
2017

Modern Heuristic Search: Towards 
a Unifying Framework
Martin Müller, University of Alberta



Outline of the Talk

✤ What is heuristic search?

✤ Some textbook examples

✤ What is different in modern heuristic search?

✤ Examples of recent work

✤ Towards a general framework



What is Heuristic Search?



Heuristic Search Example

❖ Heuristic search is a research area in 
computing science

❖ It is considered a part of the field  
of Artificial Intelligence

❖ It can be used for sequential decision-
making problems

❖ Many applications: automated 
planning, optimization problems, 
pathfinding, games, puzzles,…



Which Kind of Search?

✤ There are many other kinds of search in computing science

✤ Internet search, database search, binary search, …

✤ In heuristic search, we search ahead into the future

✤ Which sequences of actions can happen?

✤ What is their effect?

✤ Goal: make decisions about best actions



What is a Heuristic?

✤ Heuristic is a rough, inexact rule

✤ A heuristic can guide the search

✤ Roughly, how good is an action?

✤ Roughly, how good is a state?

✤ Main question: How to use  
 them to make good decisions?

Heuristic:  
straight-line distance



Why Use a Heuristic?

✤ Contrast: heuristic vs exact knowledge

✤ Why not use exact knowledge instead?

✤ Often, it is simply not available

✤ Example: how good is this Go position?

✤ Sometimes, it is available but too expensive to compute

✤ Problem: how to build a robust system on inexact heuristics



Making Complex Decisions

❖ We make decisions every moment of our lives
❖ What is the process that leads to our decisions?
❖ How to make good decisions?
❖ Consider many alternatives
❖ Consider short-term and long-term consequences
❖ Evaluate different options and choose the best-looking 

one



Making Sequential Decisions

❖ Make decision:
❖ Get current state of world
❖ Analyze it
❖ Select an action
❖ Observe the world’s 

response
❖ If not done:  

make another decision
Image Source:  

http://www.prenhall.com



Some Textbook Examples 
of Heuristic Search



A* Algorithm, Shortest Path

✤ State space with start state,  
end state

✤ Heuristic h(s) estimates  
cost-to-go from s to goal

✤ g(s) is cost-so-far from start to s

✤ A* always expands a node of smallest sum g(s) + h(s)

✤ Greedy, always follows heuristic, no other steps



Minimax, Alphabeta Algorithm

✤ Standard algorithm for game tree search

✤ Very successful for chess, checkers, many other games

✤ Tree search, then call heuristic evaluation function in leaf 
node

✤ Problem: always trusts the evaluation function, not robust 
against errors

✤ Mostly useless in Go, evaluation quality too bad



Main Problem of 
Classical Heuristic Search

✤ Classical methods have two main ingredients

✤ Search algorithm

✤ Knowledge expressed as heuristic (evaluation) function

✤ Problem: search is greedy/naive

✤ Always trusts the heuristic

✤ Not robust against errors in heuristic

✤ Search can amplify the errors



What is Different  
in Modern Heuristic Search?



Exploration and Exploitation

✤ We often deal with information that is:

✤ Heuristic, incomplete, stochastic, sparse,…

✤ Fundamental trade-off: 

✤ Exploitation: make decision  
based on the information we have

✤ Exploration: go find more information



Exploration Algorithm  
for Bandit Problems

✤ Different actions, 
unknown “payoff” value

✤ Can sample each action, 
at a cost

✤ Value of action = 
expected payoff

✤ Uncertainty about value 
from lack of samples



Bandit Problems and UCB

✤ Explore = get more statistics

✤ Exploit = play best action

✤ UCB combines both ideas into one balanced formula

✤ One fundamental algorithm for solving exploration-
exploitation problems



The Many Forms of Exploration

✤ UCB is one of the best known algorithms for exploration

✤ Many others

✤ Random walk

✤ Random simulation

✤ Epsilon - greedy

✤ Many more…



Exploration in Modern Heuristic 
Search

✤ Doing exploration is the key difference between classic 
and modern heuristic search

✤ Many success stories

✤ Many different approaches to exploration

✤ I try to understand the common principles

✤ At this point, we are just doing many case studies



The Three Plus One Pillars  
of Modern Heuristic Search

❖ Three main ingredients:
❖ Search (old)
❖ Knowledge (old) plus machine learning
❖ Simulations for exploration (new)

❖ All of these are used in AlphaGo
❖ All of these are used in many modern systems



Examples of Recent Work



Game of Go

✤ Search = Monte Carlo Tree Search

✤ Knowledge, machine learning = deep convolutional 
neural networks

✤ Simulation = play full games until the end



Game of Amazons

✤ Modern two player game with aspects of both chess (queens) 
and Go (make territory)

✤ Search = Monte Carlo Tree Search

✤ Knowledge = traditional  
evaluation function

✤ Simulation = short random move sequences  
(about 5 moves deep) followed by evaluation

✤ Interesting case mixing aspects of old and new methods



Automated Planning

✤ Search = Greedy Best-first Search

✤ Knowledge = automatically constructed heuristic, 
specific for each problem

✤ Simulation = random walks, random sequences of 
actions

✤ (Much work done in my group, e.g. Arvand system)



Motion Planning

❖ Move robot through terrain
❖ RRT - rapidly exploring random 

tree (LaValle 1998)
❖ RRT* - approach optimal paths  

(Karaman and Frazzoli 2010)
❖ Extremely popular in robotics
❖ Early example of random walks

Image: Sertac Karaman

Yellow: start
Purple: goal
Red: obstacles
Green: RRT* tree
Red line: near-optimal path



Towards a General Framework



Many Results, More Questions

✤ Modern heuristic search has been extremely successful

✤ Taking proper account of exploration makes algorithms 
much more robust, and able to handle harder problems

✤ Advances in search allow to integrate different 
exploration techniques (simulations, random walks)

✤ Machine learning gives much stronger domain 
knowledge (deep neural nets, AlphaGo)



Many More Questions

✤ Each success story is one data point in a larger space

✤ How and why exactly do these programs work?

✤ We don’t know

✤ Much development is by trial and error, not by systematic 
design

✤ Example in Go: change program,  
 then play thousands of test games to check it



Examples of Open Questions

✤ Given a new problem to solve:

✤ What is the right exploration method?

✤ Which machine learning techniques should we use?

✤ How do we scale to similar but harder problems?

✤ How do we transfer results to other problems?



Summary

✤ Modern heuristic search considers exploration

✤ Search, simulations, machine-learned knowledge

✤ Many diverse examples of programs which follow this 
pattern

✤ Work in progress: Looking for common ground


