketing with no action abstraction.

5 Related Work

Our general framework for applying static experts to any extensive form game captures some previ-
ous poker-specific strategy stitching approaches. First, the PsOpti family of agents [2], which play
2-player Limit Hold’em, contain a base strategy called the “pre-flop model” and 7 static experts with
S = N , or “post-flop models.” Due to resource and technology limitations, the abstractions used to

2http://en.wikipedia.org/wiki/Texashold ’em

5



build the pre-flop and post-flop models were quite coarse, making the family no match for today’s
top agents. Secondly, Abou Risk and Szafron [1] attach 6 static experts withS = N (which they call
“heads-up experts”) to a base strategy for playing 3-playerLimit Hold’em. Each expert focuses on
a subtree immediately following a fold action, allowing much finer abstractions for these 2-player
scenarios. However, their results were mixed as the stitched strategy was not always better than the
base strategy alone. Nonetheless, our positive results forstatic experts withS = N in Section 6
provide evidence that the PsOpti approach and heads-up experts are indeed credible.

In addition, Gilpin and Sandholm [5] create a poker agent for2-player Limit Hold’em that uses a
2-phase strategy different from the approaches discussed thus far. The first phase is used to play the
pre-flop and flop rounds, and is computed similarly to the PsOpti pre-flop model. For the turn and
river rounds, a second phase strategy is computed on-line. One drawback of this approach is that the
on-line computations must be quick enough to play in real time. Despite fixing the flop cards, this
constraint forced the authors to still employ a very coarse abstraction during the second phase.

Furthermore, there have been a few other related approachesto creating poker agents. While 2-
player poker is well studied, Ganzfried and Sandholm [3, 4] developed algorithms for computing
Nash equilibria in multiplayer games and applied it to a small 3-player jam/fold poker game. Addi-
tionally, Gilpin et al. [6] use an automated abstraction building tool to dynamically bucket hands in
2-player Limit Hold’em. Here, we are not concerned with equilibrium properties or the abstraction
building process itself. In fact, strategy stitching is orthogonal to both strategy computation and
abstraction improvements, and could be used in conjunctionwith more sophisticated techniques.

6 Empirical Evaluation

In this section, we create several stitched strategies in both Leduc and Hold’em using the chance-
sampled variant of CFR [14]. CFR is state of the art in terms ofmemory efficiency for strategy
computation, allowing us to employ abstractions with higher granularity than otherwise possible.
Results may differ with other techniques for computing strategies and building abstractions. While
CFR requires iterations quadratic in the number of information sets to converge [14, Theorem 4],
we restrict our resources only in terms of memory. Even though Leduc is small enough to not
necessitate strategy stitching, the Leduc experiments were conducted to evaluate our hypothesis that
static experts withS = N can improve play. We ran many experiments and for brevity, only a
representative sample of the results are summarized.

To be consistent with post-flop models [2] and heads-up experts [1], our grafting profiles are defined
only in terms of the players’ actions. For each historyh ∈ H , defineb := b(h) to be the subsequence
of h obtained by removing all actions generated by chance. We refer to ab-expert for playeri as an
expert constructed for the subtreeGi(b) := {h ∈ Hi | b is a prefix ofb(h)} containing all histories
where the players initially followb. For example, the experts for the games in Figures 1b, 2a, and
2b arel-experts because the game is split after player 1 takes action l.

Leduc. Our Leduc experiments use three different base abstractions, one of which is simply the
null abstraction. The second and third abstractions are the“JQ-K” and “J-QK” abstractions that, on
the pre-flop, cannot distinguish between whether the private card is a Jack or Queen, or whether the
private card is a Queen or King respectively. In addition, these two abstractions can only distinguish
between whether the flop card pairs with the private card or not rather than knowing the identity of
the flop card. Because Leduc is such a small game, we do not consider a fixed memory restriction
and instead just compare the techniques within the same baseabstraction.

For both 2-player and 3-player, for each of the three base abstractions, and for each playeri, we
build a base strategy, a dynamic expert strategy, anS = {i} static expert strategy, and twoS = N
static expert strategies. Recall choosingS = {i} means that during computation of each static
expert, we only fix playeri’s action probabilities outside of the expert subtree, whereasS = N
means that we fix all players outside of the subtree. For 2-player Leduc, we user, cr, ccr, andcccr-
experts for both players. Thus, the base strategy plays until the first raise occurs, at which point
an expert takes over for the remainder of the hand. As an exception, only one of our twoS = N
static expert strategies, named “All,” uses all four experts; the other, named “Pre-flop,” just uses the
r andcr-experts. For 3-player Leduc, we user, cr, ccr, cccr, ccccr, andcccccr-experts, except the
“Pre-flop” static strategies use just the three expertsr, cr, andccr. The null abstraction is employed
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Table 1: The size, earnings, and exploitability of the 2-player (2p)Leduc strategies in the JQ-K base
abstraction, and the size and earnings of the 3-player (3p) strategies in the J-QK base abstraction.
The sizes are measured in terms of the maximum number of information sets present within a single
CFR computation. Earnings, as described in the text, and exploitability are in milli-antes per hand.

Strategy (2p) Size Earns. Exploit. Strategy (3p) Size Earns.
Base 132 24.73 496.31 Base 1890 -68.46

Dynamic 444 45.75 159.84 Dynamic 6903 113.04
Static.S={i} 226 28.87 167.61 Static.S={i} 3017 96.14

Static.S=N .All 186 29.20 432.74 Static.S=N .All 2145 117.01
Static.S=N .Pre-flop 186 37.77 214.44 Static.S=N .Pre-flop 2145 119.73

on every expert subtree. Each run of CFR is stopped after 100 million iterations, which for 2-player
yields strategies within a milli-ante of equilibrium in theabstract game.

Each strategy is evaluated against all combinations and orderings of opponent strategies where all
strategies use different base abstractions, and the scoresare averaged together. For example, for
each of our 2-player strategy profilesσ in the JQ-K base abstraction, we compute1/2(u1(σ1, σ

′

2
) +

u2(σ
′

1
, σ2)), averaged over all profilesσ′ that use either the null or J-QK base abstraction. Leduc is

a small enough game that the utilities can be computed exactly. A selection of these scores, along
with 2-player exploitability values, are reported in Table1.

Firstly, by increasing abstraction granularity, all of theJQ-K strategies employing experts earn
more than the base strategy alone. Secondly, Dynamic and Static.S=N earn more overall than
Static.S={i}, despite the 2-player Static.S=N being more exploitable due to the opponent action
assumptions. In fact, despite requiring much less memory tocompute, Static.S=N surprisingly
earns more than Dynamic in 3-player Leduc. Finally, we see that only using two pre-flop static
experts as opposed to all four reduces the number of dangerous assumptions to provide a stronger
and less exploitable strategy. However, as expected, Dynamic and Static.S={i} are less exploitable.

Hold’em. Our Hold’em experiments enforce a fixed memory restriction per run of CFR, which
we artificially set to 24 million information sets for 2-player and 162 million information sets for
3-player. We compute stitched strategies of each type usingas many percentileE[HS2] buckets as
possible within the restriction. Our 2-player abstractions distribute buckets as close to uniformly
as possible across the betting rounds while remembering buckets from previous rounds (known as
“perfect recall”). Our 3-player abstractions are similar,except they use 169 pre-flop buckets that are
forgotten on later rounds (known as “imperfect recall;” see[1] and [13] for more regarding CFR and
imperfect recall).

For 2-player, our dynamic strategy has just anr-expert, ourS = {i} static strategy usesr, cr, ccr,
andcccr-experts, and ourS = N static strategy employsr andcr-experts. These choices were
based on preliminary experiments to make the most effectiveuse of the limited memory available
for each stitching approach. Following Abou Risk and Szafron [1], our 3-player stitched strategies
all havef , rf , rrf , andrcf -experts as these appear to be the most commonly reached 2-player
scenarios [1, Table 4]. Our abstractions range quite dramatically in terms of number of buckets. For
example, in 3-player, our dynamic strategy’s base abstraction has just 8 river buckets with 7290 river
buckets for each expert, whereas our static strategies have16 river buckets in the base abstraction
with up to 194,481 river buckets for theS = N staticrcf -expert abstraction. For reference, all of
the 2-player base and experts are built from 720 million iterations of CFR, while we run CFR for
100 million and 5 billion iterations for the 3-player base and experts respectively.

We evaluate our 2-player strategies by playing 500,000 duplicate hands (players play both sides of
the dealt cards) of poker between each pair of strategies. Inaddition to our base and stitched strate-
gies, we also included a base strategy called “Base.797M” inan abstraction with over 797 million
information sets that we expected to beat all of the strategies we were evaluating. Furthermore, using
a specialized best response tool [8], we computed the exploitability of our 2-player strategies. For
3-player, we play 500,000 triplicate hands (each set of dealt cards played 6 times, one for each of the
player seatings) between each combination of 3 strategies.We also included two other strategies:
“ACPC-09,” the 2009 ACPC 3-player event winner that did not use experts (Abou Risk and Szafron
[1] call it “IR16”), and “ACPC-10,” a static expert strategythat won a 3-player event at the 2010
ACPC and is outlined at the end of this section. The results are provided in Table 2.
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Table 2: Earnings and 95% confidence intervals over 500,000 duplicate hands of 2-player Hold’em
per pairing, and over 500,000 triplicate hands of 3-player Hold’em per combination. The exploitabil-
ity of the 2-player strategies is also provided. All values are in milli-big-blinds per hand.

Strategy (2p) Earnings Exploitability Strategy (3p) Earnings
Base −10.47± 1.99 310.04 Base −6.09± 0.71

Dynamic −4.43± 1.98 307.76 Dynamic −4.91± 0.75
Static.S={i} −13.13± 2.00 301.00 Static.S={i} −5.20± 0.70
Static.S=N −4.57± 1.95 288.82 Static.S=N 3.06± 0.70
Base.797M 32.59± 2.14 135.43 ACPC-09 −14.15± 0.89

ACPC-10 27.29± 0.86

Firstly, in 2-player, we see that Static.S=N and Dynamic outperform Static.S={i} considerably,
agreeing with the previous Leduc results. In fact, the Static.S={i} fails to even improve upon the
base strategy. For 3-player, Static.S=N is noticeably ahead of both Dynamic and Static.S={i} as it
is the only strategy, aside from ACPC-10, to win money. By forcing one player to fold, the static
experts withS = N essentially reduce the size of the game tree from a 3-player to a 2-player
game, allowing many more buckets to be used. This result indicates that at least for poker, the
gains in abstraction bucketing outweigh the risks of forcedaction assumptions and lack of cohesion
between the base strategy and the experts. Furthermore, Static.S=N is slightly less exploitable in
2-player than the base strategy and the other two stitched strategies. While there are one and two
opponent static actions assumed by ther andcr-experts respectively, trading these few assumptions
for an increase in abstraction granularity is beneficial. Insummary, static experts withS = N are
preferred to both dynamic and static experts withS = {i} in the experiments we ran.

An additional validation of the quality of the static expertapproach was provided by the 2010 ACPC.
The winning entries in both 3-player events employed staticexperts withS = N . The base strategy,
computed from 70 million iterations of CFR, used 169, 900, 100, and 25 buckets on each of the
respective rounds. Four experts were used,f , rf , rrf , andrcf , computed from 10 billion iterations
of CFR, each containing 169, 60,000, 180,000, and 26,160 buckets on the respective rounds. In
addition, clustering techniques on strength distributionwere used instead of percentile bucketing.
Two strategies were created, where one was trained to play slightly more aggressively for the total
bankroll event. Each version finished in first place in its respective competition.

7 Conclusions

We discussed two strategy stitching techniques for extensive games, including static experts that
generalize strategy grafting and some previous techniquesused in poker. Despite the accompanying
potential dangers and lack of cohesion, we have shown staticexperts withS = N outperform the
dynamic and static experts withS = {i} that we considered, especially when memory limitations are
present. However, additional static experts with several forced actions can lead to a more exploitable
strategy. Static experts withS = N is currently our preferred method for creating multiplayerpoker
strategies and would be our first option for playing other large extensive games.

Future work includes finding a way to create more cohesion between the base strategy and static
experts. One possibility is to rebuild the base strategy after the experts have been created so that the
base strategy’s play is more unified with the experts. In addition, we have yet to experiment with 3-
player “hybrid” static experts where|S| = 2. Finally, there are many ways to combine the stitching
techniques described in this paper. One possibility is to use a dynamic expert strategy as a base
strategy of a static expert strategy. In addition, static experts could themselves be dynamic expert
strategies for the appropriate subtrees. Such combinations may produce even stronger strategies than
those produced in this paper.
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