On Strategy Stitching in Large Extensive Form
Multiplayer Games

Richard Gibson and Duane Szafron
Department of Computing Science, University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

{rggibson| dszafror} @ualberta.ca

Abstract

Computing a good strategy in a large extensive form gama aféenands an ex-
traordinary amount of computer memory, necessitating #eeai abstraction to
reduce the game size. Typically, strategies from abst@tisg perform better in
the real game as the granularity of abstraction is increa3éis paper investi-
gates two techniques for stitching a base strategy in aeadsraction of the full
game tree, to expert strategies in fine abstractions of snmlbtrees. We provide
a general framework for creating static experts, an apprteat generalizes some
previous strategy stitching efforts. In addition, we shbetistatic experts can cre-
ate strong agents for both 2-player and 3-player Leduc amit Diexas Hold’em
poker, and that a specific class of static experts can berpgdfamong a number
of alternatives. Furthermore, we describe a poker agenttfed static experts
and won the 3-player events of the 2010 Annual Computer Ro&erpetition.

1 Introduction

Many sequential decision-making problems are commonlyetted as arextensive form game
Extensive games are very versatile due to their ability ppesent multiple agents, imperfect infor-
mation, and stochastic events.

For many real-world problems, however, the extensive foamg representation is too large to be
feasibly handled by current techniques. To address thigdlion, strategies are often computed
in abstract versions of the game that group similar statgsther into single abstract states. For
very large games, these abstractions need to be quite ctsagimg many different states indistin-

guishable. However, for smaller subtrees of the full garrateyyies can be computed in much finer
abstractions. Such “expert” strategies can then be piexgsther, typically connecting to a “base
strategy” computed in the full coarsely-abstracted gamalisadvantage of this approach is that
we may make assumptions about the other agents’ stratdgiesldition, by computing the base

strategy and the experts separately, we may lose “cohearmnhg the different components.

We investigate stitched strategies in extensive form gafoessing on the trade-offs between the
sizes of the abstractions versus the assumptions made@ndhbsion among the computed strate-
gies. We define two strategy stitching techniquesst@tic expertghat are computed in very fine
abstractions with varying degrees of assumptions and ktthesion, and (iiglynamic expertthat
are contained in abstractions with lower granularity, bakefewer assumptions and have perfect
cohesion. This paper generalizes previous strategy istgetforts [1, 2, 11] under a more general
static expert framework. We use poker as a testbed to deratettat, despite recent mixed results,
static experts can create much stronger overall agentshidrase strategy alone. Furthermore, we
show that under a fixed memory limitation, a specific clasdaticsexperts are preferred to several



alternatives. As a final validation of these results, we dies@ntries to the 2010 Annual Computer
Poker Competitioh(ACPC) that used static experts to win the 3-player events.

2 Background

An extensive form game [9] is a rooted directed tree, whederaepresent decision states, edges
represent actions, and terminal nodes hold end-game/wdities for players. For each player, the
decision states are partitioned into information sets shhiahgame states within an information set
are indistinguishable to the player. Non-singleton infation sets arise due to hidden information
that is only available to a subset of the players, such aafgrisards in poker. More formally:

Definition 2.1 (Osborne and Rubenstein [9, p. 200]A finiteextensive gamé&' with imperfect in-
formation has the following components:

o Afinite setN of players

o Afinite setH of sequences, the possilblistoriesof actions, such that the empty sequence is in
H and every prefix of a sequencefhis also inH. Z C H are the terminal histories (those
which are not a prefix of any other sequencéjh) = {a | ha € H} are the actions available
after a nonterminal history, € H.

e A functionP that assigns to each nonterminal histdrye H\Z a member ofV U {C}. P is
theplayer function P(h) is the player who takes an action after the histarylf P(h) = C,
then chance determines the action taken after hisktofpefineH, := {h € H | P(h) = i}.

e A functionf¢ that associates with every histohyfor which P(h) = C' a probability measure
fe(:]h) on A(h) (fc(a|h) is the probability that: occurs giverh), where each such probability
measure is independent of every other such measure.

e For each playeri € N a partitionZ; of H; with the property thatd(h) = A(h') wheneverh
andh’ are in the same member of the partition. HOE Z;, we denote byl(I) the set ofd(h)
and byP(I) the playerP(h) for anyh € I. Z; is theinformation partition of playeri; a set
I € 7; is aninformation setof playeri.

e For each playeri € N a utility functionu; from the terminal histories to the real numbers
R.If N = {1,2} andu; = —uq, it is a 2-player zero-sum extensive gampPefineA,, ; :=
max, u;(z) — min, u;(z) to be the range of the utilities for player

A strategy for player 4, o, is a function such that for each information de€ Z;, o,(I) is a
probability distribution overd(7). LetX; be the set of all strategies for playerForh € I, we
defines;(h) := o;(I). A strategy profile o consists of a strategy; for each playei € N. We let
o, refer to all the strategies im excepts;, and denote; (o) to be the expected utility for player
given that all players play according 4o

In a 2-player zero-sum game, st responseto a player 1 strategy; is a player2 strategy

o argmax,_uz (o1, 02) (similarly for a player 2 strategy.). The best response value of

is uz(o1, o8R), which measures thexploitability of o;. The exploitability of a strategy tells us
how much that strategy loses to a worst-case opponent. deut$i2-player zero-sum games, the
worst-case scenario for playewould be for all other players to minimize playés utility instead

of maximizing their own. In large games, this value is diffiddo compute since opponents cannot
share private information. Thus, we only investigate eialolity for 2-player zero-sum games.

Counterfactual regret minimization (CFR) [14] is an itérafprocedure for computing strategy pro-
files in extensive form games. In 2-player zero-sum game® @©duces an approximate Nash
equilibrium profile. In addition, CFR strategies have alsefound to compete very well in games
with more than 2 players [1]. CFR’s memory requirements aop@tional to the number of infor-
mation sets in the game times the number of actions avaitafzle information set.

The extensive form game representation of many real-wadtlpms is too large to feasibly com-
pute a strategy directly. A common approach in these gamesfist create ambstract gamdoy
combining information sets into single abstract statesyatiallowing certain actions:

http://www.computerpokercompetition.org
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Figure 1: (a) An abstraction of an extensive game, where states connegtold curve are in the
same information set and thin curves denote merged abgifantnation sets. In the unabstracted
game, player 1 cannot distinguish between whether chanoergteds or ¢ and player 2 cannot
distinguish betweem andb. In the abstract game, neither player can distinguish lexiveay of
chance’s outcomegb) An example of a gamE’ derived from the unabstracted gaié (a) for a
dynamic expert strategy. Here, the abstraction from (a¥é&tas the base abstraction, and the null
abstraction is employed on the subtree viith; = 0 andG2 ;1 = {al, bl, cl} (bold states).

Definition 2.2 (Waughet al.[12]) Anabstraction for player iis a pair; = (a7, a{'), where

e ol is a partition of H; defining a set of abstract information sets coarser ttardi.e., every
I € Z; is a subset of some setdrf), and
e o' is afunction on histories where (h) C A(h) andai (k) = o} (k') for all historiesh and
h’ in the same abstract information set. We will call this thetadict action set.
Thenull abstractionfor playeri is ¢; = (Z;, A). Anabstractiona is a set of abstractions;,
one for each player. Finally, for any abstractian the abstract gameI'®, is the extensive game
obtained fronT by replacingZ; with o and A(h) with a* (h) whenP(h) = i, for alli € N.

Figure 1a shows an example of an abstracted extensive fame gath no action abstraction. By
reducing the number of information sets, computing stiateig an abstract game with an algorithm
such as CFR requires less memory than computing strategite ireal game. Intuitively, if a
strategy profile for the abstract gameperforms well in[®, and ifoZ is defined such that merged
information sets are “strategically similar,” thenis also likely to perform well inl". Identifying
strategically similar information sets can be delicataiftoand typically becomes a domain-specific
task. Nevertheless, we often would like to have as much dgatwin our abstraction as will fit in
memory to allow computed strategies to be as diverse ass@ges

3 Strategy Stitching

To achieve abstractions with finer granularity, a natur@rapch is to break the game up into sub-
trees, abstract each of the subtrees, and compute a stfatezpch abstract subtree independently.
We introduce a formalism for doing so that generalizes Waatgth.'s strategy grafting [11] and two
poker-specific methods described in Section 5. First, selstbsetS C N of players. Secondly,
for eachi € S, compute a base strategy for playing the full game. Next, divide the game into
subtrees:

Definition 3.1 (Waughet al.[11]) G; = {Gi0,Gi 1, ..., Gip} is agrafting partition for player iif
e (5; is a partition of H; (possibly containing empty parts),
o VI € 17,35 €{0,1,...,p} such thatl C G, ;, and
o Vje{l,2,...p}, h € G, ,andh’ € H;, if h is a prefix ofh/, thenh’ € G, ; U G, 0.

For each € S, choose a grafting partitio@; so that each partition has an equal number of parts
Then, compute a strategy, static expertfor each subtree using any strategy computation technique
such as CFR. Finally, since the subtrees are disjoint, egesdaitic expert strateglpy combining the
static experts without any overlap to the base strategyanttdivided game:
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Figure 2: Two examples of a gam@’ for a static expert derived from the unabstracted ganre
Figure 1a. In both (a) and (bls2 ; = {al, bl,cl} (bold states). If player 1 takes actionplayer 2

no longer controls his or her decisions. Player 2’s actioasrestead generated by the base strategy
o2, computed beforehand. In (a), we have= {2}. On the other hand, in (b = N = {1,2},

G1,; = 0, and hence all of player 1’s actions are seeded by the basegste .

Definition 3.2 LetS C N be a nonempty subset of players. For eaehS, leto; be a strategy for
playeri andG; = {G,G; 1, ..., Gip} be a grafting partition for playei. Forj € {1,2,...,p},
defineI¥ to be an extensive game derived from the original gdimehere, for alli € S and
h € H\G, j, we setP(h) = C and fc(alh) = o;(h, a). That is, each player € S only controls
actions for histories in; ; and is forced to play according i@; elsewhere. Let thstatic experof
{G,; | i € S}, o7, be a strategy profile of the ganié. Finally, define thestatic expert strategy for

i S
playeri o7, as o5 (h.a) i oi(h,a) ifheGip
YT ol(hya) ifhe Gy

We call{c; | i € S} thebaseor seeding strategieand {G; | i € S} thegrafting profile for the
static expert strategy?.

Figure 2 shows two examples of a gairfefor a single static expert. This may be the only subtree
for which a static expert is computed & 1), or there could be more subtrees contained in the
grafting partition(s) > 1). Under a fixed memory limitation, we can employ finer abgtoss for

the subtree§’ than we can in the full gamé. This is becausE’ removes some of the information
sets belonging to players #), freeing up memory for computing strategies on the subtrees

When|S| = 1, the static expert approach is identical to strategy gr@ffl1, Definition 8], with
the exception that each static expert need not be an appatxiNash equilibrium. We relax the
definition for static experts because Nash equilibria affecdit to compute in multiplayer games,
and may not be the best solution concept outside of 2-plagre-gum games anyways. Choosing
|S| > 1, however, is dangerous because we fix opponent probabditié assume that our opponents
are “static” at certain locations. For example, in FigureiRimay not be wise for player 2 to assume
that player 1 must followr;. Doing so can dramatically skew player 2's beliefs aboutatigon
generated by chance and hurt the expert’s performancesiggiponents that do not follows . As

we will see in Section 6, having more static experts With > 1 can result in a more exploitable
static expert strategy. On the other hand, by removingmétion sets for multiple players, the static
expert approach creates smaller subtrees than strateftipgdoes. As a result, we can employ even
finer abstractions within the subtrees. Section 6 showsdibsite the risks, the abstraction gains
often lead to static experts with= N being preferred.

Regardless of the choice 6f, the base strategy lacks “cohesion” with the static expsnise its
computation is based on its own play at the subtrees ratlaer ttie experts’ play. Though the
experts are identically seeded, the base strategy may wafdy towards the expert subtrees more
often to increase utility. This observation motivates aurdduction ofdynamic expertshat are
computed concurrently with a base. The full extensive gasnéiiided into subtrees and each
subtree is supplied its own abstraction:



Definition 3.3 Let o, o', ..., a? be abstractions for the gamie and for eachi € N, letG; =
{Gio0,Gin,...,Gip} be a grafting partition for playet satisfyingl N G; ; € {0,1} forall j €
{0,...,p} andI € a{"z. Thus, each abstract information set is contained entirelgome part of
the grafting partition. Lef” be the abstract game obtained frdiby replacingZ; with U?:o{f €

olT | I C Gy} and A(h) with of*(h) whenP(h) = i andh € G, ;, forall i € N. Let the
dynamic expert strategy for player &, be a strategy for playerof the gamé&”. Finally define the
dynamic experof G; ;, o7, to beo!, restricted to the histories ia; ;, olla, - The abstractiom’
is denoted as thbase abstractiorand the dynamic expest is denoted as thbase strategy

Figure 1b contains an abstract game frééor a dynamic expert strategy. We can view a dynamic
expert strategy as a strategy computed in an abstractidndiffering granularity dependent on
the history of actions taken. Note that our definition is semet redundant to the definition of
abstraction as we are simply defining a new abstractioli flxsed on the abstraction$, o', ..., o”.
Nonetheless, we supply Definition 3.3 to provide the ternisoidl that we will use throughout.

Under memory constraints, a dynamic expert strategy tyipisacrifices abstraction granularity
in the base strategy to achieve finer granularity in the dgpafe hope doing so achieves better
performance at parts of the game that we believe may be mgertemt. For instance, importance
could depend on the predicted relative frequencies of iagdifferent subtrees.The base strategy’s
abstraction is reduced to guarantee perfect cohesion batthe base and the experts; the base
strategy knows about the experts and can calculate its pilikes “dynamically” during strategy
computation based on the feedback from the experts. Inde@tiwe contrast static and dynamic
experts to compare this trade-off between abstractionesidestrategy cohesion.

4 Texas and Leduc Hold’em

A hand of Texas Hold’em poker (or simply Hold’em) begins watich player being dealt two private
cards, and two players posting mandatory betsliods There are four betting rounds, thee-flop
flop, turn, andriver where five community cards are successively revealed. Qfltheers that did
not fold, the player with the highest ranked poker hand wihsfdahe bets. Full rules can be found
on-line? We focus on the Limit Hold’em variant that fixes the bet sizad the number of bets
allowed per round. We denote the players’ actiong &sld), ¢ (checkor call), andr (betor raise).

Leduc Hold’em [10] (or simply Leduc) is a smaller version aflifem, played with a six card deck
consisting of two Jacks, two Queens, and two Kings with onty betting rounds, pre-flop and flop.
Rather than using blinds, antes are posted by all playeng diteginning of a hand. Only one private
card is dealt to each player and one community card is dedktefiop.

While Leduc is small enough to bypass abstraction, Hold’'sra imassive game in terms of the
number of information sets; 2-player Limit Hold’em has appmately3 x 10'4 information sets,
and 3-player has roughly x 10'7. Applying CFR to these enormous state spaces necessitates
abstraction. A common abstraction technique in poker isrtmg many different card dealings
into single abstract states buckets This is commonly done by ordering all possible poker hands
for a specific betting round according to some metric, sucbxaected hand strengt&[HS]) or
expected hand strength squar&fHS?]), and then grouping hands with similar metric values into
the same bucket [7]Percentile bucketingvith N buckets and\/ hands puts the top//N hands
into 1 bucket, the next bedt/ /N into a second bucket, etc., so that the buckets are apprtlyma
equal in size. More advanced bucketing schemes that usgtaultetrics and clustering techniques
are possible, but our experiments use simple percentilleging with no action abstraction.

5 Related Work

Our general framework for applying static experts to angesive form game captures some previ-
ous poker-specific strategy stitching approaches. FirstPsOpti family of agents [2], which play
2-player Limit Hold’em, contain a base strategy called the*flop model” and 7 static experts with
S = N, or “post-flop models.” Due to resource and technology ktiiins, the abstractions used to

2http://en.wikipedia.org/wiki/Texakold_'em



build the pre-flop and post-flop models were quite coarse,mgake family no match for today’s
top agents. Secondly, Abou Risk and Szafron [1] attach &staperts withS = N (which they call
“heads-up experts”) to a base strategy for playing 3-plajreit Hold’em. Each expert focuses on
a subtree immediately following a fold action, allowing rhumer abstractions for these 2-player
scenarios. However, their results were mixed as the stitstrategy was not always better than the
base strategy alone. Nonetheless, our positive resultstditic experts withS = N in Section 6
provide evidence that the PsOpti approach and heads-uptexgpe indeed credible.

In addition, Gilpin and Sandholm [5] create a poker agentf@layer Limit Hold’em that uses a
2-phase strategy different from the approaches discubsisddr. The first phase is used to play the
pre-flop and flop rounds, and is computed similarly to the Ris@p-flop model. For the turn and
river rounds, a second phase strategy is computed on-line deawback of this approach is that the
on-line computations must be quick enough to play in readtifdespite fixing the flop cards, this
constraint forced the authors to still employ a very coalsgraction during the second phase.

Furthermore, there have been a few other related appro&eluesating poker agents. While 2-
player poker is well studied, Ganzfried and Sandholm [3,eljedoped algorithms for computing
Nash equilibria in multiplayer games and applied it to a $@wdlayer jam/fold poker game. Addi-
tionally, Gilpin et al. [6] use an automated abstractioriding tool to dynamically bucket hands in
2-player Limit Hold’em. Here, we are not concerned with éiQuium properties or the abstraction
building process itself. In fact, strategy stitching ishagonal to both strategy computation and
abstraction improvements, and could be used in conjunetithmore sophisticated techniques.

6 Empirical Evaluation

In this section, we create several stitched strategiestin beduc and Hold’em using the chance-
sampled variant of CFR [14]. CFR is state of the art in termsnemory efficiency for strategy
computation, allowing us to employ abstractions with higpenularity than otherwise possible.
Results may differ with other techniques for computingtsgées and building abstractions. While
CFR requires iterations quadratic in the number of infofamasets to converge [14, Theorem 4],
we restrict our resources only in terms of memory. Even thougduc is small enough to not
necessitate strategy stitching, the Leduc experiments egducted to evaluate our hypothesis that
static experts withS = N can improve play. We ran many experiments and for brevityy an
representative sample of the results are summarized.

To be consistent with post-flop models [2] and heads-up éxpHr; our grafting profiles are defined
only in terms of the players’ actions. For each histbrg H, defineb := b(h) to be the subsequence

of h obtained by removing all actions generated by chance. Vée tefab-expert for player as an
expert constructed for the subtrég(d) := {h € H; | bis a prefix oft(h)} containing all histories
where the players initially follows. For example, the experts for the games in Figures 1b, 2a, and
2b arel-experts because the game is split after player 1 takeswdctio

Leduc. Our Leduc experiments use three different base abstractamre of which is simply the
null abstraction. The second and third abstractions ar&JtQeK” and “J-QK” abstractions that, on
the pre-flop, cannot distinguish between whether the ivatd is a Jack or Queen, or whether the
private card is a Queen or King respectively. In additioesthtwo abstractions can only distinguish
between whether the flop card pairs with the private card bratber than knowing the identity of
the flop card. Because Leduc is such a small game, we do nateomsfixed memory restriction
and instead just compare the techniques within the sameabasection.

For both 2-player and 3-player, for each of the three bastabi®ns, and for each playérwe
build a base strategy, a dynamic expert strategyy an {i} static expert strategy, and twH= N
static expert strategies. Recall choositig= {i:} means that during computation of each static
expert, we only fix playei’s action probabilities outside of the expert subtree, whsf = N
means that we fix all players outside of the subtree. For 2eplaeduc, we use, cr, ccr, andecer-
experts for both players. Thus, the base strategy playsthatfirst raise occurs, at which point
an expert takes over for the remainder of the hand. As an &roepnly one of our twaS = N
static expert strategies, named “All,” uses all four exgdtte other, named “Pre-flop,” just uses the
r andcr-experts. For 3-player Leduc, we usecr, cer, ccer, cecer, andecccer-experts, except the
“Pre-flop” static strategies use just the three exper¢s, andcer. The null abstraction is employed



Table 1: The size, earnings, and exploitability of the 2-player @@juc strategies in the JQ-K base
abstraction, and the size and earnings of the 3-player (Bgegies in the J-QK base abstraction.
The sizes are measured in terms of the maximum number ofiafidon sets present within a single
CFR computation. Earnings, as described in the text, anlkbibility are in milli-antes per hand.

Strategy (2p) Size | Earns. | Exploit. Strategy (3p) Size | Earns.
Base 132 | 24.73 | 496.31 Base 1890 | -68.46
Dynamic 444 | 45.75 | 159.84 Dynamic 6903 | 113.04
StaticS={:} 226 | 28.87 | 167.61 StaticS={i} 3017 | 96.14
StaticS=N_.All 186 | 29.20 | 432.74 StaticS=N_.All 2145| 117.01
StaticS=N.Pre-flop| 186 | 37.77 | 214.44 || StaticS=N.Pre-flop| 2145 | 119.73

on every expert subtree. Each run of CFR is stopped after 100miterations, which for 2-player
yields strategies within a milli-ante of equilibrium in thbstract game.

Each strategy is evaluated against all combinations aneriogs of opponent strategies where all
strategies use different base abstractions, and the samrem/eraged together. For example, for
each of our 2-player strategy profilesn the JQ-K base abstraction, we compute(uy (o1, %) +
us(of, 02)), averaged over all profiles' that use either the null or J-QK base abstraction. Leduc is
a small enough game that the utilities can be computed gxactselection of these scores, along
with 2-player exploitability values, are reported in Tatle

Firstly, by increasing abstraction granularity, all of th@-K strategies employing experts earn
more than the base strategy alone. Secondly, Dynamic arid.StV earn more overall than
StaticS={i}, despite the 2-player Statk=N being more exploitable due to the opponent action
assumptions. In fact, despite requiring much less memootopute, Stati§=N surprisingly
earns more than Dynamic in 3-player Leduc. Finally, we se¢ d¢inly using two pre-flop static
experts as opposed to all four reduces the number of dangassumptions to provide a stronger
and less exploitable strategy. However, as expected, Digreamd StaticS={:} are less exploitable.

Hold’em. Our Hold’em experiments enforce a fixed memory restrictien un of CFR, which
we artificially set to 24 million information sets for 2-playand 162 million information sets for
3-player. We compute stitched strategies of each type wsngany percentilE[HS?] buckets as
possible within the restriction. Our 2-player abstractialistribute buckets as close to uniformly
as possible across the betting rounds while rememberinkgksifrom previous rounds (known as
“perfect recall”). Our 3-player abstractions are simi&cept they use 169 pre-flop buckets that are
forgotten on later rounds (known as “imperfect recall;” Edeand [13] for more regarding CFR and
imperfect recall).

For 2-player, our dynamic strategy has just-aexpert, ourS = {i} static strategy uses cr, ccr,
and ccer-experts, and ouf = N static strategy employs and cr-experts. These choices were
based on preliminary experiments to make the most effeateeof the limited memory available
for each stitching approach. Following Abou Risk and Szafdd, our 3-player stitched strategies
all havef, rf, rrf, andrcf-experts as these appear to be the most commonly reacheye-pl
scenarios [1, Table 4]. Our abstractions range quite diaaligtin terms of number of buckets. For
example, in 3-player, our dynamic strategy’s base ab#rabas just 8 river buckets with 7290 river
buckets for each expert, whereas our static strategiestavieer buckets in the base abstraction
with up to 194,481 river buckets for thfe = N staticrcf-expert abstraction. For reference, all of
the 2-player base and experts are built from 720 millioratiens of CFR, while we run CFR for
100 million and 5 billion iterations for the 3-player basalaxperts respectively.

We evaluate our 2-player strategies by playing 500,000icaig! hands (players play both sides of
the dealt cards) of poker between each pair of strategiesddition to our base and stitched strate-
gies, we also included a base strategy called “Base.797Mhiabstraction with over 797 million
information sets that we expected to beat all of the stratege were evaluating. Furthermore, using
a specialized best response tool [8], we computed the eapltify of our 2-player strategies. For
3-player, we play 500,000 triplicate hands (each set otdeadls played 6 times, one for each of the
player seatings) between each combination of 3 stratelfiesalso included two other strategies:
“ACPC-09,” the 2009 ACPC 3-player event winner that did nee experts (Abou Risk and Szafron
[1] call it “IR16"), and “ACPC-10,” a static expert stratedfyat won a 3-player event at the 2010
ACPC and is outlined at the end of this section. The resuétpeovided in Table 2.



Table 2: Earnings and 95% confidence intervals over 500,000 duplitatds of 2-player Hold’em
per pairing, and over 500,000 triplicate hands of 3-play@dtem per combination. The exploitabil-
ity of the 2-player strategies is also provided. All valuesia milli-big-blinds per hand.

Strategy (2p) Earnings Exploitability || Strategy (3p) Earnings
Base —10.47+1.99 310.04 Base —6.09+£0.71
Dynamic —4.43 +1.98 307.76 Dynamic —4.91£0.75
StaticS={i} | —13.13 £ 2.00 301.00 StaticS={i} | —5.20£0.70
StaticS=N —4.57+1.95 288.82 StaticS=N 3.06 £ 0.70
Base.797M 32.59+2.14 135.43 ACPC-09 | —14.15+0.89
ACPC-10 27.294+ 0.86

Firstly, in 2-player, we see that Stat$=N and Dynamic outperform Stati€={i} considerably,
agreeing with the previous Leduc results. In fact, the &t&i{i} fails to even improve upon the
base strategy. For 3-player, StafieV is noticeably ahead of both Dynamic and Stafic{:} as it

is the only strategy, aside from ACPC-10, to win money. Byciiog one player to fold, the static
experts withS = N essentially reduce the size of the game tree from a 3-playar2-player
game, allowing many more buckets to be used. This resultatels that at least for poker, the
gains in abstraction bucketing outweigh the risks of foraetion assumptions and lack of cohesion
between the base strategy and the experts. Furthermotie, $taV is slightly less exploitable in
2-player than the base strategy and the other two stitchatbgies. While there are one and two
opponent static actions assumed bysttendcr-experts respectively, trading these few assumptions
for an increase in abstraction granularity is beneficialsummary, static experts with = N are
preferred to both dynamic and static experts vtk {i} in the experiments we ran.

An additional validation of the quality of the static expapiproach was provided by the 2010 ACPC.
The winning entries in both 3-player events employed statperts withS = N. The base strategy,
computed from 70 million iterations of CFR, used 169, 900),18nd 25 buckets on each of the
respective rounds. Four experts were ugedf, rrf, andrcf, computed from 10 billion iterations
of CFR, each containing 169, 60,000, 180,000, and 26,16Retsi@n the respective rounds. In
addition, clustering techniques on strength distributi@re used instead of percentile bucketing.
Two strategies were created, where one was trained to pthtlglmore aggressively for the total
bankroll event. Each version finished in first place in itpeative competition.

7 Conclusions

We discussed two strategy stitching techniques for extergames, including static experts that
generalize strategy grafting and some previous techniggexsin poker. Despite the accompanying
potential dangers and lack of cohesion, we have shown stapierts withS = N outperform the
dynamic and static experts with= {i} that we considered, especially when memory limitations are
present. However, additional static experts with severaldd actions can lead to a more exploitable
strategy. Static experts with = N is currently our preferred method for creating multiplageker
strategies and would be our first option for playing othegdeextensive games.

Future work includes finding a way to create more cohesiowdsn the base strategy and static
experts. One possibility is to rebuild the base strategr dfte experts have been created so that the
base strategy’s play is more unified with the experts. Intaatdiwe have yet to experiment with 3-
player “hybrid” static experts wheté&| = 2. Finally, there are many ways to combine the stitching
techniques described in this paper. One possibility is @aislynamic expert strategy as a base
strategy of a static expert strategy. In addition, statjgeets could themselves be dynamic expert
strategies for the appropriate subtrees. Such combirsatiay produce even stronger strategies than
those produced in this paper.
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